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RADAR ALTIMETRY - OCEANS 
(Copyright 2020, David T. Sandwell) 

 

Diverse Applications  The primary objective of radar altimetry from satellites is to measure the 

topography of the ocean surface (Figure 1).  In the next two classes we'll  cover applications of 

radar altimetry.  The technical discussion, presented here, is motivated by the precision and 

accuracy requirements of the most common applications  as shown in Table 1. 

 

Table 1.  Scientific applications of radar altimetry over the ocean 

Feature Amplitude Horizontal Scale Timescale 
geoid 30 m 10,000 km ¥ 
dynamic topography 1 m 10,000 km ¥ 
climate changes 0.01 m 10,000 km 10 - 100,000 yr 
tides 0.2-2 m 100 - 10,000 km lunar and solar freq. 
El Nino 0.1 m 6,000 km ~5 yr 
fronts and eddies 0.3 m 100 - 1000 km ~1 mo 
seamounts 1 m 50 km ¥ 
ridge axes 0.02 m 10 km ¥ 
 

These applications span a wide range of measurement requirements.  The most stringent 

applications are climate change and small-scale gravity features such as ridge axes.  The gravity 

applications require a point-to-point precision of 0.02 m which is very difficult to achieve when 1 

m tall ocean waves are present.  The climate change application requires a 0.01 m accurate 

altimeter over a much longer horizontal scale.  In addition to a problem with electromagnetic bias 

due to ocean waves, this application also requires a 0.01 m knowledge of the absolute spacecraft 

position over a 10 year plus timescale.  All of the applications requiring high accuracy at long 

wavelength also require an accurate knowledge of the delay of the radar echo as it passes through 

the ionosphere, the dry part of the atmosphere, and the wet (variable) part of the troposphere.  It is 

also apparent that one person's signal is another person's noise so, for example, most applications 

require removal of the tidal signal to correct the data although there are scientists who use 

altimeter data to observe the tidal signal. First I discuss the engineering and environmental factors 
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effecting the precision of the altitude measurement H.  Then I'll discuss the tide and path length 

corrections. 

 
Figure 1.  Schematic diagram of the GEOSAT altimeter measuring its altitude H above the closest point on 
the ocean surface using a pulse-limited radar.  Satellite tracking is used to determine the height of the 
satellite above the reference ellipsoid H*.  The difference between H* and H is the height of the ocean 
surface which consists of a time invariant geoid height plus the tide height plus ocean dynamic topography.   
 

Beam-Limited Footprint  As discussed earlier in the course, the radar altimeter operates in the 

microwave part of the spectrum so the method has the following attributes: the atmosphere is very 

transparent at 13 GHz; there is little stray radiation coming from the Earth; and the illumination 

pattern on the surface of the ocean is very broad for reasonable sized antennas.  As derived 

previously, the angular resolution  of a circular aperture having radius  is given by  

 where  is the wavelength of the radar (Figure 2).  Suppose we have a 1 m 

diameter radar operating at a wavelength of 22 mm (Ku-band) and this is mounted on a satellite 

orbiting at an altitude of 800 km.  The diameter of the illumination pattern on the ocean surface is 

given by 

θr D

sinθr = 1.22λ /D λ
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         (1) 

 

where we have assumed .  The illumination diameter or beam width of the radar is 

quite large (43 km).  Using this configuration, it will be impossible to achieve the 10 km horizontal 

resolution required for the gravity anomaly applications.  However, one benefit of this wide 

illumination pattern is that small (~1 degree) pointing errors away from  nadir are not a problem 

because the wavefront is spherical and the desired range measurement is the closest point on the 

ocean surface. 

 

 
Figure 2 Schematic diagram showing the beam-limited footprint of a radar altimeter. 

