Practice final quiz 2015

Geodynamics - 2015

1 (a) Complete the following table.

parameter	symbol	units
temperature	T	°C or °K
thermal		
conductivity		
heat capacity		
density		
coefficient of		
thermal		
expansion		
(volumetric)		
acceleration of		
gravity		
gravitational		
constant		
Young's		
modulus		
Poisson's ratio		
shear modulus		
bulk modulus		
viscosity,		
dynamic		

- (b) Devise a thought experiment to measure each quantity. This has to be physically realistic but not necessarily practical.
- 2 (a) What two measurements must be made to determine the conductive heat flow at the bottom of the ocean?
- (b) Why is it OK to measure heat flow in the upper few meters of sediment on the seafloor while one needs a borehole hundreds of meters deep obtain a reliable measure of heat flow on the continents.
- 3 (a) Abyssal hills on the seafloor have a characteristic wavelength of 10 km and produce a gravity anomaly amplitude of 5 mGal at the bottom of the ocean. What is the amplitude of the gravity anomaly at the sea surface where the mean ocean depth is 4 km?
- (b) What is the amplitude at the altitude of a satellite of 400 km?

- 4 Calculate the slip rate along the San Andreas Fault in San Francisco (latitude 38°, longitude –127°). The North America Pacific rotation pole is 48.7 latitude, -78.2 longitude, 1.36x10⁻⁸ rad/yr. (90% credit if you setup the problem and provide an upper bound on the slip rate.)
- 5 (a) Provide an approximate formula for the magnitude of the shear stress that is needed to induce slip on a dry fault at 10 km depth in continental crust (density 2800 kg m^{-3})? Which parameter is least well known and what is a possible range for this parameter.
- (b) Suppose the crust is saturated with water to 10 km depth. How does this change the stress magnitude?

6 Solve for the temperature T as a function of time t and depth z in a cooling half space.

The differential equation for heat diffusion is

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\kappa} \frac{\partial T}{\partial t}$$

and the boundary/initial conditions are

$$T(0, t) = T_o;$$
 $T(\infty, t) = T_m;$ $T(z, 0) = T_m.$

Use the following similarity variable η to reduce the partial differential equation to an ordinary differential equation

$$\eta = \frac{z}{2\sqrt{\kappa t}}$$

where κ is the thermal diffusivity, T_O is the surface temperature, and T_m is the initial temperature of the half space.

7 The equations below relate principal stress to principal strain. Derive formulas for Young's modulus E and and Poisson's ratio ν in terms of the Lame parameters λ and μ by setting up a uniaxial stress case.

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} = \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda \\ \lambda & \lambda + 2\mu & \lambda \\ \lambda & \lambda & \lambda + 2\mu \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$$

Geodynamics - 2014

- 1) Assume the lithosphere of Venus has evolved to a steady-state temperature profile. Given a current heat flow of $4x10^{-2}$ W m⁻², a surface temperature of 450° C, a mantle temperature of 1500° C and a thermal conductivity of 3.3 W m⁻¹ C⁻¹ calculate the thickness of the lithosphere.
- 2) Continental yield strength envelope model. The continental yield strength has been described as a jelly sandwich consisting of a weak layer (jelly) between two strong layers (bread). The flexural rigidity of a single strong later is.

- (a) What is the flexural rigidity of two strong layers, each of thickness h/2, that are not bonded along their common interface?
- (b) What is the effective elastic thickness for this layered case?
- 3 (a) Use the formula for isostatic geoid height $N = \frac{2\pi G}{g} \int_{-\infty}^{0} \Delta \rho(z) z dz$ to calculate the geoid height for the following 2-layer density model

$$\Delta \rho = \sigma \left[\delta(z) - \delta(z + a) \right]$$

where σ is the surface density. Check the dimensions of your solution.

- (b) What is the value of geoid height for a surface density of 2800 kg m⁻³ X 1000 m and a compensation depth a of 30,000 m? (q=9.8 ms⁻² and G=6.67x10⁻¹¹ m³ kg⁻¹ s⁻²).
- 4 Given the rotation pole between the African and South American plates (pole; latitude=62.5°, longitude=320.6°, rate= 5.58 x 10⁻⁹ radian/yr), calculate the spreading rate at a point on the northern Mid-Atlantic Ridge (lat= 30°, lon= 319°).
- 5 Abyssal hills, which form at seafloor spreading ridges, have a characteristic spacing of 4 km and have peak-to-trough amplitude of 400 m and a density relative to water of 1600 kg m⁻³. Assume they are infinitely long in the ridge-parallel direction. What is the amplitude of their gravity anomaly at the surface of the ocean 4 km above the seafloor? What is the amplitude at the altitude of a satellite (400 km)? (assume a flat earth, G=6.67x10⁻¹¹ m³ kg⁻¹ s⁻²)

6 Solve for the temperature T as a function of time t and depth z in a cooling half space.

The differential equation for heat diffusion is

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\kappa} \frac{\partial T}{\partial t}$$

and the boundary/initial conditions are

$$T(0, t) = T_o;$$
 $T(\infty, t) = T_m;$ $T(z, 0) = T_m.$

Use the following similarity variable η to reduce the partial differential equation to an ordinary differential equation

$$\eta = \frac{z}{2\sqrt{\kappa t}}$$

where κ is the thermal diffusivity, T_O is the surface temperature, and T_m is the initial temperature of the half space.

7 The differential equation for the deflection of a thin elastic plate w(x) in response to a line load $V_o\delta(x)$ is:

$$D\frac{d^4w}{dx^4} + \Delta\rho gw(x) = V_0\delta(x)$$

Take the fourier transform of this differential equation and solve for W(k).

Geodynamics - 2013

1 Derive the following relationship between the rate of increase in seafloor depth with age $\frac{\partial d}{\partial t}$ and the difference between the surface and basal heat flow $(q_s - q_L)$.

$$\frac{\partial d}{\partial t} = \frac{\alpha}{C_p(\rho_m - \rho_w)} (q_s - q_L)$$

You will need Fourier's law, energy conservation, and isostasy as follows:

$$q = k \frac{\partial T}{\partial z}$$

$$\frac{\partial T}{\partial t} = \frac{k}{\rho_m C_p} \frac{\partial^2 T}{\partial z^2}$$

$$d(t) = \frac{-\alpha \rho_m}{\left(\rho_m - \rho_w\right)} \int_{0}^{L} T \, dz$$

where

L - asymptotic lithospheric thickness and also the depth of compensation (m)

d - seafloor depth (m)

q - heat flow (W m⁻²)

 α - coefficient of thermal expansion (°C⁻¹)

 C_p - heat capacity (J kg⁻¹)

 ρ_m , ρ_w - mantle and seawater density (kg m⁻³) k - thermal conductivity (W m⁻¹ °C⁻¹)

- 1 Assume the density of the earth is uniform and the earth is a prefect sphere.
- (a) Develop a formula for the gravitational acceleration as a function of radius and check the dimensions.
- (b) Develop a formula for the pressure at the center of this earth and check dimensions.

OR - a bit more challenging

- 2 Assume the density of the earth is uniform increases with radius as ρ = Ar and the earth is a prefect sphere.
- (a) Develop a formula for the gravitational acceleration as a function of radius and check the dimensions.
- (b)Develop a formula for the pressure at the center of this earth and check dimensions.