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Summary 

It is shown how a series of Fourier transforms can be used to calculate the 
magnetic or gravitational anomaly caused by an uneven, non-uniform 
layer of material. Modern methods for finding Fourier transforms 
numerically are very fast and make this approach attractive i n  situations 
where large quantities of observations are available. 

1. Introduction 

The matching of observed potential fields with those produced by crustal models 
is a traditional method of geophysical data interpretation. The conventional way in 
which the theoretical fields are found is to break up the model into a set of simpler 
objects (e.g. prisms or rectangular blocks) whose contributions are calculated 
separately and summed (see Grant & West 1965; Garland 1965). When the model 
is complicated and when a large quantity of observations is available, this process 
can be computationally very time-consuming, since the number of operations increases 
roughly as the product of the number of output points and the number of points 
defining the model. In recent times, however, an ingenious factorization method (see 
special issue of IEEE,  1967) has made the computation of Fourier transforms par- 
ticularly fast: the computation time being proportional to N InN, where N is the 
number of input and the number of output points. If the calculation of gravity and 
magnetic anomalies due to the model could be cast in a form based on Fourier trans- 
formation, geophysicists could take full advantage of the remarkable speed of the 
new algorithm. This fact has been realized by some workers already (Dorman & 
Lewis 1970; Schouten & McAmy 1972) but until now approximations have been 
used that ignore the non-linear effects caused by terrain roughness. We give in this 
note an exact theory for the calculation of potential fields caused by a non-uniform 
and uneven layer of material; the observation points lie in a plane that is everywhere 
above the material and, therefore, the proposed technique is most suitable in 
applications to aeromagnetic or surface oceanographic measurements. We later 
describe how the results may be found on an uneven surface. The main result of this 
paper is expressed as an infinite series of Fourier transforms; we discuss the con- 
vergence of the series and give a criterion for securing the optimum convergence rate 
in a given physical situation. A two-dimensional problem is solved, showing 
extremely fast convergence, which should be typical of oceanographic data. 
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2. Derivation of the Fourier expansion 

For simplicity, we shall consider in detail the calculation of the Bouguer or 
terrain correction due to the gravitational attraction of a layer of material. We find the 
Fourier transform of the potential and manipulate the expression until we obtain an 
expression which is itself a sum of Fourier transforms. The basic result can be 
elaborated to include the case of many layers and densities varying with position, 
as well as the analogous magnetic problem. 

It is convenient at this point to introduce a slightly unconventional notation. 
A Cartesian axis system is established with 2 vertically upwards: positions in space 
are represented by vectors like r = ( x ,  y ,  z) and the projection of r onto the x - y  
plane is denoted by f .  Thus 

f = r-22.r, 

and the converse of this equation will be written 

Note that 

The two-dimensional Fourier transform of a function f ( f )  is defined by 

where L is the wave vector of the transformed function and X is taken to be the 
whole x - y  plane. 

Consider the gravitational attraction from a layer of material, whose lower 
boundary is the plane z = 0, and whose upper boundary is defined by the equation 
z = h ( f ) .  At the outset we shall require that the layer vanishes outside some finite 
domain, D, i.e. h ( f )  = 0 if If1 > R. The reason for this is that in practical situations 
we can model only a finite area of terrain and certain problems of convergence are 
avoided under this assumption. A further assumption is that h is bounded and 
integrable; both these restrictions are clearly valid for any reasonable model of 
topography. The gravitational potential at a position ro due to the layer is 

where G is Newton's gravitational constant; for the moment p,  the density, is not a 
function of position. Suppose that the observation point is confined to the plane 
z = zo, so that U is now only dependent on f o ;  this plane must lie above all the 
topography, something aeromagnetic and most oceanographic applications comply 
with. Take the Fourier transform of (1): 
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Interchanging the order of integration we see that 

h ( r )  

449 

9 [ U ]  = Gp 1 d S  1 d z  d S o  exp ( i ~ * r o ) / ~ r o - r ~ .  
0 o x  

The last integral can be carried out analytically by use of polar co-ordinates (see 
Bracewell 1965); after a little algebra we obtain 

h ( r )  

9 [ U ]  = Gp I d S  1 d z { 2 r c e x p ( i ~ ~ r - I ~ l ~ z o - z ) ) ) / l ~ l .  
D O  

Now the z-integral can be performed explicitly: 

9 [ U ]  = 2nGp \ d S  exp ( i & * i . -  Iktlz,){exp [1L1 h(i . ) ] -  l}/lklz. 

