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Our volumetric heat production rate per unit time looks like

Figure 1: 2-D intensity plot.
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Figure 2: Aerial contour plot looking down at the z = zo plane.

and satisfies the equation

Q(x, y, z) = Aδ(z − z0)e−
x2+y2

2σ2 . (1)
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1 The Differential Equation

Figure 3

If we consider the heat flux (heat flow per unit area per unit time) through the slab in only one
direction as q(x), then

q(x+ ∂x)− q(x) ≈ q(x) +
dq

dx
∂x− q(x) (2)

=
dq

dx
∂x = −kx

dT

dx2
∂x (3)

is the net heat flux in or out of the slab. The net heat flux is logically decomposable into two,
distinct components.

There is the component of outward heat flux that comes from heat sources within the slab. In
math language, this is

qsource = Q(x)∂x (4)
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If Q(x) is the volumetric heat production rate. Any additional heat flux beyond this will draw
from the internal energy within the slab and thus reduce the temperature with heat flux contribution

Q∆T = −ρC dT
dt
∂x (5)

where C is the specific heat of the slab material and the negative sign indicates that a positive
”amount” of heat escaping the slab will cause a reduction in the temperature. When we put these
three things together, we get

−kx
d2T

dx2
∂x = Q(x)∂x− ρC dT

dt
∂x (6)

=⇒ dT

dt
− κx

d2T

dx2
=
Q(x)

ρC
. (7)

Then we consider the motion of the slab.

Figure 4

Everything done so far comes from looking at the slab from a reference frame in which the slab
is not moving. If the slab is moving, the equation above works in the frame comoving with the
slab. To obtain the equation describing the system from frame S instead of S′, we notice that

x = x′ + Ut (8)
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relates the position in space as seen by an observer in S to that seen by an observer in S′. Then
the derivative of the temperature with respect to time as seen by an observer in S must be

dT

dt
=
dT

dx

dx

dt
= U

dT

dx
(9)

while the derivative of temperature with respect to space does not change in form because

dx = dx′. (10)

Thus, the equation for temperature behavior in the slab as seen from frame S is

U
dT

dx
− κx

d2T

dx2
=
Q(x)

ρC
. (11)

Extending this to 3-D, we finally have

v · ∇T − κ∇2T =
Q(x, y, z)

ρC
(12)

2 Fourier Transform Method

F

(
vx
dT

dx
− κ
(d2T

dx2
+
d2T

dx2
+
d2T

dx2

)
= Aoδ(z − z0)e−

x2+y2

2σ2

)
(13)

(
2πikxvx + 4κπ2(k2

x + k2
y + k2

z)

)
T̃ (kx, ky, kz) = Aoe

−2πikzz0F
(
e−

x2+y2

2σ2

)
(14)

where

F
(
e−

x2+y2

2σ2

)
=

∫ ∞
−∞

e−
x2

2σ2 e−2πikxxdx

∫ ∞
−∞

e−
y2

2σ2 e−2πikyydy (15)

= R(kx)R(ky)
∣∣∣ R(k) = F (e−

u2

2σ2 ) (16)
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= F (e
−π
(

u
σ
√

2π

)2

) (17)

= F
(
f(αu)

)
(18)

where f(u) = e−πu
2

and α = 1
σ
√

2π
. From the Scaling Property of the Fourier transform,

=
1

|α|
f̃(
k

α
) (19)

= |σ
√

2π|e−π
2k22σ2

(20)

so then

=⇒ F
(
e−

x2+y2

2σ2

)
= (|σ

√
2π|e−π

2k2x2σ2

) · (|σ
√

2π|e−π
2k2y2σ2

) (21)

= 2πσ2e−2π2σ2(k2x+k2y). (22)

Placing this back into the main equation and isolating T̃ (kx, ky, kz) yields

=⇒ T̃ (kx, ky, kz) =
σ2Aoe

−2πikzz0e−2π2σ2(k2x+k2y)

ikxvx + 2κπ(k2
x + k2

y + k2
z)

. (23)

3 Inverse Transform Over z Direction

We first take the inverse transform of T̃ (kx, ky, kz) with respect to kz as

T̃ (kx, ky, z) =

∫ ∞
−∞

T̃ (kx, ky, kz)e
2πikzzdkz (24)

=
σ2Aoe

−2π2σ2(k2x+k2y)

2κπ

∫ ∞
−∞

e2πikz(z−z0)

ikxvx
2κπ + (k2

x + k2
y + k2

z)
dkz (25)
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and if we let p2 = ikxvx
2κπ + k2

x + k2
y, then the denominator of the integrand is

k2
z + p2 = (kz + ip)(kz − ip) (26)

so the integral over kz looks like

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz. (27)

We can integrate this over appropriate contours in the complex plane.

