THERMAL RADIATION SUMMARY

(Rees Chapter 2)

Planck's Law describes the amplitude of radiation emitted (i.e., spectral radiance) from a black body. It is generally provided in one of two forms; $L_{\lambda}(\lambda)$ is the radiance per unit wavelength as a function of wavelength λ and $L_{\mathcal{V}}(v)$ is the radiance per unit frequency as a function of frequency v. The first form is
$L_{\lambda}(\lambda)=\frac{2 h c^{2}}{\lambda^{5}}\left[\exp \frac{h c}{\lambda k T}-1\right]^{-1}$ where
$T \quad$ - temperature
$c \quad-\quad$ speed of light $\quad 2.99 \times 10^{-8} \mathrm{~m} \mathrm{~s}^{-1}$
$h \quad-\quad$ Planck's constant $\quad 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{k} \quad-\quad$ Boltzmann's constant $1.38 \times 10^{-23} \mathrm{~J}^{\circ} \mathrm{K}^{-1}$
$L \lambda \quad$ - \quad spectral radiance $\quad \mathrm{W} \mathrm{m}^{-3} \mathrm{sr}^{-1}$
$L_{v} \quad-\quad$ spectral radiance $\quad \mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$

To relate the two forms and establish L_{V} one takes the derivative of L with respect to v using the chain rule $\frac{\partial L}{\partial v}=-\frac{\partial L}{\partial \lambda} \frac{\partial \lambda}{\partial v}$. Note that $\lambda=c / v$ so that $\frac{\partial \lambda}{\partial v}=-\frac{c}{v^{2}}$ and finally $L_{v}(v)=\frac{2 h v^{3}}{c^{2}}\left[\exp \frac{h v}{k T}-1\right]^{-1}$

The Stefan-Boltzmann Law gives the total black body irradiance as a function of the temperature T. One can derive this law by integrating the spectral radiance over the entire spectrum. This is left to the reader as an exercise.
$L=\int_{0}^{\infty} L_{\lambda} d \lambda=\frac{2 \pi^{4} k^{4}}{15 c^{2} h^{3}} T^{4}$
or $M=\pi L=\sigma T^{4}$ where σ is the Stefan-Boltzmann constant $\left(5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2}{ }^{\circ} \mathrm{K}^{-4}\right)$.

Wein's Law provides the wavelength (or frequency) where the spectral radiance has maximum value. This can be found by taking the derivative of $L \lambda$ with respect to wavelength and determining where this function is zero. This is another excellent exercise; after some algebra you should arrive at the following transcendental equation

$$
1-e^{-\gamma}=\frac{\gamma}{5} \Rightarrow \gamma=4.965
$$

where

$$
\gamma=\frac{h c}{k T \lambda_{\max }} .
$$

The more common form is $\lambda_{\max }=C_{w} / T$ where $C_{w}=2.898 \times 10^{-3}{ }^{\circ} \mathrm{Km}$. Note that one could perform an experiment to measure the total radiance from a black body and establish the StefanBoltzmann constant σ. Similarly one could determine the wavelength for maximum black body output to estimate Wein's constant C_{w}. Then with a knowledge of these two constants one could estimate Planck's constant h and Boltzmann's constant k without every doing any quantum measurements!

The Rayleigh-Jeans Approximation provides a convenient and accurate description for spectral radiance when for wavelengths much greater than the wavelength of the peak in the black body radiation formula. To derive the Rayleigh-Jeans approximation, expand the exponential in the denominator of Planck's Law in a Taylor series about zero argument; this is a good appropriation when $\lambda \gg \lambda_{\text {max }}$. This is a third exercise left to the reader. The approximate formula is
$L_{\lambda}=\frac{2 k c T}{\lambda^{4}}$ or $L_{v}=\frac{2 k T v^{2}}{c^{2}}$.

