Modeling Magnetic Anomalies with MATLAB

Geodynamics, FA2012 Nate O'Flaherty James Holmes

Introduction

- History
 - 1912 Wegner publicly advocates theory of Continental Drift
 - 1943 G.G. Simpson publishes rebuttal, Wegner falls out of favor.
 - 1960 Harry Hess proposes concept of Seafloor Spreading to explain symmetric bathymetry profiles across spreading ridges.
 - 1963 Vine and Matthews publish results of survey over Carlsberg ridge
 - They found symmetric stripes of magnetically polarized rock running parallel to the spreading ridge.

Earth's Magnetism

- Geomagnetic Field
 - Earth's geomagnetic field is a dipole to first-order.
 - Poles slightly diverge from geographic poles over short term, aligned over long term.

Image: Wikimedia Commons

Marine Geology

- Oceanic Lithosphere
 - o Three layers
 - Layer 1 Sediments
 - Layer 2 Basalts
 - o 2A Pillow Basalts
 - o 2B Sheeted Dikes
 - Layer 3 Gabbros (dark, coarse-grain plutonic rock)

Magnetic Anomalies

- What are magnetic anomalies?
 - Spreading ridges extrude magnetite-rich magma at axes.
 - As magma cools below Curie temperature (~500°C), crust magnetizes in direction of geomagnetic field. "Thermo-remnant Magnetism" (TRM).
 - Most TRM recorded in Layer 2a (upper 1000m of oceanic crust).
 - Plate spreading results in magnetized record of intensity and polarity.

Diagram of oceanic lithosphere

Diagram of oceanic lithosphere

Strength of anomaly by layer

Magnetic anomalies record seafloor spreading

How do we determine the anomaly?

- Magnetization vector is combination of TRM and current dipole components.
 - $\circ \quad \mathbf{M} = \mathbf{M}_{TRM} + \mathbf{M}_{I}$
- Magnetic anomaly vector is parallel to the magnetization direction.

 $\circ \quad \Delta \mathbf{B}(\mathbf{r}) = \mu_0 \mathbf{M} f(\mathbf{r})$

• Using ship-towed magnetometer, we measure total magnetic field, so we must remove Earth's field.

 $\circ \quad \mathbf{B} = \mathbf{B}_{\mathbf{e}} + \Delta \mathbf{B}$

• However, most magnetometers give us a scalar field.

 $\circ |\mathbf{B}| = (|\mathbf{B}_{e}|^{2} + 2\mathbf{B}_{e} \cdot \Delta \mathbf{B} + |\Delta \mathbf{B}|^{2})^{1/2}$

How do we determine the anomaly?

- A huge difference in intensity.
 - Earth's dipole is ~ 50,000nT
 - Anomaly is ~ 300nT
- Therefore $|\Delta \mathbf{B}|^2 \sim 0$, and we can generalize $|\mathbf{B}|$ further:

 $\circ |\mathbf{B}| \cong |\mathbf{B}_{e}| (1 + \Delta \mathbf{B} \cdot \mathbf{B}_{e} / |\mathbf{B}_{e}|)$

• 30-seconds of algebra later...

 $\circ \quad \mathbf{A} = |\mathbf{B}| - |\mathbf{B}_{e}| = \Delta \mathbf{B} \cdot \mathbf{B}_{e} / |\mathbf{B}_{e}|$

• A is our measured scalar anomaly

Mathematically modeling anomalies

- The magnetic anomaly is the negative gradient of the magnetic potential.
 - $\circ \quad \Delta \mathbf{B} = -\nabla U$
- The potential satisfies Poisson's equation within the source layer and Laplace's equation above it.
 - $\circ \nabla^2 U = 0 \qquad , z \neq z_0$

$$\circ \nabla^2 U = \mu_0 \nabla \bullet \mathbf{M} \qquad , z = z_0$$

• We can then generalize the equation to:

$$\nabla^2 U = \mu_o \left[\frac{\partial}{\partial x} M_x p(x) \delta(x) + \frac{\partial}{\partial y} M_y p(x) \delta(x) + \frac{\partial}{\partial z} M_z p(x) \delta(x) \right]$$

