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Abstract 

The most common model used for representing the evolution with age of the oceanic lithosphere is the ‘plate model’ 
where the temperature is set at a fixed depth, called the base of the plate. This ‘base of the plate’ has no physical meaning 
but this model provides a mathematical substitute for a system where small-scale convection occurs through instabilities 
growing at the base of the cooling lithosphere and becomes effective only below old ocean. Another possible view is that 
convection provides heat at the base of the lithosphere whatever the age of the overlying plate. This last process can be 
modeled by a Constant Heat flow Applied on the Bottom Lithospheric ISothetm (CHABLIS model). A good fit to the 
observables (bathymetry and geoid as function of age, and old age heat-flow) can be obtained both for plate and CHABLIS 
models in spite of an experimentally determined thermal expansion coefficient much larger than assumed in previous plate 
models. These models have important consequences for several geodynamic processes. The plate, at an age of 100 Ma is 
only 80 km thick for both models: melting above a hot-snot can then occur in the garnet-spine1 transition field without much 
plate thinning. In the plate model the subsidence is stopped at an age of about 80 Ma while, according to the CHABLIS 
model, several hundred meters of subsidence are expected after 100 Ma. Thus the two models predict quite a different 
long-term pattern of subsidence in the sedimentary basins. Finally, in the CHABLIS model, the global cooling of the mantle 
coming from cold material eroded by secondary convection at the base of the plates is considerably larger than in plate 
models: it amounts to 40%, the remaining 60% being due to the subduction process. 
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1. Introduction 

The thermal evolution of the oceanic lithosphere 
is one of the most classical problems in Geodynam- 
its [l-8]: If no heat is brought by convection to the 
base of the lithosphere, the solution corresponds to 
the ‘half-space’ cooling model. The bathymetry is 
predicted to be proportional to the square root of age 
while the geoid anomaly decreases proportionally to 

the age of the lithosphere. In fact, both topography 
[4] and geoid [g-12] are observed to flatten at old 
ages and the flattening of the geoid is observed at 
short wavelengths. The flattening of the topography 
occurs on very slow plates, such as the African plate. 
This means that these flattenings cannot be due to a 
dynamic effect but, rather, to heat brought to the 
base of the lithosphere. 

Most of previous models assume that heat is 
brought to the base of the lithosphere and that topog- 
raphy departs from the square root of age law only at 
old ages. However, this has not been well assessed. 

l Corresponding author. Tel: +33 1 44 32 22 01 Fax: +33 1 
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In their study of topography versus age, Colin and 
Fleitout [13] used two types of law: one with a shape 
a + b& - c. age2, mimicking a heat transfer 
main1 at old ages and another one with shape a + 
b ti age - c * age, thought to mimic heat transfer in- 
dependent of the age of the plate. The subsidence 
laws obtained (respectively 2691 + 3286 - 
0.046 * age2 and 2452 + 4526 - 15 . age) pro- 
vide an equally good lit to the topography data. The 
coefficient b is, however, much larger with the 
second law, implying a thermal expansivity or con- 
ductivity very different from those currently used. 
The data on the geoid slope versus age [9,10] are 
noisy but seem to indicate an early departure from 
the half-space model. 

In this paper, we reassess the origin and implica- 
tions of the commonly used ‘plate model’ and pro- 
pose to test a model where a heat-flow independent 
of age is brought to the base of the lithosphere 
(Section 2. In Section 3, the experimental constraints 
on the thermal parameters are taken into account and 
the observed topography, geoid and heat-flow are 
compared with those predicted by the two types of 
models. In Section 4, we discuss the implications of 
these models for the global cooling of the mantle, the 
long term subsidence of basins and the interaction of 
hot-spots with the lithosphere. 

2. Two classes of thermal models 

2.1. The plate model and other models with heat 
transfer at old ages 

The model most commonly used to describe the 
thermal evolution of the lithosphere with age is the 
plate model: a temperature is imposed at a fixed 
depth, called the base of the plate. In the early 
stages, the thermal evolution of the lithosphere is 
similar to the cooling of a half-space. However, 
when the thermal perturbation reaches the base of 
the plate, heat transfer between the mantle and the 
plate limits the lithospheric growth. The ‘base of the 
plate’ has sometimes been considered as a real phys- 
ical barrier, the matter above the depth characteristic 
of the base of the plate being very viscous, even 
when hot, and the matter below being soft, even 

when cold [ 141. No explanation has been given up to 
now as to what could be the physical mechanism for 
such a rheological barrier. However, it will be ar- 
gued in the discussion that the buoyancy and high 
viscosity expected for the depleted material may 
provide such a barrier to convection at a depth of the 
order of 80 km. In models where realistic tempera- 
ture-dependent viscosity is used [15,16], instabilities 
growing at the base of the lithosphere lead to mature 
convection at a critical age, which depends upon the 
viscosity below the plate, but which may be of the 
order of 70 Ma for appropriately chosen mechanical 
properties, leading to a lithospheric evolution similar 
to that predicted by the plate model. The plate model 
may then simply be considered as a simple mathe- 
matical parameterization for a system where heat 
would only be brought at the base of the plate at old 
ages and where the thermal boundary layer could not 
exceed a maximum thickness. 

