
THERMAL RADIATION SUMMARY 
(Rees Chapter 2) 

 
Planck's Law describes the amplitude of radiation emitted (i.e., spectral radiance) from a black 
body.  It is generally provided in one of two forms; Lλ(λ) is the radiance per unit wavelength as a 
function of wavelength λ and Lν(ν)  is the radiance per unit frequency as a function of frequency 
ν.  The first form is 
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T - temperature 
c - speed of light   2.99 x 10-8 m s-1 
h - Planck's constant 6.63 x 10-34 J s 
k - Boltzmann's constant 1.38x10-23 J ˚K-1 
Lλ - spectral radiance W m-3 sr -1 

Lν - spectral radiance W m-2 Hz-1 sr -1 
 
To relate the two forms and establish Lν one takes the derivative of L with respect to ν using the 
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The Stefan-Boltzmann Law gives the total black body irradiance as a function of the 
temperature T.  One can derive this law by integrating the spectral radiance over the entire 
spectrum.  This is left to the reader as an exercise. 
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or M=πL = σ T4 where σ is the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 ˚K-4).   
 
Wein's Law provides the wavelength (or frequency) where the spectral radiance has maximum 
value.  This can be found by taking the derivative of Lλ with respect to wavelength and 
determining where this function is zero.  This is another excellent exercise; after some algebra 
you should arrive at the following transcendental equation 



 
1 - e-γ = γ5

   ⇒  γ = 4.965  

where  
 
γ = hc

kTλmax

. 

 
The more common form is λmax = Cw/T   where  Cw = 2.898  x 10-3 ˚Km .   Note that one could 
perform an experiment to measure the total radiance from a black body and establish the Stefan-
Boltzmann constant σ.  Similarly one could determine the wavelength for maximum black body 
output to estimate Wein's constant Cw.  Then with a knowledge of these two constants one could 
estimate Planck's constant h and Boltzmann's constant k without every doing any quantum 
measurements! 
 
The Rayleigh-Jeans Approximation provides a convenient and accurate description for spectral 
radiance when for wavelengths much greater than the wavelength of the peak in the black body 
radiation formula.  To derive the Rayleigh-Jeans approximation, expand the exponential in the 
denominator of Planck's Law in a Taylor series about zero argument;  this is a good 
appropriation when λ >> λmax.  This is a third exercise left to the reader.  The approximate 
formula is 
 
Lλ = 2kcT

λ
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. 

 
This approximation is better than 1% when λT > 0.77 m K.  For example, for a body at 300˚K, 
the approximation is valid when λ > 2.57 mm;  in other words this approximation is good when 
viewing thermal emissions from the Earth over the microwave band.  Microwave radiometers 
can measure the power received Lλ at an antenna.  This is sometimes called the brightness 
temperature and it is linearly related to the physical temperature of the surface Tp.  The Rayleigh-
Jeans approximation provides a simple linear relationship between measured spectral radiance 
and surface temperature as long as the emissivity ε of the surface is known or, in the case of sea 
ice, one knows the temperature of the surface so the emissivity of the ice can be estimated. 

Lmeasured = ε  
2kcTp
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Radiation from the Sun and Earth 
 

 
Figure shows the theoretical blackbody radiation curve for 5250˚C (black curve).  Solar radiation 
at the top of the atmosphere is well approximated by a blackbody spectrum (yellow).  The 
atmosphere absorbs and reflects radiation so the spectral radiance at sea level is lower and has 
bands of low incident radiation.  Note that the peak in the spectral radiance from the sun occurs 
in the visible part of the spectrum. 
 



 
Figure shows blackbody radiation curves for the Sun at 6000˚K and the Earth at 288˚K.  The 
solar radiation peaks in the visible part of the spectrum while the Earth has a peak in the thermal 
infrared part of the spectrum (~ 10 µm). 
 
 



Terminology 
 
Consider a 60 W light bulb.  An electric current passes through the tungsten filament and heats it 
to about 3000˚K.  Our bulb is perfect in the sense that it radiates all of this energy, perhaps as a 
gray body. 
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radiant flux (total)  φ   60   W 
radiant intensity I dφ/dΩ  60/4π  W sr-1 
radiant exitance  M dφ/dA  60/4πR2 W m-2 
radiance (brightness temp.) L cosθ d2φ/(dΩdA)  W sr-1 m-2 
irradiance   E dφ/dA    W m-2 
 
 



Radiance from the Sun and Earth 
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λmax =

Cw

T
 0.48 µm 12 µm 10 µm 9 µm 

D - Earth to Sun distance  1.49x1011 m 
Rs - radius of Sun   6.96x108  m 
a - albedo   0.35 


