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Objectives  

� Discuss flexure on Venus and why it is 
important 
�  Provide a general understanding of flexure 

on Venus 
�  Speak to how flexure is modeled 

� Derive equations 2 and 10 in Johnson and 
Sandwell [1994] 

� Explain the findings of this paper with 
respect to the geothermal gradient 
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Fun Facts about Venus 
�  Venus is very similar to earth 
�  A day on Venus lasts longer 

than a year on Venus 
�  It takes 243 days for Venus to rotate once, 

but only 225 days for Venus to orbit the sun  

�  And it rotates counterclockwise 

�  Atmospheric pressure on 
Venus is 92 times our own 
�  Makes it so that there are 

now small impact craters 

�  Venus is the hottest planet 
�  Average temperature is 492 

C, this is because of an 
atmosphere of 96.5% CO2 
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Flexure on Venus 
� Flexure is important because it helps you 

understand how thickness and strength of 
the lithosphere varies spatially and 
temporally 

� The idea that Venus experiences  
lithospheric flexure is a new idea 
�  First identified in the early 90s thanks to 

Pioneer altimetry data (Solomon & Head 
1990) 
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Tectonics on Venus 
�  Chasmata 

�  Linear to arcuate troughs with ridges 
extending thousands of kilometers 

 
�  Tesserae  

�  Old highly deformed terrain 
�  Evidence for subduction 
 

�  Coronae  
�  Fractured lithosphere above 

upwelling or downwelling  
mantle  
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Corona  
Formation 
� Coronae are thought 

to be plume induced  
�  Model form Gerya 

(2014) 
� Eventual fracturing of 

nova causes a  
� Hundreds of Coronae 

are documented on 
the Venusian surface 



Modeling Flexure using 
Coronae 
�  Observe lithospheric flexure at coronae edges 

�  We use two different thin plate methods to get at the 
deflection w(x) 
�  2-D Cartesian method 

�  Used for features with high planform radii  
�  2-D asymmetric method  

�  Used for coronae with elevated outer ring  
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Derivation of flexure equation 
� Differential equation for flexure problems 

with no in-plane force P 

� Goal equation 
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Derivation of flexure equation 
cont. 
� For simplicity later on  

� To solve differential equation, determine 
the characteristic equation 
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Derivation of flexure equation 
cont. 
� Use identities                             to find roots 
 

a2 + b2 = (a+ bi)(a− bi)
a2 − b2 = (a+ b)(a− b)
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Derivation of flexure equation 
cont. 
� General solution to homogeneous linear ODE: 

� Use identities                       

w(x) = c1e
r1x + c2e

r2x + c3e
r3x + c4e

r4x

eλ+µt ⇔ eλt cos(µt)
eλ−µt ⇔ eλt sin(µt)

w(x) = c1e
−x
α cos x

α

"

#
$

%

&
'+ c2e

x
α sin x

α

"

#
$

%

&
'+ c3e

−x
α sin x

α

"

#
$

%

&
'+ c4e

x
α cos x

α

"

#
$

%

&
'

Derivation 1 



Derivation of flexure equation 
cont. 
� Factor 

� Simplify 
�  Symmetry about x=0, so only need w(x≥0) 
�  Boundary condition 
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Derivation of flexure equation 
cont. 
� Our equation models a flexure where the load 

is centered at x=0 and the deformation is 
modeled at x≠0 

�  If we want to model a load at any x, we have 
to apply a shift 
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2-D Asymmetric Model: 
Choosing  a Ring Load or a 
Bar Load 
�  For coronae with elevated outer rings (most of 

them), a better approximation for the deflection 
can be achieved using a 2-D asymmetric model. 

�  Consider a ring load with outer radius a and ring 
width Δa  
�  As Δa/a increases, the ring load better 

approximates a disk load 
�  As Δa/a decreases, the ring load better 

approximates a bar load 
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Bar Load Approximation 
� Flexure due to a bar load for this type of 

model can be calculated by convolving 
a bar load geometry with the response 
due to a line load: 

�  w(x)=B(x)*s(x) 
�  Where  
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Obtaining w from a Bar Load, 
Part I 
� Since we are convolving with a boxcar 

function of height 1, then we can 
represent the convolution by integrating 
s(x) with respect to x0 along the intervals 
of –l à 0 and 0 à l 
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Obtaining w from a Bar Load, 
Part II 
� Lets make a change of variables to make 

life easier! 

� This change gives us: 
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Obtaining w from a Bar Load, 
Part III 
� Breaking the equation down, the general 

solution for our integrals is as follows  

� However, if one looks at the integrals we 
are evaluating, the integration will 
produce an extra negative sign so that for 
our case, the integral is equal to 
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Obtaining w from a Bar Load, 
Part IV 
�  Given:  

�  And Using the identity: 

�  We can integrate our equation, evaluate for boundary conditions 
to get  

 
�  After simplifications, the final formula for w(x) we receive is  
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Brief Look at a Ring Load 
Model  
� Deflection due to a disk load  

� Deflection due to a ring load  

Ring Loads 
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Nishtigri Corona 

Results 



Coronae Profiles 
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Mechanical Thickness 
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Results 
� Effective elastic thickness = 12 – 34 km 
� Mechanical thickness = 21 – 37 km 
� Thermal gradients = 8 – 14 K km-1 

� Heat flow = 26.4 – 46.2 mW m-2 

� Rheologically dependent: Dry oceanic 
lithosphere? 

Results 



Concluding Remarks 
� Relationship to viscous flow 

�  Flexures are result of dynamic processes no 
longer active 

�  Coronae maybe in different stages of 
evolution 

�  Tf = 18 Myr 


