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Abstract. Green functions of the biharmonic operator, in 
one and two dimensions, are used for minimum curvature 
interpolation of irregularly spaced data points. The 
interpolating curve (or surface) is a linear combination of 
Green functions centered at each data point. The amplitudes of 
the Green functions are found by solving a linear system of 
equations. In one (or two) dimensions this technique is 
equivalent to cubic spline (or bicubic spline) interpolation 
while in three dimension it corresponds to multiquadric 
interpolation. Although this new technique is relatively slow, 
it is more flexible than the spline method since both slopes 
and values can be used to find a surface. Moreover, noisy 
data can be fit in a least squares sense by reducing the number 
of model parameters. These properties are well suited for 
interpolating irregularly spaced satellite altimeter profiles. The 
long wavelength radial orbit error is suppressed by 
differentiating each profile. The shorter wavelength noise is 
reduced by the least squares fit to nearby profiles. Using this 
technique with 0.5 million GEOS-3 and SEASAT data points, 
it was found that the marine geoid of the Caribbean area is 
highly correlated with the sea floor topography. This suggests 
that similar applications, in more remote, areas may reveal 
new features of the sea floor. 

Introduction 

Cubic splines are commonly used to find the smoothest 
curve [Ahlberg et al., 1967] or surface [DeBoor, 1962; 
Bhattacharyya, 1969] that passes through a set of irregularly 
spaced data points. This technique corresponds physically to 
forcing an elastic beam (or elastic sheet) to match the data 
points. The interpolating curve (or surface) satisfies the 
biharmonic equation and therefore has minimum curvature 
[Briggs, 1974]. 

Here I present a simpler algorithm for finding the 
minimum curvature surface that passes through a set of 
nonuniformly spaced data points. The algorithm is based on 
the Green function of the biharmonic operator. The 
interpolating curve (or surface) is a linear combination of 
Green functions centered at each data point. Their amplitudes 
are adjusted so that the interpolating surface passes through 
the points. 

Although this new method is relatively inefficient and can 
be unstable, it is very flexible. For example, the number of 
Green functions can be made less than the number of data 
points so that the interpolating curve does not exactly match 
inaccurate data points. This reduction also stabilizes the 
calculations. The major advantage of this technique, however, 
is that slope measurements can be used as data. This feature is 
important for some remote sensing applications where slopes 
are measured more accurately than heights. An example of 
this technique using satellite altimeter data is given below. 

Another advantage of this technique is that it is easily 
applied to interpolation problems in three or more dimensions. 
In three dimensions, it corresponds to multiquadric 
interpolation [Hardy, 1971; Hardy and Nelson, 1986]. This 
method has been used quite successfully by a number of 
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researchers although it was not clear why it worked so well. 
The method is not useful in 4 or more dimensions because the 

Green functions are unbounded at the origin. 

Biharmonic Spline Interpolation In One Dimension 

The problem is to find a biharmonic function that passes 
through N data points. Draftsmen in the 19 th century solved 
the problem by attaching weights to an elastic beam or spline 
and positioning the weights so that the spline passed through 
the data points. The forces imposed on the spline by each 
weight kept it bent (see figure 1). For small displacements, 
the spline has zero fourth derivative except at the weights. The 
point force Green function for the spline satisfies the 
biharmonic equation 

- 65(x) (1) 
dx 4 

The particular solution to (1) is 

0(x) --Ix 13 (2) 

When this Green function is used to interpolate N data points, 
w i, located at x i the problem is 

N 

d4w - E 6 o?(x- xj) dx 4 j=l 
(3) 

W(Xi) '- W i (4) 

The particular solution to (3) and (4) is a linear combination of 
point force Green functions centered at each data point. The 
homogeneous solution is not used. 

N 

w(x) = %Ix- xj[ 3 (5) 
j=l 

The strength of each point force, ctj, is found by solving the 
linear system 

N 

Wi = E %[xi- xj 13 (6) 
j=l 

If slopes, s i, are used rather than values, then the ctj's are 
determined by solving the following linear system: 

w(x) 

w 1 0t 6 

0t 2 

kl k2 k3 k4 k5 k6 
X 

ig. 1. The biharmonic function w(x) that p. asses through the 
ata poi. n.ts w i located at x i is found by applying point t'orces 

ctj to a mln elastic beam or spline. 

139 



•0 Sandwell: Biharmonic Spline Interpolation 

8 

0 

-4 
I I I 

0 4 8 

x 

Fig. 2. Cubic spline interpolation (solid curve) of 21 data 
points (circles) where end slopes are zero. Biharrnonic spline 
interpolation (dashed curve) using the one-dimensional Green 
function where end slopes are unconstrained. Biharmonic 
spline interpolation (dotted curve) where every other point 
force was omitted. 

N 

S i = 3 Z •lx i - xjl (X i - Xj) (7) 
j=l 

Once the ?j's are determined, the biharmonic function w(x) 
can be evaluated at any point using equation (5). 