The integral above is not yet a Fourier transform but, upon expansion of the second 
exponential function in a Taylor series and rearrangement of summation and 
integration, we obtain 

Li 

m 1 1 ; y - z  
9 [ U ]  = 2nGp exp ( -  z o )  C --I F[h''(?)], (2) 

n = l  n .  
which is a sum of Fourier transforms. 

potential. 
V2 U = 0, so that the potential may be written 

The terrain correction is in fact the vertical attraction of the material, not the 
To find this we note that, above the masses (2.r0 > max{h(Po)}), 

Thus 9 [ U ( i 0 ) ]  = U(L) exp (- IR12.ro). 

The vertical attraction Ag is by the definition of potential 

Ag = + a u / a z ,  

and from the above relations it follows that 

.!F[Ag] = -161 .F[U]. 

With this result we obtain the desired expression 

It is easy to generalize (4) to include the case where the lower boundary of the 
layer is not flat, but given by z = g ( t ) ,  and to allow the density to vary with i.: 

w I/q"- 1 
. F [ A g ]  = -2nG exp ( - IRlzo)  C ~ 9 [P  (WW) - s" (7)>l, ( 5 )  

n = l  n! 

and the extension to many layers is obvious. 
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The equivalent magnetic problem can be solved by exactly the same procedure. 
We take a magnetized layer of material with upper and lower boundaries as before. 
It is commonly assumed in magnetic model calculations that the direction of 
magnetization is constant, but the intensity may vary: thus 

M(?) = A, M(F); 

this restriction is not essential for our technique but simplifies the calculations. 
Another simplification frequently employed results from the fact that perturbations 
to the observed field due to the magnetized material are always very small (< 10 per 
cent), and that magnetic measurements at sea are made of the total field IBI. The 
magnetic anomaly AIBI can be approximated by 

AIBI = 8,*AB, 

where 8, is the unit vector in the direction of the unperturbed field and AB is the 
perturbing field. With these conditions in force the equivalent magnetic result to (5) is 

.F[AIBl] = +po exp(-l6lzO)8,.(&, 161)fio.(ii, 

m $l"-z c -  9 [M(F){h"(?) -g"(i.)}]. 
n = l  n! 

When, in addition, a constant thickness of magnetized material is assumed, (6) 
be rewritten in a form that is faster computationally: 

.F[AlB1] = +po  exp ( - l & ~ z 0 ) 8 , * ( i & ,  IEl)f i , . ( i~ ,  161) 

m lQ"-2 

(1-exp(-IElho)) c ___ .wM(if> h"(V1, 
n = ~  n! 

(6) 

can 

(7) 

where ho is the thickness of the layer; note the summation now begins at n = 0. 
Having obtained the Fourier transforms by one of the above expressions, we can 

recover the required field by using the inverse transform on the resultant function. 
It is interesting to note that all the equations hold for a two-dimensional geometry, 
when a scalar wave number, k ,  replaces the vector 2. 

3. Convergence of the series 

Equation (4) has meaning only when the series of Fourier transforms converges 
and, moreover, rapidity of convergence is vitally important if the expression is to have 
practical utility. First we need a bound on F[h"(3)]  as n becomes large. From the 
definition of the Fourier transform 

IS[h"]l < J' d S  lh"(F).)I -1exp (iE*F)l 
D 

= / dS(h"(P)I 
b 

< AH", 

where A is the area of D, the support of h, and H = max Ih(P)I, both quantities 
being bounded by assumption. Inserting this bound and comparing the series with 
that for exp (lzl H), we find that (4) is uniformly and absolutely convergent in any 
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bounded domain of the k-plane (Whittaker & Watson 1962, p. 581). Practically, 
an upper bound on lktl comes from the non-zero separation of the observation 
points. 