2.2. Models with a constant heat transfer at the base 
of the lithosphere 

In systems where the viscosity depends both on 
pressure and temperature, however, the notion of 
critical age becomes fuzzy [15,17]. The lithosphere 
can destabilize early and continue to grow consider- 
ably after the onset of convection [17,18]. Moreover, 
secondary convection caused only by cold, sinking 
blobs is not necessarily realistic. If no heat is trans- 
ferred from a lower boundary layer or by radioactive 
heating, the mantle cools at an unrealistically high 
rate. Reheating of the mantle material must compen- 
sate for this cooling. It is very likely in the case of 
one-layer mantle convection, and necessary in the 
case of two-layer convection, that this reheating 
occurs through hot rising currents, which at least 
partly reach the upper boundary layer. As pointed 
out by Fleitout and Yuen [181, convection fed from a 
lower boundary layer has no reason to be quenched 
when situated below a young plate. Indeed, lin- 
eations in the geoid visible at young ages have been 
interpreted as potential traces of small-scale convec- 
tion [ 19-211. 

In summary, convective heat transfer at the base 
of the lithosphere beginning at young ages is possi- 
ble and therefore worth testing. Full convection mod- 
els involving such a heat transfer have been per- 
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formed [ 181. However, the exact geometry of the 
secondary convection is still speculative. In order to 
achieve simple models which do not involve the 
geometry of the convection below directly, we pa- 
rameterize the heat transfer between the lithosphere 
and the underlying mantle using a Constant Heat-flow 
Assigned on the Bottom Lithospheric Isotherm. This 
model will be here after referred to as the ‘CHA- 
BLIS model’. 

Such models have already been proposed using 
either analytical approximations or’ numerical solu- 
tions [22-241. Here, because temperature- and pres- 
sure-dependent thermal parameters are considered, 
this Stephan problem is solved numerically using a 
finite difference method. For reasons discussed in 
Appendix A, we neglect possible topographic pertur- 
bations due to temperature variations deeper than the 
base of the lithosphere and compute topography 
anomalies from local isostasy. Through a careful 
examination of both observational data (topography, 
heat-flow and geoid) and experimentally determined 
thermal parameters, we want to examine the geo- 
physical consequences of both models. 

2.3. Some characteristics of the CHABLIS model 

For parameters independent of temperature and 
pressure, the non-dimensional topography and heat- 
flow as function of age computed for the CHABLIS 
model take a unique shape (see Appendix B). Fig. 1 
shows that at young ages the topography fits quite 
accurately a function: 

Topo = - a& + b . age (1) 
while the surface heat-flow is: 

s,=c/\/age+(l-b) (2) 
where a and c are the same as for the cooling of an 
infinite half-space (i.e., a = 2/\/;r and c = l/G> 
and where b = 0.724. Eq. (1) and Eq. (2) correspond 
to the analytical solutions which would be obtained 
for a heat-flow imposed at the base of a plate, which 
would deepen proportionally to the square root of 
age (Appendix B. Eq. (1) is a simple consequence of 
Eq. (2). 

As a consequence of Eq. (l), for a given set of 
thermal parameters (ol,k,C,,) the topography at young 
ages varies less quickly for the CHABLIS model 

CHABLIS MODEL 
0.0 - Subsidence aa a IunctIon of age - wnstanl prameten 

i z  - -- -0 .1  Regmssion aJIve: -(tin) Jage + 0.7 2 4 w e . 
.---.----. 5  c urv e : -0 .5 0 +  0 .1 9 e x p(**a g a s J 4) 

-0.d . I 1 
1 
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Fig. 1. Topography predicted for the CHABLIS model versus age 
(non-dimensional units - see Appendix B) compared with the 
curve - (2/fi)G + 0.724. age. The long term subsidence 
predicted by the CHABLIS model is fitted with an exponential 
law: topo = a exp< - T’ age/4). 

than for the plate model. (a,k, and CP are the 
thermal expansion coefficient, the conductivity, and 
the heat capacity, respectively). The topography slope 
is proportional to cxT\/;;. Therefore, when one tries 
to fit the observed topography slope at young ages, 
the product (YT& providing a good fit for the 
CHABLIS model is larger than that appropriate for 
the plate model, as already noted in previous studies 
[ 17,221. 

As shown on Fig. 1 and discussed in Appendix B, 
the long term subsidence for the CHABLIS model 
(non-dimensional topography proportional to 
exp( - rr2age/4) is four times slower than for the 
plate model (non-dimensional topography propor- 
tional to exp( - n2age) [23,24]. 