A comparison of this technique with the cubic spline 
method is shown in Figure 2. The solid curve is the cubic 
spline interpolation of 21 points (circles) while the dashed 
curve was generated by this new method. The disagreement 
between the two curves (near the end points) occurs because, 
in the spline method, the end slopes are constrained to be zero 
while, in this new method, the end slopes are undefined. 
When the end slopes are also constrained to be zero for the 
new method (i.e. by adding two zero slope data to the ends), 
the two curves agree. Both methods display the dramatic 
overshoot that is characteristic of cubic spline interpolation. 

One of the advantages of this new method is that there can 
be fewer model parameters (i.e. •'s) than data points. In this 
case, the linear system of equations is overdetermined and 
can be solved as a least squares problem. The number of 
parameters can be adjusted so that the standard deviation of 
the fit is about equal to the standard deviation of the data. An 
example, where only every other model parameter was used 
to fit 21 data points, is shown in Figure 2 (dotted curve). This 
feature is important when large amounts of uncertain data are 
used or when inaccurate data are combined with accurate data. 

Note that when fewer {xj's are used the overshoot problem is 
less severe. 

Biharmonic Spline Interpolation In 2 or More Dimensions 

The derivation of the technique in 2 or more dimensions is 
similar to the 1-dimensional derivation. For N data points in 
m dimensions the problem is 

N 

V4w(x) = Z •j •(x- 5) (8) 
j=l 

W(Xi) = W i (9) 

where V 4 is the biharmonic operator and x is a position in the 
m-dimensional space. The general solution is 

N 

W(X) = E aj ½m(X- 5) (10) 
j=l 

The ctj's are found by solving the linear system 

Wi = E •j ½m(Xi - 5 ) (11) 
j=l 

The biharmonic Green functions, {m, for each dimension, 
are given in Table 1. In three dimensions the Green function 
has discontinuous slope at the origin. To avoid this 
discontinuity in the multiquadric method, the Green functions 
are placed on a plane below all of the data points [Hardy and 
Nelson, 1986]. in four or more dimensions the Green 
functions are unbounded at the origin so the values of their 
coefficients are undetermined. I expect this problem can also 
be overcome by centering the Green functions slightly away 
from the data points. Because of these difficulties, the 
biharmonic spline method works best when the number of 
dimensions is less than three. 

As in the one dimensional case, slope data can be used; in 
higher dimensions each slope is associated with a direction n. 
When slope data are used, the following linear system must 
be solved 

N 

s i = (Vw ß n)i = Z • Vl•m(Xi - xj) ß n i (12) 
j=l 

where s i is the slope in the direction n i. The gradient of each 
Green function is also given in Table 1. 

Minimum Curvature Property 

In one and two dimensions, it has been shown that a 
function w has minimum curvature if and only if it satisfies 
the biharmonic equation [Briggs, 1974]. The total square 
curvature is 

C(w) = I (V2w)2 dS (13) 
s 

where V 2 is the Laplacian operator and S is the surface 
containing w. Note that the Laplacian of w is only 
approximately equal to the curvature when the gradient of the 
surface is small. Briggs [1974] first showed that if w has 
minimum (or maximum) curvature then it satisfies the 
biharmonic equation. He then showed that if w satisfies the 
biharmonic equation then it has minimum curvature. Green's 
theorem was used in both proofs. To use Green's theorem, w 
and its gradient must be continuous. Since the interpolating 
curve or surface is a linear combination of Green functions, 
they must also be continuous and have continuous gradient. 
Table 1 shows that the 1 and 2-dimensional Green functions 
satisfy this requirement. However, in 3 dimensions the 
gradient of the Green function is discontinuous at the origin 
and in 4 or more dimensions both the Green functions and 
their gradients are discontinuous. Therefore in 3 or more 

TABLE 1. Biharmonic Green Functions 
, 

Number of Green Gradient of 
Dimensions Function Green Function 

m q>m(X) Vq>m(X) 

I Ix13 xlxl 
2 Ixl2dnlxl- 1) x(21nlxl- 1) 
3 Ixl xlx1-1 
4 lnlxl xlx1-2 
5 Ix1-1 -xlx1-3 
6 Ix1-2 -2xlxl 4 
m Ixl 4-m (4-m)xlxl 2-m 
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dimensions, biharmonic spline interpolation does not 
correspond to minimum curvature interpolation. 

One of the interesting features of the 2-dimensional Green 
function is that its curvature behaves as In(r) as r-o 0; this 
seems to violate the minimum curvature principle. Even 
though the curvature is infinite, the integral of the curvature 
squared, over a small area surrounding the singularity, is 
f'mite. 

Practical Considerations 

In some cases the system of linear equations (11) and (12) 
will be singular. As in the cubic spline method, the problem is 
exactly singular when two data points are located in the same 
position. Moreover, numerical instabilities occur when the 
ratio of the greatest distance between any two points to the 
least distance between two points is large. The linear system 
is most stable when there are a few equally spaced data 
points. To determine some of the practical limitations of this 
new technique, a number of test cases were solved on the 
computer. 