A stronger result, which gives valuable insight into the rate of convergence can 
be shown as follows. Rearrange (4) thus 

2nGp F [ h ” ]  = - --S 2nCp m k” exp (-kz,) 
n !  k ’ S[&] = - c k n = l  

where we are writing k for l k t l .  Now compare the series for S with 

c4 (kH)” 
S ’ =  Aexp(-kz,)- - - 2 ALn(k); 

n = l  n !  n = 1  

from the bound on F[h”] we know every L, is larger in magnitude than the corres- 
ponding term in S. It is easily shown that 

LnP) < (H/zo )” ,  

independently of ihe value of k ,  when zo > 0. Therefore, when H < z o  and zo > 0, 
the series for S’ is uniformly convergent in the whole k-plane, by the Weierstrass 
M-test (Whittaker & Watson 1962, p. 49), and hence this is true of S also. That 
H / z o  < 1 and zo > 0 follows from the condition that the observations plane lies 
entirely above the material in question, as we have already assumed. 

From the computational viewpoint, the useful result is that the series for S 
converges at least as rapidly as c (Hlz,)”, no matter what the value of k.  Thus the 
smaller H / z o  can be made, the faster the guaranteed rate of convergence. It may not 
appear at  first that we have any control over H / z ,  in a given calculation, but this is 
in fact not the case. In setting up (4) we chose z = 0 to be the bottom of the layer of 
material; this level is entirely arbitrary* in gravity problems, so that we have complete 
freedom in our choice of z origin. A displacement of the origin does not affect the 
validity of. (4) but it  does alter the numerical values of zo and h(J) and thereby H .  
The obvious strategy is to position the z = 0 plane so as to make H/z, as small as 
possible; with a little thought it can easily be seen that this occurs when 
h,,, = --Amin = H ,  i.e. when the greatest and smallest values of h are equally 
distant from z = 0. Because this result is based on upper bounds of various terms, 
faster convergence might occur with a different origin position. Nonetheless, 
numerical experiments indicate that the choice given here falls very close to the 
optimum one; this will be illustrated with an example. 

An almost identical analysis of convergence can be made on (7), while in the case 
of ( 5 )  and (6) we need only revise the definition of H to be 

H = max { l ~ ( J ) l Y  Ig(J)ll 

for the same conclusions to be valid. 

4. Numerical example 

The numerical implementation of the results in Section 2 is fairly straightforward. 
It will be obvious to those familiar with ‘Fast Fourier Transforms’ that the terrain 

* If it is important to retain a known thickness of material, the attraction from a uniform slab 
can always be added to or subtracted from the answer in the shifted frame. 
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and model functions must be provided on a rectangular* lattice of points in the 
x - y  plane and that the answers appear at  those co-ordinates. In a real survey 
such a regular disposition of observations is quite impossible: interpolation of the 
measurements onto a grid will always be necessary before the technique can be applied. 
Furthermore, the use of a discrete transform causes the various Fourier integrals in 
Section 2 to be approximated by sums; this is a serious defect only when the 
observation plane approaches the source material more closely than the horizontal 
spacing between data points. Another artifact of the numerical transform is the 
introduction of a false periodicity in the data, as if the model repeated itself over and 
over again. This can give rise to spurious fields at  the edges of the model, but they 
can be reduced by adding a border of dummy points to separate the true model 
from the neighbouring images. 

To illustrate the technique, a simple two-dimensional calculation of the magnetic 
case was performed. The ocean-bottom topography (shown in Fig. 1) is that 
found over the Gorda Rise (41" N, 127" W) and was kindly provided by Dr Tanya 
Atwater. The model consists of a constant thickness layer (500 m thick) magnetized 
uniformly to an intensity of l.OAm-' (0.001 e m u ~ m - ~ )  at  a dip of -60" and 
declination 0", while the regional field was assumed to have dip and declination 60" 
and 30": thus the material is reversely magnetized. The profile runs from west to east 
and the field is calculated at  the surface, 2-1 km above the mean level of the bottom, 
which shows a relief of k0.4 km. Two short sloping sections have been appended 
to the ends of the profile to avoid discontinuity anomalies caused by the false 
periodicity. The magnetic anomaly computed by our method agreed to an accuracy 
of a few per cent with that given by a standard program (Mudie 1972). The 
discrepancies between the calculations are due entirely to the different treatment 
accorded to the ends of the model: the standard program assumes a very long, 
uniformly magnetized slab is attached to each end, and this naturally gives rise to 

* Two-dimensional transforms can also be performed on skewed (i.e. non-orthogonal) axes, so 
that the basic unit is a parallelogram. 