3. Fit to the observables 

3.1. Fit to topography and heat-jlow in the parame- 
ter space 

In this section, the range of asymptotic plate 
thickness, mantle temperature and thermal parame- 
ters providing the best fit to the observed topography 
and heat-flow are inverted. The two best constraints 
on the evolution of the thermal lithosphere are the 
bathymetty as a function of age and the heat-flow at 
old ages. The bathymetric data set ETOPOS, sam- 
pled at 1” intervals, is corrected for the sediment load 
using the same file as in Colin and Fleitout [ 131. The 
shallowest points (those which are shallower than 
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Table I 
Values of the thermal parameters characteristic of the Parsons and 
Sclater model [4] and of the GDHl model [5] 

Parameter 

a (K-l) 
k (W/r& 
Cp (J/gK) 
T, (“C> 
L (km) 

Parsons and Sclater model 

3.2. IO-’ 
3.1 
1.16 
1350 
125 

GDH-1 model 

3.1’ 10-s 
3.14 
1.1721 
1450 
95 

Three inversions are performed and the three 
functions which are minimized are the following: 

a;=&_-- a,)*/~~* + a4 + a, (inversion 1) 

gr = (k, - k,)‘/~t + aq + ad (inversion 2) 

a, = a4 + a, (inversion 3) 

with: 

600 m above the predicted value) are eliminated. 
This mainly eliminates all the major seamounts and 
plateaus plus some hot-spot swells [ 131. The ages are 
deduced from the map by Muller et al. [25]. The 
heat-flow values are those from the compilation by 
Stein and Abott 1261. 

cd = f ( di - dip)*/CTd; and 
1 

uq = 5 (‘li - 9ip)2/crqi 
1 

In previous studies [4,5], the thermal parameters 
were adjusted to yield the best fit to the observed 
topography and heat-flow (Table 1). Here, the exper- 
imental data on the thermal parameters are taken into 
account. The computations were carried out using 
the fully temperature- and pressure-dependent coeffi- 
cients given in Table 2 and discussed in Appendix C. 
This pressure and temperature dependence does much 
not affect the observable& as shown in Appendix C. 
On the other hand, the ‘average value’ of the coefti- 
cients (see definition in Appendix C> obviously mat- 
ters. In inversions 1 and 2, a, and k are allowed to 
vary around their experimentally found value: The 
parameters of Table 2 are multiplied by an arbitrary 
constant in order to yield the best fit to the observ- 
ables, while the temperature- and pressure-dependent 
part is unchanged. The asymptotic plate thickness 
and the mantle temperature are left unconstrained. 
The mantle temperature is, however, expected to be 
around 1300°C from considerations on the fusion at 
the ridge 1271. 

In these expressions, the subscript p refers to 
‘predicted’ values, that is, to the thermal coefficients 
or to the heat-flow or bathymetry predicted by the 
thermal lithospheric models (plate or CHABLIS); the 
subscript e refers to the experimentally obtained 
values for the thermal parameters; the subscript i 
refers to average of the observables for a 2 Ma 
interval, after 80 Ma, for the heat-flow and for a 1.7 
Ma interval, between 0 and 180 Ma, for the topogra- 
phy. qi and di are the average observed values for 
these time intervals. odi and as, are the dispersions 
around the average value, computed from the data 
for the topography or provided by Stein and Abott 
[27] for the heat-flow. uk is set equal to 0.7 W/mK 
and a, is set equal to 0.3 10e5 K-‘. In inversion 1, 
the average conductivity, k, is fixed at 3.1 W/mK, 
in inversion 2, the ‘average’ thermal expansivity a, 
is fixed at 3.85 10V5 K-’ and in inversion 3, k and 
a, are fixed at 3.1 W/mK and 3.85 10m5 K-i, 
respectively, The conductivity k,(T) is used for these 
inversions. 

The results of the three inversions are given in 
Table 3. In case 1, the topography is slightly better 

Table 2 
Temperature- and pressure-dependent thermal parameters used in this study 

a, = 3.85 lO-5 K-’ a(T,r)=a,,,(0.671 +9.531. 10-4T-0.4844. 10sT2).(1 -2.237. 10-4z+9.711. ~O-‘Z*)~.~ 
(T in K,z in km) 

cr = 1.124 J/gK C,(T) = ??rp<- 1.542 + 1.242. IO-‘T + 0.3322 In(T) + 0.3826. 103/T) - 1.217. lO’/T* + 1.232. 107/T3 
(T in K) 

z= 3.1 w/mK k,(T) = z( 
1 

0.518 + 7.89. 10-4T 
+ 1.23 1 IO-“T’) k,(T) =1(0.925 - 1.16510-4T+ 138.3/T) 
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Table 3 
Values of the best fitting coefficients found by inversion and associated variances in three cases 

2, ocm) T,(“C) a, (lo-’ K-‘1 1 (W/mk) 0, ud uq 

Case 1: Q variable and z fued 
Plate model 91 1430 3.34 fixed 3.1 3.9 2.4 2.5 
CHABLIS model 105 1310 4.20 fixed 3.1 3.9 2.1 2.6 
Case 2: a jixed and k variable 
Plate model 90 1280 fixed 3.85 3.3 4.2 2.8 2.9 
CHABLIS model 117 1370 fixed 3.85 3.1 4.1 3.1 2.6 
Case 3: (I $.xed and lfied 
Plate model 82 1310 fixed 3.85 fixed 3.1 4.4 3.4 2.1 
CHABLIS model 118 1350 fixed 3.85 fixed 3.1 4.1 3.1 2.6 

Inversion 1: Z fixed, a, varied; inversion 2: am fued, 1 varied; inversion 3: a,,, and z fixed. u,, uq, and ud arc defined in the text. 

