Lithospheric Heat Flow and Dynamics

- obvious signals

- heat flow, depth, and geoid height versus age

- does hydrothermal circulation really transport 10 TW?
* inferred signals

- lithospheric thickness and strength versus age



global heat budget




oceanic lithosphere dominates mantle convection

largest surface area
greatest temperature drop across TBL = largest density contrast
> 1/2 of heat escapes in young oceanic lithosphere
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4-4 Mean mantle heat production rates due to the decay of the radioactive
isotopes of U, Th, and K as functions of time measured back from the
present.

plotted as a function of time before the present in
Figure 4—4. The past contributions of the individual ra-
dioactive elements are also shown. We see that the rate
of heat production 3 x 10° yr ago was about twice the
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thermal expansion

volumetric expansion

A—V = oAT or % = —aAT

4 P

a - thermal expansion coefficient ~3x10> °C™

linear expansion

Al thermal stress
[ develops when
T V(A7) %0




obvious signals

- depth versus age
- heat flow versus age

- geoid height versus age
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Fig. 1. Plot of mean depth in the North Pacific versus the square
root of age. Numbers at the bottom of the figure denote selected
Cenozoic and Mesozoic magnetic anomalies [from Parsons and Scla-
ter, 1977].
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Mueller, personal communication 2006
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Fig.2. Temporalvariation of theglobally integrated heat flow based on the
estimates from the two plate tectonic reconstructions as shown in Fig. 1. For
regionswith half-space cooling-derived heat flow (g = Cat™ '2), we performed
an integration over seafloor age by summing over 1-Myr age integrals and
multiplying each of these integrals by the area of seafloor within that age
interval. Error bars for each heat flow estimate are computed by assuming
progressively increasing uncertainty in these area estimates as described
below. Filled square symbols (Hall) are for Xu et al’s (6) reconstruction based
on Hall (34), and open squares (GJ86) are based on Gordon and Jurdy (33).
Solidand dashed lines are best-fit linear trends withrates, d, of relative change
in total oceanic heat flow specified in the key.
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Fig.3. Cenozoicand Mesozoic evolution of the Pacific basin as characterized
by seafloor distance to the nearest mid-ocean ridge. Notice the progression
from four relatively small plates to one large plate and compare with Fig. 1.
Maps were created after Lithgow-Bertelloni and Richards (29).

Loyd, Becker, Conrad, Litho-Bertelloni and Corsetti, PNAS, 2007



obvious signals - summary

heat flow versus age q,(1) = k&—Z

- surface temperature gradient

* noisy, observations << model

depth versus age d(t) = o p f oT dz
w 0

* integrated temperature

- observations = model

geoid height versus age N(¢) = —27Gp,, f aTzdz
8

- first moment of temperature

« dominated by mantle geoid, observations ~ model



Inferred signals

- lithospheric strength versus age (see Watts, 2001)

- swell-push force and global stress from the geoid
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Gravity anomalies and crustal structure at Oahu/Molokai
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Free-air Gravity Anomaly

T, = 75 km
136.7 mGal

== Free-air corrected -
for basin on ridge

- Uncorrected Free-air

Observed

2830

136
Te= 20
15.6
T,=10
39.0
Bathymetry
3
Pioad = 2730 kg m
Pingint = 2730
! " = 3330

R mantle

Estimating 7,

1, can be estimated by comparing the
amplitude and wavelength of the observed

gr:

The |

;

Y
TIXTTIINI IO 111 U1V INIVI D UI1I VI VIIVV UVLUYY \Jen

observed and calculated gravity anomaly

indicate a ‘best fit" 7, ~ 30 km.

SW NE




Topography seaward of the Kuril Trench
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Relationship between oceanic  and plate and load age

Age of Oceanic Lithosphere at Time of Loading (Ma)
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Lithospheric Heat Flow and Dynamics

- obvious signals

- heat flow, depth, and geoid height versus age

- does hydrothermal circulation really transport 10 TW?
* inferred signals

- lithospheric thickness and strength versus age