Mathematically modeling anomalies

- The magnetic anomaly is the negative gradient of the magnetic potential.
 - $\circ \quad \Delta \mathbf{B} = -\nabla U$
- The potential satisfies Poisson's equation within the source layer and Laplace's equation above it.
 - $\circ \nabla^2 U = 0 \qquad , z \neq z_0$

$$\circ \nabla^2 U = \mu_0 \nabla \bullet \mathbf{M} \qquad , z = z_0$$

• We can then generalize the equation to:

$$\nabla^2 U = \mu_o \left[\frac{\partial}{\partial x} M_x p(x) \delta() + \frac{\partial}{\partial y} M_y p(x) \delta() + \frac{\partial}{\partial z} M_z p(x) \delta() \right]$$

No vertical variation!

Mathematically modeling anomalies

- To solve our equation we need to:
 - Implement a forward Fourier Transform.
 - Solve for U(k)
 - $\circ~$ Then inverse Fourier Transform (via Cauchy-Residue Thm.) with respect to $k_z.$
 - Poles of integrand at $\pm ik_x$
 - Path integral around poles
- When TRM has component parallel to dipole field (parallel to ridge axis) = No field anomaly.
- Assume spreading ridge at magnetic pole so that dipole field lines are parallel to 'z', with no 'x' component.

Mathematically modeling anomalies

• Because scalar anomaly is:

$$A = \frac{\Delta \vec{B} \cdot \vec{B}_e}{\left| \vec{B}_e \right|}$$

 Only the z-component is non-zero, so scalar anomaly is:

$$\begin{array}{ll} A(k,z) = \frac{\mu_o M_z}{2} p(k) 2\pi \left|k\right| e^{-2\pi \left|k\right|(z-z_o)} \\ \text{Observed} &= & \text{Reversal} & * & \text{Earth Filter} \\ \text{Anomaly} & & \text{Pattern} \end{array}$$

Mathematically modeling anomalies

- But wait! That's not all:
 - Now, rotate the spreading ridge down to an arbitrary latitude.
 - X-component now non-zero.
 - We get a skewness factor, θ .
 - Depends on latitude and orientation of ridge when crust cools.
- Final model:

$$A(k,z) = C\mu_{o}p(k)e^{i\theta\frac{k}{|k|}}2\pi |k| e^{2\pi |k|z_{o}|}$$

Modeling actual ridges

Mid-Atlantic Ridge

Pacific-Antarctic Ridge

Magnetic Polarity Data

"Closest" Fits

•19

Mid-Atlantic Ridge

 $A(k,z) = C\mu_0 2\pi |k| e^{-2\pi |k|z} e^{i\theta sgn(k)} p(k)$

Mid-Atlantic Ridge

 $A(k,z) = C\mu_0 2\pi |k| e^{-2\pi |k|z} e^{i\theta sgn(k)} p(k)$

Mid-Atlantic Ridge

$$A(k,z) = C\mu_0 2\pi |\mathbf{k}| e^{-2\pi |\mathbf{k}| z} e^{i\theta sgn(\mathbf{k})} p(\mathbf{k}) \qquad \mathbf{k} = \frac{-nx/2 : nx/2 - 1}{L} = \frac{-nx/2 : nx/2 - 1}{\mathbf{v} * dt}$$

Pacific-Antarctic Ridge

 $A(k,z) = C\mu_0 2\pi |k| e^{-2\pi |k|z} e^{i\theta sgn(k)} p(k)$

Pacific-Antarctic Ridge

Pacific-Antarctic Ridge

$$A(k,z) = C\mu_0 2\pi |\mathbf{k}| e^{-2\pi |\mathbf{k}| z} e^{i\theta sgn(\mathbf{k})} p(\mathbf{k}) \qquad \mathbf{k} = \frac{-nx/2 : nx/2 - 1}{L} = \frac{-nx/2 : nx/2 - 1}{\mathbf{v} * dt}$$
• 25

Questions?