The Wine Cellar Problem Temperature as a function of depth and time

Paul Evans & Christine Wittich SIO234: Geodynamics, Prof. Sandwell Fall 2011

Periodic Heating of the Surface of the Earth

- Why is it the wine cellar problem?
 - Wine ages best when kept at a constant temperature
 - If we understand the heating that occurs at the surface of the Earth, we can choose an appropriate cellar depth

Other Applications

- Geodynamics
 - Determine diffusivity, κ , of rocks and soil
- Structural Engineering
 - Determine required foundation depth to prevent heaving

Defining the Problem

- Represents variation in temperature at the surface
- Assumed periodic

• T_S

 T_s = T_o + Δ T cos(ω t)
 Initial Condition T(z,0) = T_o
 Boundary Conditions T(0,t) = T_s

$$T(\infty,t) = T_o$$

• Guess

 $T - T_{o} = A e^{kz} e^{i\omega t}$ $T = T_{o} + A e^{kz} e^{i\omega t}$

Partial Differential Equation

$$\kappa \frac{\partial^2 T}{\partial z^2} = \frac{\partial T}{\partial T}$$
[2]

[1]

Must take the corresponding partials of the guess

Derivative as a function of time

$$\frac{\partial T}{\partial t} = A e^{kz} i \omega e^{i\omega t}$$
^[3]

[4]

Second derivative as a function of depth

$$\frac{\partial T}{\partial z} = Ake^{kz}e^{i\omega t}$$
$$\frac{\partial^2 T}{\partial z^2} = Ak^2e^{kz}e^{i\omega t}$$

• Plug [3] and [4] into [2]

Such that

$$\kappa \frac{\partial^2 T}{\partial z^2} = \frac{\partial T}{\partial T} \quad \text{becomes}$$

$$\kappa A k^2 e^{kz} e^{i\omega t} = A e^{kz} i\omega e^{i\omega t}$$

$$\kappa k^2 = i\omega$$
$$k^2 = \frac{i\omega}{\kappa}$$

 \rightarrow Therefore,

$$k = \pm \sqrt{\frac{i\omega}{\kappa}}$$

• Because temperature must decrease, or *decay*, as depth increases, we can reject the positive root of k such that

$$k = -\sqrt{\frac{i\omega}{\kappa}}$$

[5]

[6]

• Note:
$$i = \frac{(i+1)^2}{2}$$

$$\rightarrow$$
 Therefore
 $k = -(i+1)\sqrt{\frac{\omega}{2\kappa}}$

- Plug *k* [6] back into the initial guess [1] $T - T_{o} = A e^{kz} e^{i\omega t}$ $T - T_{o} = A e^{-(i+1)} \sqrt{\frac{\omega}{2\kappa}} z e^{i\omega t}$
- This can simplify to

$$T - T_o = A e^{-\sqrt{\frac{\omega}{2\kappa}}z} e^{i(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)}$$

<u>Note</u>: $e^{i\theta} = \cos \theta + i \sin \theta$

• Using $e^{i\theta} = \cos \theta + i \sin \theta$ we get $T - T_o = Ae^{-\sqrt{\frac{\omega}{2\kappa}}z}e^{i(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)}$

$$T - T_o = A e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z) + isin(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

• Using $e^{i\theta} = \cos \theta + i \sin \theta$ we get $T - T_o = Ae^{-\sqrt{\frac{\omega}{2\kappa}}z}e^{i(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)}$

$$T - T_o = Ae^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z) + \frac{i\sin(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

<u>Note</u>: Since we are only concerned with the real component of the equation, the imaginary component can be disregarded.

• Using boundary condition of $T(0, t) = T_s$

$$T - T_o = A e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$
$$A = \Delta T$$

• The temperature variation in the Earth due the periodic surface temperatures is

$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

What determines the near surface
temperature in the Earth?
$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

• T_o – average surface temperature

What determines the near surface temperature in the Earth?

$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

• T_o – average surface temperature

• $\Delta T - \frac{1}{2}$ total temperature range (amplitude)

What determines the near surface temperature in the Earth?

$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

• T_o – average surface temperature • $\Delta T - \frac{1}{2}$ total temperature range (amplitude) • $e^{-\sqrt{\frac{\omega}{2\kappa}}z}$ – decay of temp. variation with depth (κ)

What determines the near surface temperature in the Earth?