 

To achieve the 0.02 m range resolution needed for several of the above applications, one must 

measure the travel time of the radar echo to an accuracy of   

 

.          (2) 

 

Ds = 2H sinθr ≅ 2.44H
λ
D

tanθr ≅ sinθr

Δt = 2Δh
c

= 1.3x10−10 s
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This can be translated into the bandwidth of the signal needed to form such a sharp pulse 

.  In this case a 8 GHz bandwidth is needed.  Note that the carrier frequency of the radar 

altimeter is only 13 GHz so the pulse must span most of the electromagnetic spectrum.  Can you 

imagine all of the electronics that would be effected when this radar passed over a major city such 

as Los Angeles.  Obviously we can't use such a high bandwidth so we'll have to live with a 

bandwidth of only 0.3 GHz.  However, it turns out that ocean waves effectively limit the accuracy 

of the travel time measurement so a 0.3 GHz bandwidth is adequate.  We'll just have to do a lot of 

averaging to reduce the noise. 

 

Pulse-limited Footprint  Assume for the moment that the ocean surface is perfectly flat (actually 

ellipsoidal) but has point scatters to reflect the energy back to the antenna.  The radar forms a sharp 

pulse having a duration  of about 3 nanoseconds corresponding to the 0.3 GHz bandwidth.  In 

practice, to reduce the peak output requirement of the transmitter, the radar emits a frequency-

modulated chirp having a much lower amplitude but extending over a longer period of time.  The 

chirped radar signal reflects from the ocean surface and returns to the antenna where it is 

convolved with a matched filter to regenerate the desired pulse.  This is a common signal 

processing technique used in all radar systems.  After the matched filter one can treat the 

measurement as a pulse. We'll initially assume a square wave pulse of length but later 

we'll use a Gaussian shape which is a better approximation to the actual pulse shape.   The diagram 

below illustrates how the pulse interacts with a flat sea surface. When the leading edge of the 

spherical wavefront first hits the ocean surface the footprint is a point.  More energy arrives until 

the trailing edge of the waveform arrives.  We define the  pulse-limited footprint  as the radius 

of the leading edge of the pulse when the trailing edge of the pulse first hits the ocean surface.  

 

Δν = 1/ Δt

t p

lp = ctp / 2

rp
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Figure 3. Schematic diagram showing the configuration when the trailing edge of the pulse arrives at the 
flat ocean surface.  
  

The radius of the outer edge of the illumination pattern is found by using Pythagoreans theorem as 

shown in Figure 3 

 

        (3)  

 

where   is the radius of the leading edge of the pulse.  The  cancel and we can assume  is 

very small compared with the other terms so the pulse radius is  

 

.           (4) 

 

For a 3 ns pulse length,  the pulse radius is 0.85 km so the diameter or footprint of the radar is 1.7 

km.  This footprint is much less than the beam width so the pulse-limited approach is adequate for 

recovering the gravity field at 10 km length scales. 

 

H 2 + rp
2 = H + lp( )2 = H 2 + lp

2 + 2Hlp

rp H 2 's lp
2

rp = 2Hlp( )1/2 = Hctp( )1/2



   6 

 
Figure 4. Schematic diagram of the pulse illuminating the flat ocean surface at a time after the trailing edge 
arrival time.  The radaii of both the leading edge and trailing edge increase with time.  For the conventional 
radar (left), the interaction area remains constant with time while for the SAR (right and discussed below), 
the interaction area decreases as the square root of time. 
 
The power versus time for the pulse of length  that has been reflected from a perfectly flat ocean 
is easily calculated using the time evolution of the footprint shown in Figure 4 (left).  We assume 

t p
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that power is linearly related to the area of the ocean illuminated.  This power versus time function 
has three parts - the time before the leading edge of the pulse arrives  , the time between the 
leading and trailing edge arrival time, and the time after the trailing edge arrives.  The area versus 
time equation is 
 

.      (5) 

Using the pulse radius versus time given in equation (4), and normalizing by the peak power, the 

power versus time function is 

 

        (6) 

 