3.1 Positive Imaginary Pole

We take the contour

Figure 5

where
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C = CR + Co + LR (28)

lim
R→∞

(∫
C

f(kz)dkz =

∫
CR

f(kz)dkz +

∫
Co

f(kz)dkz +

∫
LR

f(kz)dkz = 0

)
(29)

because C is a closed loop in the complex plane that does not contain any poles. We integrate
each term separately.

CR:

lim
R→∞

(∫
CR

f(kz)dkz

)
= lim
R→∞

(∫
CR

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(30)

On CR,

kz = Reiφ | 0 ≤ φ ≤ π (31)

=⇒ dkz = Rieiφ (32)

and implanting these substitutions into the integral above gives

lim
R→∞

(∫ π

0

( iR

e2iφR2 + p2

)
e2πReiφ(z−zo)+φdφ

)
. (33)

As R → ∞, the term in parentheses drops to zero and the exponential term is a sinusoidally
oscillating forever, so the whole integral drops to 0. So

lim
R→∞

(∫
CR

f(kz)dkz

)
= 0. (34)
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Co:

lim
R→∞

(∫
Co

f(kz)dkz

)
= lim
R→∞

(∫
Co

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(35)

is the integral over a contour going in the clockwise direction.

It is always wise to convert all closed complex plane paths such that they are in the counter-
clockwise direction before integrating (so that curling your right hand around the path makes your
thumb point out of the page.)

The Residue Theorem may only be applied to such paths.

Just like swapping integration bounds in a 1-D integral means you have to put a minus sign in
front of the whole integral as well, we can say that

lim
R→∞

(∫
Co

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
= lim
R→∞

(
−
∫
−Co

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(36)

= −2πi lim
kz→+ip

(e2πi(z−zo)kz

kz + ip

)
(37)

= −π
p
e−2πp(z−zo) (38)

where the limit behavior of R never comes into play because the path Co does not depend on R
in the diagram!

LR:
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lim
R→∞

(∫
LR

f(kz)dkz

)
= lim
R→∞

(∫
LR

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(39)

and on LR, kz is composed by only its real component - kz is real valued - and goes from −∞
to ∞ so the integral becomes

=

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz, (40)

exactly the integral we want for a real-valued kz in (−∞,∞).

Now adding all three parts together, we get

0− π

p
e−2πp(z−zo) +

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz = 0 (41)

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz =

π

p
e−2πp(z−zo) (42)

is the evaluated integral over kz using the semicircular contour in the upper complex plane.

3.2 Negative Imaginary Pole

We take the contour
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Figure 6

where again

C = CR + Co + LR (43)

although the label labels apply to slightly different paths this time. So

C = CR + Co + LR (44)

lim
R→∞

(∫
C

f(kz)dkz =

∫
CR

f(kz)dkz +

∫
Co

f(kz)dkz +

∫
LR

f(kz)dkz = 0

)
(45)

and now we treat each integral separately again.

CR:
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lim
R→∞

(∫
CR

f(kz)dkz

)
= lim
R→∞

(∫
CR

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(46)

On CR,

kz = Reiφ | π ≤ φ ≤ 2π =⇒ dkz = Rieiφ (47)

=⇒ lim
R→∞

(∫ 2π

π

( iR

e2iφR2 + p2

)
e2πReiφ(z−zo)+φdφ

)
. (48)

As R→∞, the term in parentheses drops to zero and the complex exponential term oscillates
forever, so the whole integrand goes to 0. Thus

lim
R→∞

(∫
CR

f(kz)dkz

)
= 0. (49)

Co:

lim
R→∞

(∫
Co

f(kz)dkz

)
= lim
R→∞

(∫
Co

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(50)

is the integral over a contour going in the clockwise direction, which we immediately rewrite as

= lim
R→∞

(
−
∫
−Co

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz

)
(51)

= −2πi lim
kz→−ip

(e2πi(z−zo)kz

kz − ip

)
(52)

=
π

p
e2πp(z−zo) (53)
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where the limit behavior of R never comes into play because the path Co does not depend on R
in the diagram.

