Global Oceanic Heat Flow

Relating seafloor depth to local heat loss

Basic Model

- Energy conservation
- Thermal contraction
- Isostasy
- Independent of heat transfer models

1-D Solution

q_u d(x) Parsons and McKenzie (1978) d(x+dx) z = a $\rho_0 C_p v \int_0^a \left[T(x + dx, z) - T(x, z) \right] dz$ $+ \left(q_u - q_b\right) dx = 0$ $\int_0^a \rho_0 C_P u T(x,z) dz$ $\int_{0}^{a} \rho_{0}^{C} P^{uT(x+dx,z)dz}$ H(z) $d(x + dx) - d(x) = -\frac{\alpha \rho_0}{(\rho_0 - \rho_w)}$ $\cdot \int_0^a [T(x + dx, z) - T(x, z)] dz$ Z 🛊 ⊢dx → 7 = () q_b

$$q_u = \frac{(\rho_0 - \rho_w)C_p}{\alpha} \frac{d}{dx} d(x)v + q_b$$

2-D Solution

Wei and Sandwell (2006)

$$\rho_0 C_p \mathbf{v} \cdot \nabla T = \nabla \cdot \mathbf{q}$$

$$d(t) = \frac{-\alpha \rho_0}{(\rho_0 - \rho_w)} \int_0^a (T - T_m) \, dz$$

$$\mathbf{v} \cdot \nabla d = \frac{-\alpha}{(\rho_0 - \rho_w)C_p} (q_b - q_u)$$

$$\mathbf{v} \cdot \nabla d(t) = \frac{-\alpha \rho_0}{(\rho_0 - \rho_w)} \int_0^a \mathbf{v} \cdot \nabla T \, dz$$

$$\mathbf{v} = \frac{\nabla A}{\nabla A \cdot \nabla A}$$

$$= \frac{-\alpha}{(\rho_0 - \rho_w)C_p} \int_0^a \nabla \cdot \mathbf{q} \, dz$$

$$q_u = \frac{(\rho_0 - \rho_w)C_p}{\alpha} \frac{\nabla A \cdot \nabla d}{\nabla A \cdot \nabla A} + q_b$$