 
Figure 5. Schematic diagram of power versus time for a conventional pulse-limited radar altimeter (upper) 
and a SAR altimeter (lower – discussed later).  The leading edge arrival time is zero and the normalized 
pulse duration is 1. 
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A diagram of the power versus time is shown in Figure 5 (top).  The power begins to ramp-up at 

time zero and the ramp extends for the duration of the pulse.  At times greater than the pulse 

duration the diameter of the radar pulse continues to grow and energy continues to return to the 

radar.  The power should be constant with time according to equation 6 because the area remains 

constant with time.  However, the power of the reflected pulse actually decreases gradually with 

time according to the illumination pattern of the radar on the ocean surface.   

 

SAR Altimeter  The technique of synthetic aperture radar (SAR) can be used to sharpen the 

footprint of the pulse in the along-track direction.   We discuss this more thoroughly later in the 

course when we introduce the concepts of synthetic aperture radar.  For now, consider the 

CryoSat-2  radar altimeter that sends out pulses at a rate of 18,000 per second. The ground speed 

of the satellite is about 6800 m/s so the radar moves 0.38 m between pulses which is less than 1/2 

the diameter of the radar antenna.  This high sampling rate ensures that the pulses can be summed 

coherently to form a longer synthetic aperture [Raney, 1998].   The two-way travel time of a single 

pulse is 5.3 ms.  To avoid sending new pulses while recording old pulses, the pulses are sent in 

bursts of duration less than the two way travel time.  In this case the maximum number of pulses 

that could be sent without overlap of transmit and receive is 96.  In practice it is common to send 

64 pulses in a burst since this is a power of 2 which also facilitates Fourier transform processing.  

One should record for at least as long as the duration of a burst.  In the case of CryoSat-2 the inter 

burst interval is about 2 times longer than needed or 11.7 ms.  Coherent summation of echos over 

the burst interval is used to form a synthetic aperture L of length 48 m.  Using Fraunhoffer 

diffraction theory, the length of the pulse on the ocean surface from zero crossing to zero crossing 

is approximately 653 m. The -3dB beamwidth of the power illumination pattern is 272 m. This 

sharpened pulse of length is shown as the shaded area in Figure 3 (lower right). 

 

To determine the power versus time function for a SAR waveform, we'll make an approximation 

that  is much less than the pulse-limited footprint described above of 1700 m [Raney, 1998].  In 

this case we still have three segments to the power versus time function - the time before the 

leading edge of the pulse arrives, the time between the leading and trailing edge arrival time, and 

the time after the trailing edge arrives.  We approximate the illumination pattern for the second 

W

W
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segment as a single rectangle of width  and length of twice the leading edge radius.  We 

approximate the third segment as two rectangles of width and length equal to the difference 

between the leading edge pulse radius and the trailing edge pulse radius as shown in Figure 4 

(lower right).   Under these simplifying assumptions, the power versus time function is  

 

 .     (7) 

 

As derived above, the radius versus time function is given by .  Inserting this into 

equation 7 one finds the following form for the normalized power versus time function where time 

is now relative to the arrival time of the leading edge . 

 

      (8) 

 

The pulse shape of the SAR-altimeter  is very different from the pulse shape of the pulse-limited 

altimeter as shown in Figure 5 (lower).  On the leading edge the power increases as the square root 

of time.  The main difference is the trailing edge where the SAR-mode pulse decreases as the 

square root of time while the pulse-limited altimeter has a uniform power with time until the pulse 

radius approaches the beam-limited footprint of the radar. 

 

For ocean altimetry there are two main benefits to this SAR altimetry approach.  First because all 

64 waveforms within a burst are being summed coherently into a single aperture, the overall 

summed signal of the SAR-altimeter is 64 times greater than the conventional pulse-limited 

altimeter.  This enables one to build a radar that uses less power per pulse [Raney, 1998].  Note the 
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pulse repetition frequency is higher by a factor of 9 but the duration of the burst is only 1/3 the 

length of the inter burst interval  so the time-averaged  number of pulses is only 3 times larger.   