CHABLIS MODEL 

Temperature in C 

PLATE MODEL 

Lilhospheric thickness in km 
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Fig. 2. Minimisation curves representing the function a, in planes passing through the minimum value. These curves correspond to 
inversion 1 of Table 3. both for the CHABLIS model <top> and the plate model (bottom). Fully temperatme- and pressure-dependent 
parameters have been used in this invemion and the average thermal expansion coefficient is allowed to vary around the experimentally 
determined value. The average conductivity is fixed at 3.1 aad the conductivity law t,(T) has been used. The spacing between isolines is 
0.3. The thick line corresponds to the 1% confidence level for the parameters (F test). 
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fitted by the plate model. The value of the predicted 
thermal expansion coefficient is, however, closer to 
the experimentally determined value for the 
CHABLIS model. Note that the plate model from 
inversion 1 is close to the GDHl model. Its mantle 
temperature is large compared to that expected from 
considerations on fusion at the ridge. The global fit 
would be unfavourable to the plate model if a com- 
plementary term accounting for the deviation from 
expected mantle temperature was introduced in the 
inversion. In inversion 3, the bathymetry fits better 
with the CHABLIS model and the temperatures both 
for the plate and CHABLIS models are in the range 
of expected values. Letting the conductivity free to 
vary affects the results very little. The conductivity 
stays close to the experimentally determined value 
and the parameters from inversion 2 are almost 
similar to those obtained from inversion 3. Note that 
the best fitting value for the thermal expansion coef- 
ficient depends strongly upon the chosen model (plate 
or CHABLIS). 

Fig. 2 shows cr, 2-D cross-sections passing 
through the best fitting solution for inversion 1 both 
for the plate and the CHABLIS models, along with 
the 1% confidence level for the parameters. For a 
chosen model, a variation in the thermal expansion 
coefficient around the best-fit value, accompanied by 
variations in the opposite direction of the litho- 
spheric thickness and mantle temperature, still yield 
acceptable solutions. Therefore, one cannot say that 
any of the parameters (lithospheric thickness, ther- 
mal expansion coefficient or mantle temperature) are 
constrained within better than 10% by the oceanic 
data. 

3.2. Visual fit to the observables 

The topography at young ages is often thought to 
follow very accurately a square root of age law. If 
this is so, then it is to be feared that the bathymetry 

0 Dnscoll and Parsons (1988) 
,> Fraadman and Parsons (1990) 
c. cazenave et al. (1983) 
” Sandwell and Schubert 11982\ 

Fig. 4. Plate and CHABLIS models and tit to the geoid. (a) Geoid 
jump across transform faults divided by the age offset between the 
two sides of the fault [9,10,28,29] vetsus age, compared with the 
predictions of the GDHl plate model and of the plate and 
CHABLIS models, with the parameters of inversion 1, Table 3. 
(b) Geoid function of age estimated from a global world inversion 
[11,12], compared with the predictions of the plate and CHABLIS 
models with the parameters of inversion 1, Table 3. 

predicted by the CHABLIS model would not tit the 
data at young ages. Fig. 3a,b, as well as the disper- 
sions reported in Table 3, show that this fear does 
not seem to be justified. The curves for the CHABLIS 
model and for the plate model always stay close to 
each other. Notice that the topography reaches its 
asymptotic value much earlier for the plate model 
than for the CHABLIS model (see Appendix C). Fig. 
3c shows the heat-flow as function of age predicted 
by the plate and CHABLIS models. The heat-flow at 

Rg. 3. Plate and CHABLIS models and fit to the observables. (a) Mean values and standard deviation in 1.7 Ma bins of the topographic data 
points used, compared with the topography predicted by the plate and CHABLIS models with the parameters of inversion 1 (see Table 3) 
and by the GDHl plate model [S]. Observed world bathymetry (1”X 1”) (b) and heat-flow in 2 Ma bins (cl 1271 compared with the 
topography and heat-flow predicted by the plate and CHABLIS models, with the parameters of inversion 1 and with the parameters of 
inversion 3 (see Table 3) and by the GDHl plate model [5]. 
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old ages is very well fitted by the two models. Only 
the heat-flow for ages larger than 80 Ma are intro- 
duced in the inversion because of the contamination 
of observations by water percolation problems at 
young ages. 

Up to now, two determinations of geoid versus 
age have been given. The first one is based on the 
geoid jumps across transform faults [9,10,28,29]. 
Some of them are reported in Fig. 4a. They are 
compared with the geoid jumps predicted from the 
best fitting plate and CHABLIS models (case 1 of 
Table 3). As can be seen in Fig. 4a, there is a large 
dispersion of the data and both the CHABLIS and 
plate model seem to provide an acceptable fit, the 
CHABLIS model providing a slightly better fit at 
young ages. More recently [ 11,121, a global study of 
the geoid in the wavelength range corresponding to 
harmonics 4-10 has provided an estimate of the 
geoid function of age, parameterized by a function of 
shape - aage + bage’. The coefficients a and b 
were found to be equal to - 0.14 m/Ma and 5.5 * 10 
m- 4/Ma2, respectively. In Fig. 4b, the CHABLIS 
model seems to yield a better fit to this geoid 
estimate. However, this better fit may come from the 
polynomial function chosen for the parameterization. 
We do not think that the geoid observations can be 
used to discriminate between the two models. They 
are simply compatible with both models. 

