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The outer rise is a topographic high, which is a flexural response
to the downward deflection of the subducting plate.
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How to describe the flexure of trench?
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Mechanical equilibrium —N—— —Apgw=0
dx dx

horizontal coordinate X

buoyancy force Apg

plate deflection w

Axial load can be obtained by integrating the stress differences
through a vertical cross-section of the plate with thickness H :
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The bending moment is defined =7 !
by the vertical integral of the
fibre stresses o, weighted by

the distance from the nevtral

plane of bending at a depth z,
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For a thin elastic plate
M(x)=—-DK(x)

flexural rigidity

D=ET?/12(1-v?)

curvature of the plate
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K
dx?

the wmore sharply bent, the
thinner, if no finite yield
strength
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Real earth materials do have a
finite strength.

Stress difference are linearly
proportional to distance from
the neutral axis in the elastic
plate.

The plate behaves elastically
up to the yield stress, at which
point the plate fails. Additional
strain cavses no increases in
stress.

Axial loading forces can cause
an apparent plate thinning.
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* Consider the finite yield
strength of the
lithosphere is important

* Since using elastic theory
at a location in which the
stresses are high enough
that plastic behavior is
oceurring canresultina
large underestimate of
plate thickness
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Mowent-Curvature Formulation

d*M i d*w
dx* dx*

Mechanical equilibrium — Apgw =0

Integrating twice  M(x,)=] Apgw(x)(x-x,)dx+Nw(x,)

measures the moment at point x, regardless of
rheological assumptions.



M(x,)= j:Apgw(x)(x—xo)dx+1vw(x0)

To make the eq. only depend on observable quantities, choose x,
0 that w(x )=0

To analyze the observed data, we have to choose a curve to fit the
date. The curvature from bending a thin elastic beam is acceptable.

w(x)= Aexp(—x/o)sin(x/ @)

A and « are related to the height w,of the outer rise and the
distance x, from the first zero crossing to w,

W, = Aexp(—n'/4)/\/—2—

Xb=7Z'OC/4—



Let X, =0

M(z=0)= Apgw(z)zdz
0

00
= ApgAa® / re “sinzdr

0
= ApgAa"’[—%e"[:c sinz + (z 4+ 1) cos z]|5°
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= Apgwy(day/m)exp(r/4)//(2)

K(z = 0) = d*w/dz?

P
dw/dx = —e (.!(cosE —sinf)
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= —/(2)m*wyezp(r/4)/(8z3)
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The points are observed
data.

The line are theoretical
mowent/curvature

the dash line is elastic
situation
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For curvature of the order of 7x107"m™

The yield envelope produces a moment of 4x10"” N as the dash
line shows, which is clearly foo large to explain most of the

data.
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Explanation:

Decreasing the depth of the base of the yield envelope by
increasing the geotherwmal gradient or reducing Q.

(The higher temperature, the less elastic rocks will be)

5 10 -5 Ao 5 0 IISxIOzMPo

semi- —
britile _ -
oS
ductile- { ~
e \_

|ow
femperotur

semi-
brittle

€=10""%sec

—-80 kilometers



Conclusion

* The plate behaves elastically up to the yield
stress, at which point the plate fails

* |t is important to consider the finite yield
strength of the lithosphere when wmodeling
flexure at subduction zones

* The bending moment can be measured from
the topography and it must be very large



Thank you!

Questions?