The second benefit of this SAR approach is that the waveform has a more complex signature 

which includes both a leading and trailing edge.  Below we discuss measuring the arrival time of 

the waveform by fitting a parameterized model to the waveform.  The more complex shape of the 

SAR altimeter provides a more accurate constraint on the arrival time.  This is helpful for 

achieving the 0.02 m range precision requirement discussed above. 

 

Ocean Waves  Of course the actual ocean surface has roughness due to ocean waves and swells.  

This ramp-like return power (Figure 5, top) will be convolved with the height distribution of the 

waves within the footprint to further smooth the return pulse and make the estimate of the arrival 

time of the leading edge of the pulse less certain.  We can investigate the effects of wave height on 

both return pulse length and footprint diameter using a Gaussian model for the height distribution 

of ocean waves.  This model provides and excellent match to observed wave height distributions as 

shown in Figure 6 from Stewart [1985]. 

 

         (9) 
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Figure 6.  Probability distribution of sea surface elevation due to ocean waves normalized by the standard 
deviation of the wave height.  This distribution is well fit by a Gaussian distribution.  Wave height 
measured by observers on ships is equal to 4 times the standard deviation.   
 

Approximately 1/3 of the waves will have height greater than  while 2/3 will have height less 
than .  An observer on a ship can accurately report the peak-to-trough amplitude of the highest 
1/3 of the waves.  This is called the significant wave height and by definition it is . 
 

Now suppose we fly a narrow-beam altimeter (e.g., a laser) over this surface so every wave is fully 

profiled.  Assume that the beam-width of the laser is narrow enough to observe the topography of 

the wave field and we can map this into a distribution of two-way travel time. 

 

         (10)
 

 

The wide-beam radar pulse reflects from the entire wave field within the footprint so there will be 

many waves within the > 1.7 km footprint so we can regard the radar return pulse as the average of 

all of the laser returns over the wave field.  The radar return pulse width  is measured as the full 

width of the pulse where the power is 1/2. 

 

    so   .     (11) 

 

The Brown model for the return waveform model  will be the convolution of the outgoing 

radar pulse  (also a Gaussian) with the flat surface response shown in Figure 5 (top) and the 

Gaussian wave height distribution given in equation 10. 
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The shape of the return pulse is basically a Gaussian convolved with a step which is an error 

function. 

 

Since we were unable to form a very sharp radar pulse because the radar bandwidth is limited to 

0.3 GHz, the total width of the return pulse will be established by convolving the outgoing pulse 

with the Gaussian wave model.  If the outgoing pulse can also be modeled by a Gaussian function 

having a pulse width of , then the total width of the return pulse is given by the sum of the 

square of the two Gaussian pulses .  This provides and expression for the pulse 

width as a function of significant wave height (SWH).  Similarly the diameter of the pulse as a 

function of significant wave height is .  Both functions are shown in Figure 7  for 

SWH ranging from 1 to 10 m.  It is clear that the quality of the altimeter measurement will 

decrease with increasing SWH.  In practice we have found that Geosat, ERS, and Topex data are 

less reliable when SWH exceeds about 6 m. 

 

 
Figure 7. (lower) return pulse length in meters as a function of significant wave height.  (upper) diameter of 
the radar pulse on the ocean surface as a function of significant wave height.  A typical significant wave 
height of 2 m is marked by the large grey dot. 

 

Significant wave height is typically 2 meters so the radar footprint is typically 2.5 km and the 

pulse-width increases from 3 ns to 8 ns.  Now we see that our original plan of having a very 
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narrow pulse of 60 picoseconds to resolve 0.02 m height variations was doomed because the ocean 

surface is usually rough; a 3 ns pulse is all that could be resolved anyway.  But how do we achieve 

the 0.02 m resolution needed for our applications when typically we can only resolve 1.2 m?  The 

way to improve the accuracy by a factor of 102 is to average 104 measurements and hope the noise 

is completely random.   