3.3. The shape of the topography at young ages 

The topography computed for the parameters of 
inversion 1 is well fitted by a curve - 43 16 + 
14 - age. It does not follow a square root of age law, 
contrary to what is usually believed. In Fig. 5, the 
topography minus 14 - age is plotted as function of 
the square root of age. It follows a linear trend. The 
young age shape of the oceanic topography appears 
to fit CHABLIS models well. 

We also checked that the local topography taken 
along a flow line [30,31] could also be well fitted by 
the CHABLIS model. In spite of some obvious 
non-thennal effects, we found that the topography 
data along the various segments can be fitted well by 
a law (a\lage - bagel, the coefficient a being kept 
equal to 431 and the coefficient b varying consider- 
ably from one area to the other. As mentioned in 

-2500  

~-3000  

.z-3500  

g)- looo  

z -4500  

i  -5000  

' ;  -5500  

P-6000  

~-6500  
b  
g-7000  

I-"  -7500  

-6000  

+="O  1  1  2 , . I  3  4  5 1 . I  6  7  8 , .1 , .  9  10  11  * . . ,?k  12 1; ‘  
dage ( in  Ma"2)  

Fig. 5. Global topography minus 14.age. This figure illustrates 
the fact that the topography at oung ages, usually thought to fit a 
linear trend as function of ti age also fits well a function of the 
type ar/age - b-age such as predicted by the CHABLIS model. 

Appendix B, b is proportional to a,qJ(p, - p,)C 
where qb represents the bottom heat-flow (Eq. (Al! 
in dimensional units). These variations in b can then 
be interpreted as variations of the bottom heat-flow. 
The difference of slopes is very difficult to explain 
in the framework of the plate model while the huge 
variations in heat-flow compatible with the 
CHABLIS model are likely to exist. 

In summary, it has been shown in this section that 
the predictions from a CHABLIS model fit the ob- 
servables at least as well as those from a plate 
model. 

4. Discussion 

4.1. The lithospheric thickness in the CHABLIS and 
plate model: intraplate volcanism and hot-spot swells 

The asymptotic plate thicknesses are large for the 
CHABLIS model. However, at an age of 100 Ma, 
the plate and CHABLIS models are characterized by 
plates of similar thicknesses, of the order of 80 km, 
as shown in Fig. 6. This is very different from the 
lithospheric thicknesses of 100-120 km proposed in 
early models [4]. This reduced lithospheric thickness 
comes from the difference in the assumed thermal 
expansion coefficient and from the fact that the 
heat-flow in old oceanic basins is now estimated to 
be around 50 mW/m’ [5]. The base of the litho- 
sphere is now believed to be very close to the 
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Fig. 6. Plate thickness and isotherms as function of age for the 
best-fit CHABLIS and plate models (inversion 1, Table 3). 

spinel/gamet transition around which intraplate 
magmas are formed, as indicated by petrological and 
geochemical data [32]. On the other hand, the topo- 
graphic swell around some hot-spots is very small, 
implying very little plate thinning. This was difficult 
to reconcile with previous large plate thicknesses but 
is perfectly consistent with the proposed thinner 
plates. 

These depths, of the order of 70-80 km, also 
correspond to the depths where magma formation 
below the ridge begins. The material above that 
depth is then expected to be depleted and deprived of 
water. This could correspond to a zone of very high 
viscosity [33]. The convection would not penetrate 
the highly viscous and negatively buoyant matter, 
which is depleted. The depth of transition between 
depleted and non-depleted material would then be 
the ‘base of the plate’ and this depletion process 
provides some justifications for the plate model with 
a plate thickness around 80 km. The smaller slope of 
topography versus age when the ridge is shallower 

(i.e., when the depleted layer is thicker) 1301 may 
even find a justification in this context. This is, 
however, very speculative and, as discussed in the 
next section, poses problems for explaining the ther- 
mal subsidence of sedimentary basins after a stretch- 
ing episode. 

4.2. CHABLIS versus plate model: basin subsidence 
and seismic data 

The main difference in behaviour between the 
plate and CHABLIS models comes from the subsi- 
dence at old ages (see Appendix B). For the plate 
model, the subsidence stops at about 80 Ma while, 
for the CHABLIS model, one fourth of the subsi- 
dence takes place after 80 Ma. Data on the sedimen- 
tary basins may yield constraints on the long term 
subsidence, provided that the same mechanism gov- 
ems the asymptotic thickness of the lithosphere be- 
low continental and oceanic basins. 

LJp to now, the subsidence of most sedimentary 
basins has been analyzed using the plate model [34]. 
If what fixes the limit of the plate is the boundary 
between depleted and undepleted material, or any 
other petrological boundary, the adiabatically 
stretched lithosphere is in thermal equilibrium (ex- 
cept for a minor component linked to crustal radioac- 
tivity). Then no ‘thermal subsidence’ phase is ex- 
pected, unless some volcanic activity has occurred 
and left some depleted material at the base of the 
lithosphere. The amount of subsidence would then 
depend upon the amount of melt produced but not 
upon the amount of stretching. If, on the other hand, 
the plate thickness is fixed by a convective process, 
such as cold blobs detaching from the more viscous 
lithosphere and sinking into the mantle, the appropri- 
ate boundary condition for modelling the long term 
evolution of the lithosphere might be a fixed heat-flux 
at the base of the plate (CHABLIS model) rather 
than a fixed temperature (plate model). In continents, 
because of the presence of a thick crust, the isotherms 
are shallower both because of the smaller crustal 
conductivity and because of the high radioactivity in 
the crust. For a similar heat-flow at the base of the 
plate the continents are expected to have an asymp- 
totic plate thickness smaller than the oceans. 