LR:

lim
R→∞

(∫
LR

f(kz)dkz

)
=

∫ −∞
∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz (54)

because the our contour now has LR going from +∞ to +∞. Then

= −
∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz, (55)

which is the negative of the integral we want for a real-valued kz in (−∞,∞).

Now adding all three parts together, we get

0 +
π

p
e2πp(z−zo) −

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz = 0 (56)

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz =

π

p
e2πp(z−zo) (57)

is the evaluated integral over kz using the semicircular contour in the lower complex plane.

Notice how this contour yields an exponential that is growing, rather than decaying. If our value
of p→∞, then this solution will blow up. Hence, this solution must only work for p < 0.
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We now can combine the two contour solutions as

∫ ∞
−∞

e2πikz(z−z0)

(kz + ip)(kz − ip)
dkz =

{
π
p e
−2πp(z−zo) p ≥ 0

π
p e

2πp(z−zo) p ≤ 0

=
π

p
e−2π|p|(z−zo) ∀p (58)

=
π√

ikxvx
2κπ + k2

x + k2
y

e
−2π

∣∣∣√ ikxvx
2κπ +k2x+k2y

∣∣∣(z−zo)
(59)

and inserting this into T̃ (kx, ky, z) gives

T̃ (kx, ky, z) =
σ2Aoe

−2π2σ2(k2x+k2y)

2κ

e
−2π

∣∣∣√ ikxvx
2κπ +k2x+k2y

∣∣∣(z−zo)√
ikxvx
2κπ + k2

x + k2
y

. (60)

In order to satisfy the boundary condition, T (z = 0) = Tm, we add an appropriate image and
Tm, a perfectly adequate homogeneous solution to the differential equation we are trying to solve.
So the temperature distribution in the lithospheric half space is described by

T̃ (kx, ky, z) =
(σ2Aoe

−2π2σ2(k2x+k2y)

2κ

)(e−2π

∣∣∣√ ikxvx
2κπ +k2x+k2y

∣∣∣(z−zo)
+ e

2π

∣∣∣√ ikxvx
2κπ +k2x+k2y

∣∣∣(z+zo)√
ikxvx
2κπ + k2

x + k2
y

)
+Tm.

(61)

4 Inverse Transform Over x and y Directions

To obtain the final solution, we would have to compute the integral

T (x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

T̃ (kx, ky, z)e
2πixkxe2πiykydkxdky (62)
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and looking at T̃ (kx, ky, z) it can be deduced that differentiating with respect to z under the
integral will yield something possibly more tractable. For simplicity, we will demonstrate the ap-
proach for the solution ignoring the image source. So

dT

dz
=

∫ ∞
−∞

∫ ∞
−∞

dT̃

dz
e2πixkxe2πiykydkxdky (63)

=
−σ2Aoπ

κ

∫ ∞
−∞

∫ ∞
−∞

e
−2π2σ2(k2x+k2y)−2π(z−zo)

√
ivx
2κπ kx+k2x+k2y+2πixkx+2πiykydkxdky (64)

and now it seems practical to transform this integral into polar coordinate representation before
solving.

Figure 7

We treat k2
r = k2

x + k2
y and (kx, ky) = (kr cos(θ), kr sin(θ)) and with some rearranging, write

dT

dz
=
−σ2Aoπ

κ

∫ ∞
0

e−αk
2
rkr

(∫ 2π

0

e−β
√
λkr cos(θ)+k2r+γkr cos(θ)+ψkr sin(θ)dθ

)
dkr (65)

where

• α = 2π2σ2

• β = 2π(z − zo)
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• λ = ivx
2κπ

• γ = 2πix

• ψ = 2πiy.

The integral over θ can likely be solved using further complex analysis methods or by using
Mathematica but we do not do that here.

We instead proceed to plot the temperature isotherms as time passes by and the heat flux as a
function of depth,

q(kx, ky, z) = −kdT̃
dz

=
kzσ

2Aoπ

κ
e
−2π2σ2(k2x+k2y)−2π(z−zo)

√
ivx
2κπ kx+k2x+k2y , (66)

where k is the thermal conductivity in the Z direction, using

• σ = 5000

• Ao = A
ρC = 100

• κ = 10−7

• zo = 1000

• kx = ky = 2.5

• vx = variable values.

Figure 8
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Figure 9

Figure 10
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