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Calculating Shear Stress on 
the San Andreas Fault 

τ (z)= ƒ  σn 

Where σn = ρc g z 

 τ(z)   shear stress on a locked fault 

 σn    normal force 

 ƒ      coefficient of  static friction 

 ρc     crustal density 

 g   acelleration due to gravity 

 z   depth of  seismogenic zone 



Calculating Shear Stress on 
the San Andreas Fault 

ƒ    = 0.6   

ρc = 2600 kg m-3 

g    = 9.8 m s-2  

z     = 12 km   

τ (z)  = 183 MPa  

PROBLEM – Average stress drop on a fault during an actual   
       earthquake ≤ 10 MPa 

San Andreas Fault Assumptions 
 



Calculating Shear Stress on 
the San Andreas Fault 

Considerations 

 Coefficients of  Static Friction 

ƒ    varies with depth 

 Pore fluid pressure 

σ = σn – σpore fluid pressure  so τ (z)= ƒ (ρc--ρw )g z 

 

 

 

 

 

 



Calculating Shear Stress 

x 



Derivation of  a Line Source of  Heat 
to get Heat Flow Anomaly 

•  We want to model the heat flow off  of  the San Andreas Fault 
as a line source of  heat that dissipates as one moves away from 
the fault   

•  We need to get an equation that can be used to calculate the 
heat flow anomaly for different coefficients of  static friction 
given an equation for a temperature anomaly 

•  Method 
•  Start with an equation for a temperature anomaly and take a 

Fourier Transform 
•  Take the inverse Fourier Transform in two dimensions to receive 

an easier temperature function to work with 
•  Use the relationship between temperature and heat flow to get 

our heat flow anomaly equation 



Derivation of  Heat Flow from 
a Line Source  

Given: 

!(!, 0) = 0!

T = Temperature Anomaly  
k= Thermal Conductivity = 3.3W/mK 
Q =Heat Generation 



Step 1: Take Fourier Transform 
with Respect to x and z  
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•  Use the derivative property of  Fourier Transforms: 

•  Use property for the transform of  a delta function: 

•  Which when simplified equals: 

•  Rearranging for T yields: 
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Step 2: Take the Inverse Fourier 
Transform with Respect to kz  
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Cauchy Residue Theorem 

•  If  a function is analytic, integrating around complex 
poles on a closed loop will equal zero 

•  If  we have complex poles in the denominator of  the 
function, the Cauchy Residue theorem states 



Step 2: Take the Inverse Fourier 
Transform with Respect to kz  
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If  kz= ikx, considering kx>0 and z>-a 
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If  kz= -ikx, considering kx<0 and z>-a 
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Combine the last two equations using the absolute value of  kx 

!! !! , ! = !−14!
!!!! !! !!!

!!
!



Step 3: Take the Inverse Fourier 
Transform with Respect to kx  

•  Using the derivative property of  Fourier 
Transforms 



Step 3: Take the Inverse Fourier 
Transform with Respect to kx  

•  Integrating with respect to z 
  

•  Because this does not satisfy our boundary 
conditions, we must add a heat sink at z = a, 
giving us our final equation that satisfies all 
boundary conditions.  



Step 4, take our temperature 
anomaly and find heat flow  

•  We have temperature in terms of  z and x, now we 
need to find the heat flow q by integrating with 
respect to a 

•  To satisfy our boundary conditions, we need to 
set z equal to zero, thus we get  



Aside: Green’s Function 

•  Now we must use a Green’s function to evaluate heat 
flow over our heat source by using the following 
relation:  

•  For us, f(a) is the heat generated due to frictional 
heating, which we also have: 

•  Where v is the mean velocity of  the plate: San 
Andreas Fault: 35mm/year 



Step 4, take our temperature 
anomaly and find heat flow  

•  Substitute q(x,a) and f(a) into our equation for q(x) 
and get the following:  

•  Finally, use the integral identity for an arc tangent 
function to get the final expected surface heat 
flow anomaly!  



Observed Heat Flow Measurements 

Average Maximum Anomaly 

Observed heat flow  
By Lachenbruch 
& Sass (1980) 

Mean Surface  
Heat Flow  
- 73 mW m-2 

Average Maximum 
Anomaly  
– 94 mW m-2 
 



Expected Heat Flow Anomaly 

ρc = 2600 kg m-3 
g = 9.8 m s-2  
a = 12 km 
v = 35 mm/year 



Expected Heat Flow Anomaly 
(including pore fluid pressure) 

ρ = 1600 kg m-3 
g = 9.8 m s-2  
a = 12 km 
v = 35 mm/year 

 



Expected Heat Flow Anomaly 
(including hydrothermal circulation) 

ρc = 2600 kg m-3 
g = 9.8 m s-2  
a = 4 - 12 km 
v = 35 mm/year 

 



Discussion 

•  No evidence for significant hydrothermal circulation 
along the San Andreas (Lachenbruch & Sass 1980, 
Turcotte et al 1980) 

•  Error may be associated with coefficient of  static 
friction 
•  Evidence for talc found in serpentinite could account 

for low μ  for creeping portions of  SAF (Moore & 
Rymer, 2007) 

•  Still a large debate as to whether the  San Andreas 
Fault is a strong or weak fault (Saffer et al 2003) 
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