 

The speed of light provides an interesting limitation for space borne ranging systems.  At a typical 

orbital altitude of 800 km it takes 5.2 milliseconds for the pulse to complete its round trip route.  

One can have several pulses en-route but because we actually send a long chirp rather than a pulse, 

a pulse repetition frequency is limited to about 1000 pulses per second; during this time the 

altimeter moves about 7000 m along its track.  Thus in each second there are 1000 pulses available 

for averaging; this will reduce the noise from 1.2 m to 0.04 m.  Further averaging can be done for 

many of the oceanographic applications where the horizontal length scale of the feature is > 50 km.  

Of course one should be careful to remove all of the known signals using the full resolution data 

and then smooth the residual data along the profile to achieve the 0.02 m accuracy.  (Please avoid 

the boxcar filter because it produces terrible sidelobes.) 

 

Because of these limitations, single conventional altimeter profiles are unable to achieve the point-

to-point accuracy of 0.02 m needed for high-resolution gravity field recovery.  For this application 

one must rely on repeat or nearby profiles to gather the 10 samples needed to further reduce the 

noise.  Another promising approach to improved range precision is to use the SAR altimeter 

waveform as discussed above although this has not been fully tested to date (2018).   

 

Modeling the Return Waveform   There are a couple of other relevant engineering issues related 

to picking the travel time of the return pulse.  First, after the return echo is passed through a 

matched filter to form the pulse, the pulse power is recorded at 64 times or gates in a window that 

is about 30 m long. (Newer altimeters have 128 gates and a 60 m window.)  An adaptive tracker is 

used to keep the power ramp in the center of the window.  The ocean surface it typically smooth at 

length scales greater than the footprint so keeping the pulse in the window is not a problem.  

However, over land or ice, it is not usually possible to keep the pulse within the window because 

30 m variations in topography over several kilometers of horizontal distance are quite common.  
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Geosat and Topex altimeters lose lock over land and must re-acquire the echo soon after moving 

back over the ocean.  The ERS-1/2 and CryoSat-2 altimeters widen the gate spacing over land and 

ice so they can measure land topography as well as ocean topography.   The analysis below is 

based on retracking of ERS-1 altimetry data but the same methods apply for other conventional  

mode altimeters. (Note the new terminology for a conventional altimeter is low rate mode or 

LRM.)  Retracking of the SAR altimeter waveforms is still a research area. 

 

After recording the waveform of the return pulse, 50 echoes are averaged and an analytic function 

is fit to each waveform.  As discussed above, the model for the expected power versus time is 

found by convolving the flat surface response function shown in Figure 5 with a Gaussian wave 

height distribution.  This results in an error function given by Brown [1977] and refined by 

Amarouche et al., [2004] 

 

     (13) 

where  

           (14) 

 

and where is the time since the pulse was transmitted, is the arrival time of the half power point 

of the returned energy,  is the arrival rise time parameter,  is the amplitude of the returned 

waveform, and  is an exponential decay in the trailing edge due to the finite beam-width of the 

antenna.  In addition to these four parameters, waveforms from some altimeters also show a 

background noise level. 

 

The pointing accuracy of the ERS spacecraft was generally very good and the antenna mispointing 

was much less than the antenna beam-width, so we set this decay parameter a to a constant (137 

nsec).  The ERS-1 altimeter hardware truncated small power levels to zero (discussed below), and 

so we do not need a background noise level parameter.  Therefore the retracking model for ERS-1 
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and s.  In our model fitting, these are treated as non-dimensional parameters in dimensionless units 

of waveform sample gate widths; the physical time sampled by an ERS-1 waveform gate sample is 

3.03 nsec of two-way travel time, corresponding to 0.4545 m of range to the sea surface.  The rise 

width of the waveform, s, is a convolution of the effective width of the point target response and 

the vertical distribution of ocean surface waves, usually parameterized in terms of a Gaussian 

standard deviation equal to 1/4 of the significant wave height, SWH as discussed above.   An 

example model waveform for s = 6.67 nsec (significant wave height of 3.6 m) is shown in Figure 

8 (upper).  