$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} \left[\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)\right]$$

- T_o average surface temperature
- ΔT ½ total temperature range (amplitude)
- $e^{-\sqrt{\frac{\omega}{2\kappa}}z}$ decay of temp. variation with depth (κ)
- cosine periodic change in temperature

What determines the near surface
temperature in the Earth?
$$T(z,t) = T_o + \Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

• T_o - average surface temperature

- $\Delta T = \frac{1}{2}$ total temperature range (amplitude)
- $e^{-\sqrt{\frac{\omega}{2\kappa}}z}$ decay of temp. variation with depth (κ)
- cosine periodic change in temperature
 - $\left| \frac{\omega}{2\kappa} z \right|$ phase shift due to time lag between surface temp. and temp. at depth *z*

How deep do we put a wine cellar?

- Wine cellar should be put at a depth where temperature fluctuations due to periodic surface changes will be minimal
- Apply concept of skin depth
 - Skin Depth, Z_o
 - depth at which temperature fluctuation is 1/e of the surface temperature fluctuation
 - 1/e ≈ 0.37, which therefore represents a 63% reduction in temperature fluctuation

Solving for Skin Depth

• When looking at T (z, t), consider only the terms containing z

$$\Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z} [\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z)]$$

- We are concerned with the depth, Z_o, that is necessary to reduce the <u>maximum</u> surface value fluctuation
- Maximum occurs when

$$\cos(\omega t - \sqrt{\frac{\omega}{2\kappa}}z) = 1$$

Solving for Skin Depth

• To determine z_o , set

$$\Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z}\Big|_{z=z_o} = \frac{1}{e}\Delta T e^{-\sqrt{\frac{\omega}{2\kappa}}z}\Big|_{z=0}$$

$$e^{-\sqrt{\frac{\omega}{2\kappa}}z_o} = e^{-1}$$

$$\sqrt{\frac{\omega}{2\kappa}} z_o = 1$$

$$z_o = \sqrt{\frac{2\kappa}{\omega}}$$

<u>Note</u>: The depth z_o can easily be adjusted to represent a different reduction in surface temperature fluctuation by replacing 1/e with the desired value

i.e. – replace 1/e with 0.10 for depth at which 90% reduction occurs

What constants determine z_0 ? $/2\kappa$ $z_o = \sqrt{}$ k**1.** $\kappa = \frac{\pi}{\rho c}$ = thermal diffusivity $[m^2/s]$ • k = thermal conductivity [W/m K]• ρ = density $[kg/m^3]$ • c = specific heat [J/kg K]

These values are physical properties of the local geology

What constants determine z_o ?

$$z_o = \sqrt{\frac{2\kappa}{\omega}}$$

- **2.** ω = circular frequency
- Recall $\omega = 2\pi f$ and
- $\tau = \frac{1}{f} = \frac{2\pi}{\omega}$
- τ = period of concern [sec]
- au varies depending on what time scale is of concern

What constants determine z_o ?

• ω values for different time scales provided in the table below

	Diurnal	Weekly	Annual	Glacial
	1 day	7 days	1 year	40,000 years
τ (sec)	86400	604800	31536000	1.261E+12
f (sec-1)	1.157E-05	1.653E-06	3.171E-08	7.927E-13
ω (rad/s ⁻¹)	7.272E-05	1.039E-05	1.992E-07	4.981E-12

- As au becomes larger, ω gets smaller
- ω is inversely related to z_{o}

 \Rightarrow Wine cellar depth must increase as au increases

Simplified T (z, t)

• By substituting Z_0 into T (z, t)

$$T(z,t) = T_o + \Delta T e^{-\frac{z}{z_o}} \left[\cos(\omega t - \frac{z}{z_o}) \right]$$

Related to Class Discussion

 Stated in class that a good approximation of the depth of propagation of a temperature change, L, over a time, t is

$$L = \sqrt{\kappa t}$$

• Let t =
$$\tau = 2\pi/\omega$$

$$L = \sqrt{\frac{\kappa 2\pi}{\omega}} = \sqrt{\frac{2\kappa}{\omega}\pi} = \sqrt{\pi}\sqrt{\frac{2\kappa}{\omega}}$$

$$L = 1.77 \sqrt{\frac{2\kappa}{\omega}} = 1.77 z_o$$

 \rightarrow It can be seen that the approximate method will quickly yield a result, L, of the same magnitude as z_0

Attenuation Depth based on Soil Properties

$$z_0 = \sqrt{\frac{2K}{\omega}}$$

• Thermal diffusivity – soil property

	Ice	Sandy Soil	Clay Soil	Peat Soil	Rock
K (m²/s)	1.16 x 10 ⁻⁶	0.24 X 10 ⁻⁶	0.18 x 10 ⁻⁶	0.10 X 10 ⁻⁶	1.43 X 10 ⁻⁶
http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html					