The numerical stability of the linear system depends on the 
form of the Green function. The 1-dimensional problem is 
most unstable. This is perhaps due to the rapid growth (r3) of 
the Green function resulting in matfix element differences 
which exceed the machine precision. In practice, the 1- 
dimensional biharmonic spline method is unstable (32-bit 
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Fig. 3. Data distribution for GEOS-3 and SEASAT altimeters. 
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Fig. 4. 6eoid height (upper) derived from GEOS-3 and 
SEASAT profiles (Mercator grid illuminated from the 
noaheast). Topo•aphy (lower) (no projection). 

word) when more than about 40 irregularly spaced points are 
used; This is a severe limitation. 

In the 2 and 3 dimensional cases, linear systems as large 
as 400 by 400 are quite stable as long as the data distribution 
was not too irregular. The practical limitation is computer time 
which increases as the cube of the number of data points. 
Both the stability and speed increase when closely spaced c•j's 
are omitted from the linear system. 

Application To Satellite Altimetry 

This new interpolation technique was designed to produce 
detailed and accurate sea surface topography maps from 
satellite altimeter profiles. In general, satellite altimeter 
profiles have two major types of error. Radial orbit error 
produces an unknown bias in each profile. This causes 
profiles to disagree where they intersect. Uncorrected profiles 
introduce stripes in interpolated maps. This type of error can 
be reduced by adding a bias to each profile such that all of the 
crossover differences are minimized [Rummel and Rapp, 
1977]. However, this crossover adjustment does not work 
well on the noisy GEOS-3 data. Also it is difficult to find the 
crossover points of the SEASAT and GEOS-3 profiles since 
the satellites had different orbit inclinations. Instead of 
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performing a multisatellite crossover adjustment, the radial 
orbit error can be suppressed by taking the along-track 
derivative of each profile [Sandwell, 1984]. 

The second type of error in satellite altimeter data is white 
noise; it cannot be eliminated. The interpolation algorithm 
presented here can accommodate the noise level of the GEOS- 
3 data which is significantly greater than the noise level of the 
SEASAT dam [Marks and Sailor, 1986]. 

In addition to the errors, the distribution of satellite 
altimeter data is very irregular. Most detailed geoid maps or 
gravity maps have been constructed using only SEASAT data 
[Haxby, 1985]. The along-track resolution of SEASAT 
altimeter profiles is about 30 km while the cross-track 
resolution it typically greater than 100 km (i.e. profile spacing 
> 50 km). Using a sophisticated interpolation method Haxby 
[ 1985] has retained some of the along-track resolution in his 
detailed gravity maps. However, these SEASAT-derived 
gravity maps do not accurately resolve features between 
profiles. The only way to improve the resolution is to fill the 
data gaps. Here I use the less accurate GEOS-3 data to 
interpolate between SEASAT profiles. 

The biharmonic spline algorithm was used to combine the 
along-track slopes of the GEOS-3 and SEASAT data into a 
consistent geoid height map of the Caribbean area. In this area 
there are many more GEOS-3 data points (460,000) than 
SEASAT data (83,000) as shown in Figur e 3. Before 
interpolating, each profile was first differentiated to remove 
the bias and then low-pass filtered to remove the shortest 
wavelength noise (< 30 km). After filtering only every other 
point was kept and each slope value was assigned a direction 
as well as an uncertainty (2 grad for SEASAT, 10 grad for 
GEOS-3). 

The interpolation algorithm cannot accommodate all of the 
data points simultaneously so, the area was broken up into 
sub-areas each containing less than 400 data points. To avoid 
discontinunities, sub-areas were made to overlap by 50% on 
each edge. Each sub-area was then interpolated using the 2- 
dimensional biharmonic spline algorithm. Finally, adjacent 
sub-areas were blended together in the central half of the 
overlap region by using a distance weighting algorithm. 
Maximum detail and resolution was attained if model 

coefficients (i.e.ctj_'s) were used at every 4 th slope point and 
closely spaced ct i s were omitted. After finding the cti's, the 
surface was calhulated on a Mercator grid at 5 frdnute 
longitude intervals. The derivatives of the surface were also 
calculated analytically by differentiating (10) before summing 
the series. 

A gray-tone image of the gridded surface is shown in 
Figure 4. (northeast illumination) along with the gridded 
topography [Van Wykhouse, 1973]. The geoid appears as a 
low-pass filtered version of the topography. They are highly 
correlated in the intermediate wavelength band (60 km - 600 
km). 

Even though these ocean areas are well surveyed, the 
geoid map reveals some new features. First, while the 

topography of the Cayman trough is symmetric about the 
center of the trough, the geoid is asymmetric. Slopes in the 
geoid are much higher along the active transform faults than 
they are along the passive fracture zones. Second, the geoid 
map shows a previously undiscovered lineation that is parallel 
to the Beam Ridge and extends from Costa Rica to the eastern 
edge of Jamaica. It is more apparent when the geoid is 
illuminated from the north. Finally, the Ariantie fracture zones 
are evident in the geoid even though some of the fracture zone 
topography is buried by sediment. These results suggest that 
similar applications, in more remote areas, may reveal new 
features of the sea floor. 
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