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Friction	Along	Faults	Generates	Heat

• Energy	from	slip	
partitioned	into:

1)	Fracture	creation

2)	Seismic	radiation

3)	Thermal	energy

• What	component	plays	
the	largest	role?



Earthquakes	Occur	Along	Faults	in	the	Upper	Crust

ΔT=27oC/km Trouw	et	al.,	2010



Radiated	Seismic	Energy	Measurements	
Underestimate	Theory
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Setting	up	the	equation	and	boundary	
conditions

• Need	to	consider	a	line	
source	at	z=a	to	represent	
heating
• Initial	formula	for	heat	
flow	given	by

• Boundary	conditions

• We	will	need	a	heat	sink	
to	satisfy	these,	placed	at	
z=-a

𝛻"𝑇 =
1
𝑘𝑄 𝑥, 𝑧 =

1
𝑘 𝛿(𝑥)𝛿(𝑧 + 𝑎)

𝑇 𝑥, 0 = 0 lim
|5|→7

𝑇 𝑥, 𝑧 = 0

lim
|8|→7

𝑇 𝑥, 𝑧 = 0



Solving	the	differential	equation	for	
dT/dz

• We	already	solved	our	differential	equation	for	heat	
flow	in	class.	(Notes	on	Fourier	transforms).
• Take	the	Fourier	transform	of	both	sides,	using	the	
derivative	property	on	the	LHS	and	definition	of	the	
delta	function	on	RHS
• Take	the	inverse	transform	in	the	Z	direction,	using	the	
Cauchy	residue	theorem	to	make	this	easier.
• Take	the	inverse	transform	in	the	x	direction,	using	the	
derivative	property	with	respect	to	z	to	get	dT/dz

𝛻"𝑇 =
1
𝑘 𝑄 𝑥, 𝑧 =

1
𝑘 𝛿(𝑥)𝛿(𝑧 + 𝑎)



Solving	the	differential	equation	for	
dT/dz
• Note	that	our	solution	is	different	to	in	the	
notes,	as	we	have	a	conduction	term	

• We	need	to	add	the	line	sink	to	the	equation	so	
we	obtain	

𝜕𝑇(𝑥, 𝑧)
𝜕𝑍 = −

1
2𝜋𝑘

𝑧 + 𝑎
(𝑥" + 𝑧 + 𝑎 ") −

𝑧 − 𝑎
(𝑥" + 𝑧 − 𝑎 ")

𝜕𝑇(𝑥, 𝑧)
𝜕𝑍 = −

1
2𝜋𝑘

𝑧 + 𝑎
(𝑥" + 𝑧 + 𝑎 ")



Finding	the	surface	heat	conduction	
using	Fourier’s	Law
• As	we	have	included	conduction	in	our	
equation,	we	can	solve	for	the	surface	heat	flow	
using	Fourier’s	law	of	thermal	conduction

𝑞 = −𝑘
𝑑𝑇
𝑑𝑧

𝑞(𝑥, 𝑧) =
1
2𝜋

𝑧 + 𝑎
(𝑥" + 𝑧 + 𝑎 ") −

𝑧 − 𝑎
(𝑥" + 𝑧 − 𝑎 ")



Obtaining	the	Green’s	Function

• For	our	surface	heat	flow,	we	solve	for	z=0

This	gives	us	a	Green’s	function	which	we	can	
then	convolve	with	an	arbitrary	source.

𝐺 =
1
𝜋

𝑧
𝑥" + 𝑧"

𝑞 𝑥, 0 =
1
𝜋

𝑎
𝑥" + 𝑎"



Convolving	with	the	Green’s	Function

𝑞 𝑥 =
𝑢
𝜋B

𝑧	𝜏(𝑧)
𝑥" + 𝑧" 𝑑𝑧

E

F

• Our	heat	source	is	not	a	line	source	at	depth,	it’s	a	
plane,	where	the	heat	flow	at	depth	z	is	given	by

𝑞 𝑧 = 𝑢𝜏 𝑧

• We	can	then	convolve	this	with	our	Green’s	Function	
to	get	our	surface	heat	flow	for	this	source.



Convolving	with	the	Green’s	Function

• We	can	use	our	initial	formula	for	the	normal	stress,	
given	by	𝜏 𝑧 = 𝜇𝜌I𝑔𝑧
• We	can	then	plug	this	into	our	equation	for	the	
surface	heat	flow.

𝑞 𝑥 =
𝜇𝜌I𝑔𝑢
𝜋 		B

𝑧"

𝑥" + 𝑧"
E

F
𝑑𝑧



Solving	this	integral
We	can	rearrange	the	equation	in	the	integral

5K

8KL5K
=	5

KL8KM8K

8KL5K

= 1 −
𝑥"

𝑥" + 𝑧"

𝑞 𝑥 =
𝜇𝜌I𝑔𝑢
𝜋 		B 1 −

𝑥"

𝑥" + 𝑧"
E

F
𝑑𝑧

=
𝜇𝜌I𝑔𝑢
𝜋 		 𝐷 − 𝑥 tanMR

𝐷
𝑥



Slip	Rate
Red:	20mm/yr
Blue:	40mm/yr

1	HFU	=	41.8mW/m2



Comparing	Model	with	Surface	
Observations	of	Heat	Flow

• Lachenbruch and	Sass	
(1980)	observe	no	
perturbed	surface	heat	
flow	measurements	
predicted	by	their	model.	



Changing	Frictional	Coefficient	
Cannot	Produce	Heat	Flow	Anomaly	



Accounting	for	Hydrothermal	
Circulation

𝑞 𝑥 =
𝜇(𝜌I−𝜌S)𝑔𝑢

𝜋 		B 1 −
𝑥"

𝑥" + 𝑧"
E

T
𝑑𝑧

=
𝜇(𝜌I−𝜌S)𝑔𝑢

𝜋 		 𝐷 − 𝑑 + (𝑥 tanMR
𝑑
𝑥 −𝑥 tan

MR 𝐷
𝑥)



Hydrothermal	Circulation	
Broadens	Heat	Anomaly	Profile