Frequency – time-dependent

	Diurnal	Annual	Glacial
ω (s-1)	7.27 X 10 ⁻⁵	1.99 X 10⁻7	4.98 x 10 ⁻¹²

Attenuation Depth

- How deep is the attenuation depth or skin depth?
 - Represents depth where surface temperature can only affect by 37%

	Ice	Sandy Soil	Clay Soil	Peat Soil	Rock
Diurnal	0.179 M	0.081 m	0.070 m	0.052 m	0.198 m
Annual	3.412 m	1.552 m	1.344 m	1.002 M	3.789 m
Glacial	682 m	310 m	268 m	200 M	757 m

Wine Cellar Depth

 Attenuation depth doesn't tell us everything we need to know:

$$T(z,t) = T_0 + \Delta T e^{-\frac{z}{z_0}} \cos\left(\omega t - \frac{z}{z_0}\right)$$

• Want cellar to remain unaffected by annual temperature changes

•
$$\cos\left(\omega t - \frac{z}{z_0}\right) \rightarrow 1.0$$
 as the maximum

• Can obtain T(z) relationship which will become steady at a certain dept

Suffolk County, New York

• Active Wine Country!

- Soil Type: well-drained, medium-moderately coarse textured soils
 - Sandy Soil: $\kappa = 0.24 \times 10^{-6}$

•
$$z_0 = 1.552 \text{ m}$$

- Average Annual Temp • $T_0 = 53.5^{\circ}F = 11.9^{\circ}C$
- Average Range of Temp
 ΔT = 21°F = -6.1°C
- Surface Temperature: $T_s(t) = T_o - \Delta T \cos(\omega t)$ $T_s(t) = 11.9-6.1 \cos(1.99E-7*t)$

http://www.weather.com/weather/wxclimatology/monthly/graph/42689:20

• Recall:

$$T(z,t) = T_0 + \Delta T e^{-\frac{z}{z_0}} \cos\left(\omega t - \frac{z}{z_0}\right)$$

- Determined: temperature and attenuation parameters
- Maximum effects require cosine term to 1
- Now have:
 - maximum temperature effects along depth

How accurate is this?

Many assumptions made:

- Soil is homogeneous throughout depths
- Soil thermal properties are accurate
- Water table is sufficiently low
- Heat flow is 1-dimensional
- Cosine accurately represents the annual surface temperature cycle
 - Can look a bit further at this...

- To take a look at the cosine representation
 - Measured borehole-thermistor data
 - Thanks to the National Snow and Ice Data Center!
 - Ilulissat, Greenland
 - Model forcing function as a cosine
 - Compare!
- Remember: Our model is only ever as good as our material (soil) properties!
 - Soil type: Arctic brown soil
 - Assume a diffusivity slightly greater than sandy soil
 - $\kappa = 0.28$

- NSIC provided surface temperature data
- Fit a cosine function!

- Approximate surface forcing function:
 T_s(t) = -3.5 11 cos(2πt) [yr]
 - Attenuation: $z_0 = \sqrt{\frac{2\kappa}{\omega}} = 1.648 \text{ m}$
 - Depths Sampled:
 - 0.25 m
 - 2.5 m
 - 3.0 m
 - 8.0 m
 - 9.0 m
 - 15.0 m

Conclusions

- Wine cellars ~ 8-10m beneath ground in Long Island
- Temperature at depth can be predicted
 - Cosine a decent approximation to the annual temperature fluctuations
 - Soil properties are important!
 - Even if model at surface is perfect, knowledge of soil at depths is critical.

References

- Maps.google.com
- <u>www.weather.com</u>
- New York Online Soil Survey. Retrieved 25-Oct 2011 from: <u>http://soils.usda.gov/survey/online_surveys/new_york</u>
- Basics of a Soil Layer Model. Retrieved 25-Oct 2011 from: http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html
- National Snow and Ice Data Center. Shallow Borehole Temperatures, Ilullisat, Greenland. Retrieved 25-Oct 2011 from: <u>http://nsidc.org/data/ggd631.html</u>
- Turcotte, D. (2002). *Geodynamics*. Cambridge New York: Cambridge University Press. Pgs 149-152.
- Taler, J. (2006). *Solving direct and inverse heat conduction problems*. Berlin New York: Springer. Pgs 366-374.
- Soil Mechanics: Design Manual 7.1. Alexandria, VA: Dept. of the Navy, Naval Facilities Engineering Command, 1982.

Questions?

The Wine Cellar Problem Temperature as a function of depth and time

Paul Evans & Christine Wittich SIO234: Geodynamics, Prof. Sandwell Fall 2011