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Objectives

Objectives

o Discuss flexure on Venus and why it is
important

o Provide a general understanding of flexure
on Venus

o Speak to how flexure is modeled

o Derive equations 2 and 10 in Johnson and
Sandwell [1994]

o Explain the findings of this paper with
respect to the geothermal gradient
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Background

Fun Facts about Venus

o Venus is very similar to earth

o A day on Venus lasts longer

than a year on Venus

o It takes 243 days for Venus to rotate once,
but only 225 days for Venus to orbit the sun

o And it rotates counterclockwise

o Atmospheric pressure on
Venus is 92 times our own

o Makes it so that there are
now small impact craters

o Venus is the hottest planet

o Average temperature is 492
C, this is because of an
atmosphere of 96.5% CO,




Background

Flexure on Venus

o Flexure is important because it helps you
understand how thickness and strength of
the lithosphere varies spatially and l
temporally

o The idea that Venus experiences
lithospheric flexure is a new idea
o First identified in the early 90s thanks to

Pioneer altimetry data (Solomon & Head
1990)
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Background

Tectonics on Venus

o Chasmata

o Linear to arcuate troughs with ridges
extending thousands of kilometers

o Tesserae
o Old highly deformed terrain
o Evidence for subduction

o Coronae

o Fractured lithosphere above
upwelling or downwelling

mantle

.......

Google earth
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Corona
Formation

o Coronae are thought ~
to be plume induced -,

o Model form Gerya
(2014)

o Eventual fracturing of
Nnova causes a

o Hundreds of Coronae
are documented on
the Venusian surface
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Background

Modeling Flexure using
Coronae

o Observe lithospheric flexure at coronae edges

o We use two different thin plate methods to get at the
deflection w(x)
o 2-D Cartesian method l
o Used for features with high planform radi
o 2-D asymmetric method
o Used for coronae with elevated outer ring
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Derivation of flexure equation

o Differential equation for flexure problems
with no in-plane force P

4
DdT+Apg=O
dx 4

o Goal eguation

ool el
w(x)=e * |c, cos| — |+, sin| —
a a




Derivation of flexure equation
cont.

o For simplicity later on

4
| Dd:V+Apg=0
4D| dx 4

o To solve differential equation, determine
the characteristic equation




Derivation of flexure equation .
contf.

o Use identities a*+b°=(a+bi)a-bi) 1O find roots
a’*-b*=(a+b)a-b)




Derivation of flexure equation
cont.

o General solution tfo homogeneous linear ODE:

_ "X ryX 73X 74X
w(x)=ce" +c,e” +c,e” +c e

7L+,ut<=>e),tcos(ut)

o Use identities ¢

e’ <= e sin(ut)

-X X -X X
— X = . [ x — . [ x = X
w(x)=ce* cos|—|+c,e*sin|— |+c.e®* sin|— |+c,e* coS| —
1 2 3 4

a a a 04




Derivation of flexure equation
cont.

o Factor

= x x
w(x)=e“ [cl cos(;) + ¢, SIn

o Simplify
o Symmetry about x=0, so only need w(x=0)
o Boundary condition limw(x)=0




Derivation of flexure equation
cont.

o Our equation models a flexure where the load
Is centered at x=0 and the deformation is
modeled at x#0

w(x) = e_;x [Cl cos(ﬁ) +c, Sin(ﬁ)
a (01

o If we want to model a load at any x, we have
to apply a shift

B X=X, . [ x=x,
w(x)=e * |c,Cos + ¢, Sin
o a




Background

2-D Asymmetric Model:
Choosing a Ring Load or a
Bar Load

o For coronae with elevated outer rings (most of
them), a better approximation for the deflection
can be achieved using a 2-D asymmetric model.

o Consider aring load with outer radius a and ring
width Aa

o As Aa/aincreases, the ring load better
approximates a disk load

o As Aa/a decreases, the ring load better
approximates a bar load

> Aa®

(a) Ring Load: (b) Bar Load:
outer radius = a, width = Aa width = Aa




Bar Load Approximation

o Flexure due to a bar load for this type of
model can be calculated by convolving l

a bar load geometry with the response

due to a line load:
o W(X)=B(x)*s(x)
o Where

B(x) = 11(3)

s(x) = A:;a ec_t [cos (z) + sin (g)]




Obtaining w from a Bar Load,
Part |

o Since we are convolving with a boxcar l
function of height 1, then we can
represent the convolution by infegrating
s(x) with respect to x, along the intervals
of-I>0and 0 > |

w(x) = Apga U | _xaxo cos (x _axo) + sin (x _axo)) dx,

o e s (220) sin (F220))




Obtaining w from a Bar Load,
Part |l

o Lets make a change of variables to make
life easier!

x''=x — x4 dxo, = dx’

o This change gives us:

o [(* (. (¥, (*
w(x) = ea |cos|— | +sin|— ) )dx’
Apga ),y a a
x-1 —x! ! ’
e« |cos sin !
X




Obtaining w from a Bar Load,
Part Il

o Breaking the equation down, the general l
solution for our integrals is as follows

f e *(cos(x) + sin(x)) = —e *(cos(x))

o However, if one looks at the intfegrals we
are evaluating, the integration will
produce an extra negative sign so that for
our case, the integral is equal o

e *(cos(x))




Obtaining w from a Bar Load,
Part IV

x X+l _ x' x'
o Given: w(x) = —f f e a (cos (E) + sin (;)) dx

x-1l“x

o And Using the identity: —J e *(cos(x) + sin(x)) = e *(cos(x))

o ¥Ve c?n integrate our equation, evaluate for boundary conditions
O ge

=) o ) P o 5o )

a

o After simplifications, the final formula for w(x) we receive is

w0 = (o752 cos (1) - e (cos (1)) )




Ring Loads

Brief Look at a Ring Load
Model

o Deflection due to a disk load

i 2 o (£t () o ()1 ()]

r=a

o Deflection due to aring load

w(r)-Ap {c, ker (;) + ¢, kei (;)} r=a
[ ber a Aa ber’ (a = Aa)]
(G

AT




Methods
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Mechanical Thickness
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Results

o Effective elastic thickness = 12 — 34 km
o Mechanical thickness = 21 — 37 km

o Thermal gradients =8 — 14 K km’!

o Heat flow = 26.4 — 46.2 mW m™

o Rheologically dependent: Dry oceanic
ithosphere?¢




Concluding Remarks

o Relationship to viscous flow
o Flexures are result of dynamic processes no

longer active

o Coronae maybe in different stages of

evolution

o T.= 18 Myr