 

The objective of the analysis is to reduce the error in the estimated arrival time of the pulse, .  

However before considering this problem one must understand the signal and noise characteristics 

of the return waveform.  The ERS radar altimeter emits 1020 pulses per second and the returned 

power Pi is recorded in 64 gates spaced at 3.03 nsec.  An onboard tracker is used to keep the pulse 

approximately centered in the travel-time window (gate 32) while 50 returned pulses are averaged.  

The averaged returned waveforms are available from the European Space Agency in the waveform 

data product, which also contains the onboard tracker’s estimate of the expected range to the ocean 

surface used to align the waveforms.  

 

to
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Figure 8.  upper – average of 10,000 ERS-1 radar waveforms (dotted) and a simplified model (solid, 
equation 13) with three adjustable parameters: A-amplitude, to – arrival time, and  – rise time. Time 
parameters are measured in dimensionless waveform gate widths equal to 3.03 nsec of two-way travel time 
or 454 mm of range to the sea surface.  
middle - Partial derivatives of model (equation 17) with respect to A (solid), to (dashed) and   (dotted) 
versus gate number.  Note the functions dM/dt0 and dM/ds are orthogonal.  lower – Partial derivatives of 
the model waveform weighted by the expected uncertainty in the power.  Note the weighted functions 
dM/dt0 and dM/ds  appear similar.  This leads to a high correlation between arrival time and rise time 
during the least-squares estimation.  
 

An individual radar pulse reflects from numerous random scatterers on the ocean surface so the 

return power versus time will be noisy - essentially following a Rayleigh scattering distribution.  

This high noise level is reduced in the 50 waveform average.  Assuming the speckle is incoherent 

from pulse-to-pulse, this incoherent average will reduce the speckle noise by a factor of .    

The averaging of 50 pulses combined with a computer bug which truncated the pre-arrival data 

leads to the following functional form for the uncertainty in the power Wi as a function of the 

recorded power Pi  

 

σ

σ

50
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K is the number of statistically independent waveforms used in the average and Po is the offset due 

to the truncation.   A Monte-Carlo simulation of the truncation process and experiments in 

optimizing the retracking of real ERS waveforms led us to use K = 44 and Po = 50, which is 

essentially the same weighting used by  Maus et al., (1998).  While the results are largely 

insensitive to the exact numerical values for N and Po, the functional form of this uncertainty leads 

to a high correlation between the arrival time and the rise time when they are estimated using a 

weighted least squares approach.  Overcoming this correlation is the essence of a study by 

Sandwell and Smith [2005]. 

 

A standard least-squares approach is used to estimate the 3 parameters  (to, , and A).  Because 

the problem is non-linear in arrival time and SWH, we use an iterative gradient method.   The chi-

squared measure of misfit is 

 

         (15) 

 

where N is the number of gates used for the fit and Mi is the model evaluated at the time of the ith 

gate.  One starts the iteration by subtracting a starting model based on parameters .  

The updated model parameters are found by solving the following linear system of 

equations 

 

     (16) 
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where is the waveform power minus the model from the previous iteration.  The derivatives of 

the model with respect to the parameters are 

 

          (17) 

 

We have not included the complications of the exponential decay in the partial derivatives of 

equation 13 because this effect is largely removed with the starting model, and because residual 

misfits in the plateau of the waveform are chiefly random and do not significantly drive the fit of 

the 3 important parameters.  These partial derivatives are shown in Figure 8 for the case of an 

unweighted and weighted least-squares adjustment.   A standard Newton iteration algorithm is 

used to determine the three model parameters (to, s, A) that minimize the rms misfit. Of course the 

arrival time to provides the range estimate.  The rise time s  provides and estimate of SWH. The 

amplitude (called sigma-naught -so) provides an estimate of surface roughness at the 20-30 mm 

length scale.  This latter measurement can be related to surface wind speed since wind will 

roughen the ocean surface.  Precise calibration is performed for each of the three measurements.  