This approximation is better than 1% when $\lambda T>0.77 \mathrm{~m} \mathrm{~K}$. For example, for a body at $300^{\circ} \mathrm{K}$, the approximation is valid when $\lambda>2.57 \mathrm{~mm}$; in other words this approximation is good when viewing thermal emissions from the Earth over the microwave band. Microwave radiometers can measure the power received L_{λ} at an antenna. This is sometimes called the brightness temperature and it is linearly related to the physical temperature of the surface T_{p}. The RayleighJeans approximation provides a simple linear relationship between measured spectral radiance and surface temperature as long as the emissivity ε of the surface is known or, in the case of sea ice, one knows the temperature of the surface so the emissivity of the ice can be estimated.
$L_{\text {measured }}=\varepsilon \frac{2 k c T_{p}}{\lambda^{4}}$

Solar Radiation Spectrum

Figure shows the theoretical blackbody radiation curve for $5250^{\circ} \mathrm{C}$ (black curve). Solar radiation at the top of the atmosphere is well approximated by a blackbody spectrum (yellow). The atmosphere absorbs and reflects radiation so the spectral radiance at sea level is lower and has bands of low incident radiation. Note that the peak in the spectral radiance from the sun occurs in the visible part of the spectrum.

Figure shows blackbody radiation curves for the Sun at $6000^{\circ} \mathrm{K}$ and the Earth at $288^{\circ} \mathrm{K}$. The solar radiation peaks in the visible part of the spectrum while the Earth has a peak in the thermal infrared part of the spectrum ($\sim 10 \mu \mathrm{~m})$.

Terminology

Consider a 60 W light bulb. An electric current passes through the tungsten filament and heats it to about $3000^{\circ} \mathrm{K}$. Our bulb is perfect in the sense that it radiates all of this energy, perhaps as a gray body.

radiant flux (total)	ϕ		60	W
radiant intensity	I	$\mathrm{d} \phi / \mathrm{d} \Omega$	$60 / 4 \pi$	$\mathrm{~W} \mathrm{sr}^{-1}$
radiant exitance	M	$\mathrm{d} \phi / \mathrm{dA}$	$60 / 4 \pi \mathrm{R}^{2}$	$\mathrm{~W} \mathrm{~m}^{-2}$
radiance (brightness temp.)	L	$\cos \theta \mathrm{d}^{2} \phi /(\mathrm{d} \Omega \mathrm{dA})$	$\mathrm{W} \mathrm{sr}^{-1} \mathrm{~m}^{-2}$	
irradiance	E	$\mathrm{d} \phi / \mathrm{dA}$	$\mathrm{W} \mathrm{m}^{-2}$	

Radiance from the Sun and Earth

		$\begin{aligned} & \text { Sun } \\ & 6000^{\circ} \mathrm{K} \end{aligned}$	Antarctica $240^{\circ} \mathrm{K}$	$\begin{aligned} & \text { ocean } \\ & 280^{\circ} \mathrm{K} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { desert } \\ 315^{\circ} \mathrm{K} \\ \hline \end{array}$
radiant exitance	$M=\varepsilon \sigma T^{4}$	$\begin{aligned} & 7.3 \times 10^{7} \mathrm{Wm}^{-2} \\ & \varepsilon=0.99 \end{aligned}$	$\begin{aligned} & 231 \\ & \varepsilon=0.8 \\ & (8-12 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 472 \\ & \varepsilon=0.8 \\ & (8-12 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 772 \\ & \varepsilon=0.9 \\ & (8-12 \mu \mathrm{~m}) \end{aligned}$
total power	$4 \pi R_{s}^{2} M$	$3.9 \times 10^{26} \mathrm{~W}$	$1.2 \times 10^{17} \mathrm{~W}$	$2.2 \times 10^{17} \mathrm{~W}$	$3.9 \times 10^{17} \mathrm{~W}$
irradiance at Earth	$M \frac{R_{s}^{2}}{D^{2}}$	$1370 \mathrm{Wm}^{-2}$			
power of reflected sunlight	$a M \frac{R_{s}^{2}}{D^{2}}$		$\begin{aligned} & 822 \mathrm{Wm}^{-2} \\ & a=0.6 \end{aligned}$	$\begin{aligned} & 274 \mathrm{Wm}^{-2} \\ & a=0.2 \end{aligned}$	$\begin{aligned} & 411 \mathrm{Wm}^{-2} \\ & a=0.3 \end{aligned}$
spectral peak	$\lambda_{\text {max }}=\frac{C_{w}}{T}$	$0.48 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$	$9 \mu \mathrm{~m}$
- Earth to Sun distance $1.49 \times 10^{11} \mathrm{~m}$ - radius of Sun $6.96 \times 10^{8} \mathrm{~m}$ - albedo 0.35					