Basin subsidence can be affected by considerable 



130 M.P. Doin, L FZeitout/Earfh and PIoneraty Science Leners I42 (19%) 121-136 

noise (such as: convective processes interacting with 
a heterogeneous lithosphere, non-local isostasy for 
the sedimentary load, temperature changes, etc.) and 
looking at the detailed data and history of each basin 
is beyond the scope of the present paper. Here, we 
simply discuss the tectonic subsidence of some basins 
older than 100 Ma. In the Paris basin [35], more than 
one third of the subsidence seems to have occurred 
during the past 120 Ma while extension stopped 
some 200 Ma ago. The latest stages of the evolution 
of the Paris basin are affected by perturbations in the 
near-by Massif Central area, so that it is difficult to 
derive more quantitative statements from this exam- 
ple. In Nova Scotia, the backstripped profiles 1361, 
assuming no global sea level variations, indicate 
between 100 m and 400 m of subsidence during the 
last 100 Ma (i.e., 80 Ma after the stretching episode). 
Taking into account the sea level variations would 
somewhat increase the estimated tectonic subsidence. 
The back-stripped profiles for CoastB2 well, on the 
U.S. margin [37], also clearly show a long term 
subsidence. There, the stretching took place some 
190 Ma ago. The total registered subsidence between 
120 Ma and the present, amounting to more than 
1000 m, is almost linear as function of time which, 
would be best compatible with a very long time 
constant. From these examples, it seems that there is 
a significant long term subsidence of the basins (i.e., 
subsidence continuing beyond 80 Ma after the 
stretching episode). In the framework of the plate 
model, this is not compatible with the thin plate 
thicknesses deduced from the old age heat-flow, the 
thermal expansivity and the topography as function 
of age in the oceans (GDHl or Table 3 models). It is 
in better agreement with the predictions from the 
CHABLIS model, or from models with a continental 
plate much thicker than the oceanic one. 

Recent seismic models of the upper mantle give 
constraints on the integral of the shallow temperature 
structure and detect a sizeable thickening of the 
oceanic lithosphere after 80 Ma [38,39]. This is 
compatible with the CHABLIS model but not with 
the plate model: according to the former model, the 
bathymetry, also proportional to the integral of the 
temperature anomaly, varies by about 900 m be- 
tween 70 Ma and 180 Ma, as against 1700 m be- 
tween 5 Ma and 70 Ma. In contrast, the deepening 
after 80 Ma is of 250 m or less for the plate model. 

4.3. The CHABLIS model and the global heat budget 
of the mantle 

The cooling of the mantle occurs partly through 
subduction (i.e., through the main convective system 
of plate tectonics), partly through small-scale con- 
vection. The relative importance of these two mecha- 
nisms for cooling the Earth is of interest for many 
general geodynamic problems, such as the thermal 
evolution of the Earth since the Archean [40] or the 
temperature structure in the present mantle, and can 
be computed easily. The heat budget through a litho- 
spheric column is: 

L 8T 
4s = - o PCp & / --dz + qb = 4, + qb 

where qs represents the surface heat-flow and qb the 
bottom heat-flow. At any given age, q, can be 
decomposed into two parts: q, is used to cool the 
plate and qb corresponds to the heat exchanged by 
small-scale convection between the mantle and the 
plate. qc will also ultimately be used to cool the 
mantle, but through the subduction process. Fig. 7 
presents q, and qb for both the classical plate model 
and for the CHABLIS model. The difference be- 
tween the two corresponds to qc. Fig. 7a,b therefore 
gives for any lithospheric age a direct picture of the 
part of the surface heat-flow aimed at cooling the 
mantle through subduction (dark grey) and of the 
part of the heat-flow corresponding to cooling of the 
mantle through small-scale convection (light grey). 
By integrating these quantities over the Earth’s sur- 
face; that is, by multiplying them by the oceanic area 
covered by lithosphere of a given age range (Fig. 
7c), one obtains the relative importance of small-scale 
convection compared to plate-tectonic convection in 
the Earth’s heat budget. If small-scale convection is 
effective below young oceans (CHABLIS model), it 
is a major agent in the cooling of the mantle, ac- 
counting for 40% of the heat transfer. 