0 

km 1 

2 

km 

FIG. 1 .  A uniformly magnetized model and its computed magnetic anomaly at the 
ocean surface. The scale at the left indicates depth below the surface. The 
orientation of the profile and the direction of the field and magnetization are given 
in the text. The tesla is the SI unit of magnetic induction (InT = 10-9T = l y  = 

1 0 - 5 ~ ) .  
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FIG. 2. Rate of convergence as the depth of the z = 0 plane is varied for the model 
shown in Fig. 1.  The magnitude of the greatest contribution to the Fourier 
transform at the tenth term is used as a rough measure of accuracy and hence of 

convergence rate. 

different magnetic anomalies from those of the periodic structure. The calculation 
time (0.4 s, with 128 data points) was 20 times less on the same machine, a CDC 3600. 
After four terms in (7) the greatest error in the Fourier transform was 0.6 per cent, 
when the z = 0 level was chosen according to the criterion of Section 3. Such rapid 
convergence should be typical in other applications with oceanic observations, even 
though rougher bottom topography is sometimes found. No reversal in the direction 
of magnetization has been assumed in our model and therefore the field is due solely 
to the terrain effect (a perfectly horizontal, uniformly magnetized slab exhibits no 
external magnetic field). 

To test the validity of the convergence criterion developed in the previous section, 
the calculation was repeated with the z origin at different depths. We summed (7) 
to ten terms and then examined the largest contribution to the sum in the tenth 
term; roughly speaking, this is an estimate of the error in the sum provided the series 
is converging fairly rapidly. Fig. 2 shows the values of this error measure as a 
function of depth to the z = 0 plaiie. The agreement with the theoretical optimum 
is excellent and, what is more remarkable, we see the extreme sensitivity of the 
convergence rate to the placement of origin. 

8 
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5. Extensions 

It is worthwhile mentioning some extensions to the method. One restriction of 
the foregoing analysis has been that the results must all lie on a flat plane above 
the sources. In certain cases (e.g. land gravity, aeromagnetic surveys or large scale 
oceanic surveys where the Earth's curvature becomes important) this restriction may 
be troublesome. Formally, a curved observation surface may be introduced by 
performing a Taylor series expansion on (3). Suppose now that the results are 
required on the surface z = Z(?,) so that (3) becomes 

U(r0) = U(i'0, W O ) )  

Here we assume that U(E) is the spectrum of the potential field on some level surface 
and has_been calculated by the earlier methods. If a Taylor series for the exppnential, 
exp [-lkl Z(t0)] is introduced, an expansion like (4) is obtained with Ikl" inside 
the Fourier transform and Z" outside. Difficulties with the convergence of the series 
and with the existence of the transforms occur if the Z surface ever drops below the 
highest elevation of the terrain: this would seem to present a real problem in the case 
of land gravity surveys. 

Another extension, which may be valuable in magnetic applications, is the 
inversion of formulas like (7) for the magnetization M(?). The equation can be 
rewritten in the form 

where T is a functional involving the 1E1 power series (now beginning at n = 1). 
If T can be treated as a small perturbation, this expression can be used iteratively to 
find M. One technical difficulty here, aside from the convergence of the iteration 
scheme, is that finding M is tantamount to performing downward continuation on 
the data, a notoriously unstable process: small errors in the measurements at short 
wave lengths are magnified by the procedure. The only way to avoid this trouble is 
to cut off the high frequency components with a somewhat arbitrary filter (see 
Schouten & McAmy 1972). It is the author's personal prejudice that the use of such 
inverse methods creates the illusion of uniqueness in the solutions (despite the 
obvious numerous assumptions built into equations), and that they should therefore 
be avoided. 

9[M(?)I = S(Q + T [M(?)l, 

6. Conclusions 

The methods developed here are fast and practical. It is unlikely that much 
improvement in calculation time is necessary for the interpretation of single profiles- 
the existing methods are quite fast enough; however, in recent years detailed, two- 
dimensional oceanographic surveys have been performed in several areas and for 
these very large data sets the techniques of this paper should find some utility. 
Work is under way to complete an interpretation of this type. 
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