Absolute range calibration is performed in the open ocean using an oil platform having a GPS 

receiver and accurate tide gauge.  Both SWH and wind speed are calibrated using open-ocean 

shipboard measurements 

 

Corrections   

Sea State Bias - This is perhaps the most insidious problem for monitoring global sea level 

changes over long periods of time.  While the topography of open ocean 

waves is quite symmetric, the crests of the waves preferentially scatter the 

radar waves outward away from nadir while the troughs of the waves focus 

the energy back toward the radar.  This skews the ramp of the radar return 
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toward later times.  This effect is sometines called the E/M bias and it is 

typically 5% of the SWH.  This correction is highly uncertain and poorly 

understood.  Wave height varies seasonally so this correction can easily 

introduce a 0.05 - 0.10 m bias in estimates of large scale dynamic 

topography. 

Ionospheric Delay - We have already discussed how the electron plasma in the ionosphere slows 

the group velocity of the radar pulse.  The homework problem in Rees, Ch3, 

#3, (first edition) is to derive an expression relating the total electron content 

(TEC) in the nadir direction to the travel time difference between pulses at 2 

and 5 GHz.  The electron density varies with altitude at different times of 

the day.  The smallest ionospheric correction occurs at 6 AM while the 

largest correction is at 12 noon.  The dual frequency correction scheme is 

quite accurate over large length scales (> 50 km) but at shorter wavelengths 

the correction can actually add noise to the range measurement;  we don't 

apply this correction when computing gravity anomalies from satellite 

altimetry.  Also note that the TEC has an eleven year cycle; the next peak is 

in 2002. 

Dry Atmosphere - The index of refraction of the dry atmosphere is simply related to the surface 

temperature and pressure.  The water vapor causes and additional delay.  

The total correction in meters is: 

      

  where 

    - air temperature (˚K) 

    - zenith water vapor (kg m-2) 

    - surface pressure (Pa) 

  Typical values of dry tropospheric delay are 2.3 m while the wet delay can 

vary from 0.06 - 0.30 m 

Orbit Error - Until 1992, radial orbit error was the major limitation of satellite altimetry.  

Back in 1978 when Seasat was in orbit, the best radial orbit accuracy was 

about 1 m rms.  Nowadays GPS tracking provides radial orbit error of 0.02m 

Δh = 2.277 ×10−5Ps +1.723W /Ta

Ta

W

Ps
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rms.  Even altimeters without GPS tracking have radial orbital accuracy of 

about 0.07 m. 

 

Dual Frequency Altimeter  A dual frequency altimeter is used to measure the ionospheric delay 

and then apply the correction to the range measurement.  The altimeter emits short pulses at 2 GHz 

and 5 GHz.  Because the ionosphere is dispersive, the reflected pulses are separated in time by, for 

example, 15 ns.  This time delay can be used to calculate the total electron content of the 

ionosphere  which can be used to correct the travel time of the higher frequency pulse. 

 

We start by defining the total electron content , which is the integral of the electron density  

in # of electrons per m3 from the ocean surface to the height of the spacecraft . 

 

          (18)
 

 

The round trip travel time  of the radar pulse is given by 

 

           (19) 

 

where vg is the group velocity of the pulse.  The index of refraction  of a microwave passing 

through the ionosphere is given by 

 

          (20)
 

where 
Ne - electron density  
e - electron charge 
m - electron mass 
eo - permittivity of free space 
w - radar angular frequency (radians/second) 
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We define the plasma freqency as  

 

            (21) 

 

The phase velocity of the radar wave is .  When written in terms of the plasma frequency 

this is 

 

           (22) 

 

We’ll assume that the radar frequency is much greater than the plasma frequency so from equation 

22 we see that the phase velocity exceeds the speed of light.  However, the radar pulse travels at 

the group velocity which is less than the speed of light.  With a little algebra one can 

arrive at the group velocity. 