More data on the thermal expansivity as function 
of temperature would be necessary to assess defi- 
nitely the validity of the CHABLIS model. However, 
it already appears to be a very reasonable alternative 
to the ‘plate model’. Because it implies a different 
long-term subsidence and a much larger proportion 
of the cooling of the mantle by secondary convec- 
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Fig. 7. Heat balance between primary and secondary convection. 
(a) The plate model. (b) The CHABLIS model. The upper curve 
(limit between dark grey and white) represents the surface heat- 
flow (qJ The. lower curve (limit between dark and light grey) 
represents the heat-flow at the base of the plate (q6). The dark 
aa represents the amount of coolness stored in the lithosphere 
per unit of time and area (qc), while the light gxey area represents 
the amount of coolness per unit of time and area transferred to the 
mantle by secondary convection (qb). qs represents the total 
amount of heat loss per unit of time and area. (c) The percent of 
the Earth’s oceanic surface covered by plates of a given age range. 

tion, this new type of model could affect current 
preconceptions about numerous mantle processes. 
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Appendix A. Oceanic topography and isostasy: a 
discussion 

In this paper, the topography of the sea-floor is 
computed from the temperature in the lithosphere 

alone, assuming isostasy. In a number of previous 
studies [20,31,41,42], the topography due to cold 
blobs detached from the lithosphere is also taken into 
account. Does the material situated below the litho- 
sphere induce sizable topography? 

First, does secondary convection below the litho- 
sphere really cool the mantle beneath it? In the 
framework of the CHABLIS model, the heat trans- 
fer, and hence the mantle temperature, must be inde- 
pendent of the age of the overlying lithosphere, as 
observed in convective models where a heat transfer 
from a hot lower boundary layer is introduced [ 181. 
However, the plate model implies a heat transfer 
which depends on the age of the ocean. Many previ- 
ous models took the very simplistic view that a blob 
always stays below the lithosphere it detaches from. 
A more realistic description would involve convec- 
tive circulation in the mantle, with very large local- 
ized input of cold material near subduction zones, 
moderate widespread input of cold material under 
old oceans and no cold input below cratons and 
young oceans. In such a model, the mantle below old 
oceans might be statistically colder than below young 
oceans. The proximity of a subduction zone would, 
however, be the dominant factor. 

Do deep density anomalies induce topography 
anomalies? The effect of secondary convection 
should be relatively small .compared to the presence 
of added material in the neighbourhood of a subduct- 
ing lithosphere. As subducting lithospheres do not 
seem to affect the oceanic topography [43], the same 
must be true for the cold blobs detached from the 
lithosphere. (It is, in fact, what is expected for 
two-layer or partially layered mantle convection). 

Appendix B. Analytical considerations for the 
CHABLIS model 

B.1. An approximate law for bathymetry uersus age 

One may wonder about the apparently very sim- 
ple shape of the bathymetry versus age equation for 
the CHABLIS model: 

bathy = a* - b. age (Al) 
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The heat equation is: 

dT a=T 
(A4 

where: p and CP = the density and the calorific 
capacity; k = the conductivity; T = the temperature; 
and z = depth. For the CHABLIS model, this is 
solved with a temperature, To, fixed at the surface 
and with a flux, q6, imposed on the bottom of the 
plate. If the temperature is made dimensionless by 
(T, - To) and the time by L=/K where K = k/PC, 
and where L represents the final plate thickness, 
equal to k(T, - T,)/q,, Eq. (A2) can be written as: 

aT a=T 
-=- 
at at2 WI 

with the boundary condition (aT)/(az) = 1 on the 
plate bottom, where T = 1. There is a single solution 
to this equation, which is represented in Fig. 9. 
When non-dimensionalized by CT, - To) Lop,(p, 
- p,), the bathymetry can be written: 

bathy = Jd(l - T)dz (A4) 
From Eq. (A3) and Eq. (A5), the increase in 
bathymetry during a lapse of time, d t, is found to be 
equal to the difference in surface minus bottom 
temperature gradient: 

d(bathy)/dt = (dT/dz)+s) - 1 (A5) 
The temperature field is the sum of two fields: 

one, T,, corresponding to the cooling of an infinite 
half-space (the classical et-f function), the second, T,, 
corresponding to the effect of the heat-source, qb, 
put at the bottom of the lithosphere. As a conse- 
quence, the surface heat flow corresponds to the 
heat-flow q, (equal to l/ dG> in non-dimen- 
sional units) plus a contribution, q2, due the bottom 
heat source. If the bottom heat-flow was imposed at 
a de th proportional to the square root of age: L = 
D P age, then q2 would be independent of age and 

FORSTERITE 
z 5.0 I 

- Kajiyoshi. 1996 

- -. Suzuki et al.. 1983 

c 2.0 
100 600 1100 1600 

Temperature (K) 

Fig. 8. Experimental data for the thermal expansivity of forsterite 
according to [44-481. 

the total surface temperature gradient would be ex- 
actly: 

aT ( 1 az (z-0) 
= l/+&+(1 4) (A61 

where b depends on the coefficient D. After some 
algebra, b is found to be equal to: 

b = 6( D/2) exp( D2/4)erfc( D/2) 

Eq. (A6) and Eq. (AS) directly lead to Eq. (Al). In 
fact, the bottom of the lithosphere does not follow a 
square root of age law. This law is only approximate. 
However, as b varies only by some 10% in the 
range of the relevant values for D, the law (Eq. 
(A6)) for the surface temperature gradient function 
of age and, consequently, the law for the topography 
function of age are fairly well verified. 

