Image Classification

• Why classify?
• Make sense of a landscape
  – Place landscape into categories (classes)
  • Forest, Agriculture, Water, etc
• Classification scheme = structure of classes
  – Depends on needs of users

Example Uses

• Provide context
  – Landscape planning or assessment
  – Research projects
• Drive models
  – Global carbon budgets
  – Meteorology
  – Biodiversity
Example: Near Mary’s Peak

- Derived from a 1988 Landsat TM image
- Distinguish types of forest

Classification

TODAY’S PLAN

- Basic strategy for classifying remotely-sensed images using spectral information
- Supervised Classification
- Unsupervised Classification
Basic Strategy: How do you do it?

- Use radiometric properties of remote sensor
- Different objects have different spectral signatures

![Graph showing spectral signatures for vegetation and soil across different bands.]

- In an easy world, all “Vegetation” pixels would have exactly the same spectral signature
- Then we could just say that any pixel in an image with that signature was vegetation
- We’d do the same for soil, etc. and end up with a map of classes
Basic Strategy: How do you do it?

But in reality, that isn’t the case. Looking at several pixels with vegetation, you’d see variety in spectral signatures.

The same would happen for other types of pixels, as well.

The Classification Trick:
Deal with variability

• Different ways of dealing with the variability lead to different ways of classifying images
• To talk about this, we need to look at spectral signatures a little differently
Think of a pixel’s reflectance in 2-dimensional space. The pixel occupies a point in that space.

The vegetation pixel and the soil pixels occupy different points in 2-d space.

• In a Landsat scene, instead of two dimensions, we have six spectral dimensions
• Each pixel represents a point in 6-dimensional space
• To be generic to any sensor, we say “n-dimensional” space
• For examples that follow, we use 2-d space to illustrate, but principles apply to any n-dimensional space
Feature space image

- A graphical representation of the pixels by plotting 2 bands vs. each other
- For a 6-band Landsat image, there are 15 feature space images

Basic Strategy: Dealing with variability

With variability, the vegetation pixels now occupy a region, not a point, of n-dimensional space

Soil pixels occupy a different region of n-dimensional space
Basic strategy: Dealing with variability

- Classification:
  - Delineate boundaries of classes in n-dimensional space
  - Assign class names to pixels using those boundaries

Classification Strategies

- Two basic strategies
  - Supervised classification
    - We impose our perceptions on the spectral data
  - Unsupervised classification
    - Spectral data imposes constraints on our interpretation
Supervised Classification

Supervised classification requires the analyst to select training areas where he/she knows what is on the ground and then digitize a polygon within that area...

The computer then creates...

Mean Spectral Signatures

Known Conifer Area

Known Water Area

Known Deciduous Area

Digital Image

Spectral Signature of Next Pixel to be Classified

Information (Classified Image)

Conifer

Deciduous

Water

Unknown

The Result is Information--in this case a Land Cover map...

Supervised Classification

• **Common Classifiers:**
  – Parallelepiped
  – Minimum distance to mean
  – Maximum likelihood
Supervised Classification

- Parallelepiped Approach
- Pros:
  - Simple
  - Makes few assumptions about character of the classes

Cons: When we look at all the pixels in image, we find that they cover a continuous region in n-dimensional space: the parallelepiped approach may not be able to classify those regions
Supervised Classification

Cons: Parallelepipeds are rectangular, but spectral space is “diagonal,” so classes may overlap.

Supervised Classification: Statistical Approaches

- Minimum distance to mean
  - Find mean value of pixels of training sets in n-dimensional space
  - All pixels in image classified according to the class mean to which they are closest.
Supervised Classification: Minimum Distance

- Minimum distance
  - Pros:
    - All regions of n-dimensional space are classified
    - Allows for diagonal boundaries (and hence no overlap of classes)
Supervised Classification

- Minimum distance
  - Con:
    - Assumes that spectral variability is same in all directions, which is not the case

For most pixels, Band 4 is much more variable than Band 3

Supervised Classification: Maximum Likelihood

- Maximum likelihood classification: another statistical approach
- Assume multivariate normal distributions of pixels within classes
- For each class, build a discriminant function
  - For each pixel in the image, this function calculates the probability that the pixel is a member of that class
  - Takes into account mean and covariance of training set
- Each pixel is assigned to the class for which it has the highest probability of membership
It appears that the candidate pixel is closest to Signature 1. However, when we consider the variance around the signatures...

The candidate pixel clearly belongs to the signature 2 group.
Supervised Classification

• Maximum likelihood
  – Pro:
    • Most sophisticated; achieves good separation of classes
  – Con:
    • Requires strong training set to accurately describe mean and covariance structure of classes

Supervised Classification

• In addition to classified image, you can construct a “distance” image
  – For each pixel, calculate the distance between its position in n-dimensional space and the center of class in which it is placed
  – Regions poorly represented in the training dataset will likely be relatively far from class center points
    • May give an indication of how well your training set samples the landscape
Supervised Classification

• Some advanced techniques
  – Neural networks
    • Use flexible, not-necessarily-linear functions to partition spectral space
  – Contextual classifiers
    • Incorporate spatial or temporal conditions
  – Linear regression
    • Instead of discrete classes, apply proportional values of classes to each pixel; ie. 30% forest + 70% grass

Classification: Summary

• Use spectral (radiometric) differences to distinguish objects
• Land cover not necessarily equivalent to land use
• Supervised classification
  – Training areas characterize spectral properties of classes
  – Assign other pixels to classes by matching with spectral properties of training sets
• Unsupervised classification
  – Maximize separability of clusters
  – Assign class names to clusters after classification