 

.          (23) 

 

From this one sees that the product of the phase and group velocities is . For the case  

one can approximate the group velocity as 

 

 .         (24) 

 

Then using equation 19 the travel time difference between the pulses at the two frequencies can be 

written as 
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     (25) 

or  

        (26)
 

 

Note that the integral on the right side is the total electron content so solving for the TEC one finds 

         (27)
 

 

The TEC can be used to correct the travel time delay for either of the two pulses although the 

correction is smaller and this more accurate for the higher frequency pulse. Plugging in the 

numbers one finds that for a 15 ns delay, the TEC is 2.52x1017 electrons m-2.  It is interesting to 

calculate the total delay of a microwave signal as a function of frequency for this TEC. 

 

 

 

frequency (GHz) wavelength (mm) band 2-way delay (m) 

1 300 P 20 

2 150 L 5 

5 60 C 0.8 

10 30 X 0.2 

13 23 Ku 0.1 

 

It is clear that ionospheric delay is a major source of error for all active microwave ranging 

systems, especially those operating at longer wavelength. 

 

 

References 
Amarouche, L., Thibaut, P., Zanife, O.Z., Dumont, J.-P., Vincent, P. & Steu- nou, N., 2004. Improving the 

Jason-1 ground retracking to better account for attitude effects, Marine Geodesy, 27, 171–197. 

Δt = T2 −T5 =
2
c

1+ Nee
2

2εomω 2
2

⎡

⎣
⎢

⎤

⎦
⎥ − 1+ Nee

2

2εomω 5
2

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪o

H

∫ dz

Δt = e2

mcεo
1
ω 2

2 −
1
ω 5

2

⎡

⎣
⎢

⎤

⎦
⎥ Ne z( )
o

H

∫ dz

NT = Δt mcεo
e2

1
ω 2

2 −
1
ω 5

2

⎡

⎣
⎢

⎤

⎦
⎥

−1



   23 

Brown, G.S., 1977. The average impulse response of a rough surface and its application, IEEE Transactions 
on Antenna and Propagation, AP-25(1), 67–74. 

Maus, S., Green, C.M. & Fairhead, J.D., 1998. Improved ocean-geoid res- olution from retracked ERS-1 
satellite altimeter waveforms, Geophys. J. Int., 134(N1), 243–253. 

Geosat Issue I, J. Geophys. Res.,  v. 95, C3, p.2833-3448, 1990. 
Geosat Issue II, J. Geophys. Res.,  v. 95, C10, p.17865-18367, 1990. 
Raney, R. K., The Delay/Doppler Radar Altimeter, IEEE TRans. Geoscience and Remote Sensing, V. 36, p. 

1578-1588, 1998. 
Seasat Special Issue I: Geophysical Evaluation, J. Geophys. Res.,  v. 87, C5, p. 3173-3431, 1982. 
Seasat Special Issue II: Scientific Results, J. Geophys. Res.,  v. 88, C3, p. 1529-1937, 1983. 
Sandwell, D. T., and W.H.F. Smith, Retracking ERS-1 Altimeter Waveforms for Optimal Gravity Field 

Recovery, Geophys. J. Int., 163, 79-89, 2005. 
Special Topex/Poseidon Issue of JGR, 1996 
Stewart, R. H., Methods of Satellite Oceanography, University of California Press, Berkeley, CA, 1985. 
The Navy GEOSAT Mission, Johns Hopkins APL Technical Digest, v.8, no. 2, 169-267, April-June, 1987. 
Walsh, E. J., E. A. Uliana and B. S. Yaplee, Ocean wave heights measured by a high resolution pulse-

limited radar altimeter, Boundary Layer Meterology, V. 13, p. 263-276, 1978. 