B.2. Long-term subsidence 

For the plate model, the temperature is fixed 
between 0 and L. The difference between the asymp- 
totic temperature and the temperature for a given age 

Fig. 9. Influence of the thermal and pressure dependence of the thermal parameters (thermal conductivity, thermal expansion coefficient and 
heat capacity) on the evolution of the temperature profiles and on the observables (topography, heat-flow and geoid). The thermal 
parameters anz given in Table 2. For the dotted curve, the fully temperature- and pressure-dependent values of Table 2, with the 
conductivities k,(T) or k,(T), have been replaced by their ‘average’ values noted in the left column of Table 2. The temperature profiles are 
presented for the non-dimensional times t = 0.001, 0.007, 0.02, 0.063, 0.132 and 0.51. Top = the plate model; bottom = the CHABLIS 
model. 
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can be approximated by a sinusoid with half period 
L [34]. The long-term subsidence then follows a law: 
exp(-T2t/L2). For the CHABLIS model, the heat- 
flux is fixed at the base of the plate z = L (aT/az = 1 
in non-dimensional units) and the temperature is 
fixed to unity in z = 0. According to the heat equa- 
tion, llT/iJt = 0 implies a2T/az2 = 0 in z = 0. Ne- 
glecting the higher-order harmonics, one may then 
write: aT/az = 1 + (1r/2Xl/L - 1) cos(nz/2 L). 
The heat equation implies that, when L approaches 
1, (l/L - 1) varies as a exp(-,rr2t/4L2). Neglect- 
ing the second-order terms in exp( - r2 t/4L2) and 
integrating twice, one obtains the topography: 

topo= z - FL2exp(-a2t/4L2) 

= 0.5 - u( 1 - 2/7r)exp( - ,rr2t/4L2) 

This exponential dependence of the long-term subsi- 
dence is illustrated at the bottom of Fig. 1. 

Appendix C. Temperature and pressure depen- 
dence of the material parameters 

As shown in Fig. 8, a relatively large dispersion 
exists in the measurements of the thermal expansion 
coefficient of forsterite [44-481. The data from Ka- 
jiyoshi [44] are used here. The thermal expansivity of 
other minerals are averaged in order to obtain a 
value characteristic of a rock with a mantle peridotite 
composition (see [12] for details). This temperature- 
dependent function is multiplied by a pressure-de- 
pendent term: 

o( PJ) = P( J+o) 
with p(p) = (p/p,,>‘. pa represents the density at 
zero pressure and p the density at the depth consid- 
ered. 6 is taken to be 5.6 [49]. The pressure variation 
is then modeled by the depth-dependent function: 

p( p) = (1 - 2.237. 1O-4z + 9.711 . 10-8z2)s 

where z is the depth in kilometres (see Table 2). 
This pressure dependence amounts only to a few 
percent for a 100 km thick lithosphere but affects the 
geoid anomaly. The experimentally determined ther- 
mal expansion coefficient appears to be larger than 
the values used in previous models. The calorific 

capacities as a function of temperature measured for 
various minerals have also been averaged to yield 
the calorific capacity for a peridotitic composition 
(see [ 121 for details). The temperature dependence of 
this coefficient seems well constrained [50]. Two 
conductivity laws, k,(T) and k,(T), are tested here. 
The conductivity is the sum of lattice plus radiative 
conductivity. The lattice conductivity decreases with 
temperature and can be expressed as: k, = l/(a + 
bT) while the radiative conductivity for a polycrystal 
follows the law k, = cT3. The coefficients a and b 
in the expression of k, have been chosen in order to 
fit the data on measured thermal conductivity on 
peridotite (see [12] for details). The radiative conduc- 
tivity has tentatively been set to 0.368 . 10m9T3 [12]. 
k, plus k, yield the conductivity law k,(T). As the 
estimate of the radiative conductivity is rather uncer- 
tain, we also performed models using the conductiv- 
ity law k,(T) which decreases monotonously with 
temperature and gives a best fit through the experi- 
mentally measured values: 

k,(T) = 2.69 - 3.39. 10-4T+ 402.3/T 

The pressure dependence of the conductivity and 
of the heat capacity are small and neglected in this 
paper. 

The functions defining the various thermal coeffi- 
cients can be written as the product of an ‘average 
value’ and a temperature-dependent part. The ‘aver- 
age’ values are defined by: 

2 L Tm 
am= (T,--T,)L lI y(T)dTdz 

0 CT,,,-T,,)z/L+T,, 

The values for k and cP indeed correspond to the 
average for a linear gradient. T, has been chosen 
equal to 1330°C. OL, is such that it yields the same 
topography as a temperature-dependent parameter, if 
the temperature follows a linear gradient. The com- 
putations through the remainder of this paper are 
made using temperature- and pressure-dependent co- 
efficients. However, we want to know if the possible 
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uncertainties on the temperature- and pressure-de- 
pendent part can considerably affect our conclusions. 
Fig. 9 presents predicted isotherms, topography, 
heat-flow and geoid as function of age. These quanti- 
ties are plotted in non-dimensional units (see ,Ap- 
pendix B). The geoid anomaly has been divided by 
27~ GL’ (T, - T&,,, p,/g. Note that the predicted 
values for the two main observables: topography 
versus age and heat-flow versus age, are almost not 
affected if one replaces the fully temperature- and 
pressure-dependent coefficients by their average val- 
ues k, cP and a,,,. The exact shape of the conductiv- 
ity as a function of temperature affects the results 
relatively little. This is important because this shape 
is rather controversial. 
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