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S U M M A R Y
We have reprocessed ERS-1 radar altimeter waveforms using an algorithm designed to mini-
mize sea surface slope error and decouple it from significant wave height (SWH) error. Standard
waveform retracking estimates three parameters—arrival time, SWH and amplitude. We show
that errors in retracked estimates of arrival time and SWH are inherently correlated because of
the noise characteristics of the returned waveform. This suggests that some of what is called
‘sea state bias’ in the literature may be caused by correlated errors rather than true electro-
magnetic or skewness bias. We have developed a retracking algorithm that reduces this error
correlation and makes the resolution of sea surface slope signals independent of sea state. The
main assumption is that the SWH varies smoothly along the satellite track over wavelengths of
90 km. This approach reduces the rms error in sea surface slope to only 62 per cent of that of
standard retracking methods. While our method is optimized for gravity field recovery, it may
also improve the resolution of sea surface height signals of interest to physical oceanographers.
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I N T RO D U C T I O N

Satellite radar altimetry has become an important tool for inves-
tigating the tectonics of the ocean basins, especially in areas of
sparse ship coverage. The ocean surface is nearly an equipotential
surface of gravity, so high spatial resolution maps of ocean surface
topography can be converted to gravity anomalies and even used
to predict regional variations in seafloor depth (Smith & Sandwell
1997). Further improvement in the accuracy and resolution of the
marine gravity field will require more precise altimeter measure-
ments and/or a longer duration mission to minimize the various
noise sources. For recovery of the static marine gravity field, the
critical measurement is the slope of the ocean surface. Laplace’s
equation combined with Bruns’ formula shows that one microra-
dian (µrad) of ocean surface slope roughly corresponds to 1 milligal
(mGal) of gravity anomaly. Ocean surface slope can be estimated by
differencing height measurements along satellite altimeter profiles,
so absolute range accuracy is largely irrelevant. Indeed the usual
corrections and ancillary data that are needed to recover the tempo-
ral variations in ocean surface height associated with currents and
eddies are largely unimportant for the recovery of the gravity field
because the slope of these corrections is far less than the slope error
in the radar altitude measurement.

Consider the recovery of a 1 mGal accuracy gravity anomaly
having a wavelength of 28 km. This requires a sea surface slope
accuracy of 1 µrad over a 7-km-length scale (1 s of flight along
the satellite track), necessitating a height precision of 7 mm in one-

per-second measurements of sea surface height. Current satellite
altimeters such as Geosat, ERS-1/2 and Topex have typical 1-s av-
eraged range precision of 30–40 mm resulting in gravity field ac-
curacies of 4–6 mGal. There are three ways to improve the gravity
field accuracy. First, one could design and fly a new radar altimeter
with inherently better range precision than the current generation
of altimeters (Raney et al. 2004). Second, one could make multiple
measurements of ocean surface slope. The currently available non-
repeat ocean altimeter measurements come from 1.5 yr of Geosat
during its Geodetic Mission and 1 year of ERS-1 during its geodetic
phase. Third, one could improve the range precision of the existing
measurements.

Maus et al. (1998) took the third approach, developing and im-
plementing a new waveform retracking algorithm that significantly
improves the precision and along-track resolution of the ERS-1 al-
timeter data. Their algorithm operates on multiple waveforms and
imposes a smoothness criterion for the multiple arrival times within
the group. More important, they use a single rise-time parameter for
the group to stabilize the recovery of the arrival times. While their
paper provides a recipe for improving range precision with respect
to standard retracking methods, they do not fully discuss the as-
sumptions of their method and the physical meaning of constrained
parameters in their approach.

In this paper we develop our own retracking approach. Our results
confirm the analysis and recommendations of Maus et al. (1998),
and clarify why that approach works well. However, our approach
does not require simultaneous inversion of multiple waveforms, and
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we also do not require a smoothness constraint on arrival times; our
only constraint is that the rise-time parameter must vary smoothly
along the satellite’s ground track. Physically this corresponds to the
assumption that the sea surface roughness, due to ocean waves and
swell, varies smoothly in space. Our approach is easier to imple-
ment on a small computer, as the non-linear least-squares inversion
operations are done only one waveform at a time. Further, the cor-
relation length scales in the rise-time and amplitude parameters are
explicitly adjustable in our technique, giving physical insight and
meaning to the tuned parameters.

Here we investigate the general problem of correlated errors and
sea state bias, to show the motivation for our retracking scheme.
Our strategy for reducing those errors obtains a significantly re-
duced error variance, but more importantly, the spatial resolution
of data processed by our method is independent of sea state. These
results may be applied to ocean data from any satellite radar al-
timeter and should have wide application. Using our method, we
have retracked the ERS-1 altimeter waveform data for all of the
geodetic phase and part of the 35-day-repeat phase, and we will
make these retracked data available to the scientific community.
This paper, therefore, also contains an investigation of the expected
error distribution in ERS-1 waveforms caused by a unique feature
of the ERS-1 hardware. We are also experimenting with retracking
all of the Geosat altimeter data using similar methods. Geosat has
its own unique peculiarities, which will be the subject of another
paper.

A M O D E L F O R T H E R E T U R N E D
O C E A N WAV E F O R M A N D I T S
E X P E C T E D N O I S E

To understand the assumptions and technique for improving the
range precision, we start with a simplified discussion of how a radar
pulse interacts with the ocean surface. For a more complete treat-
ment of the engineering aspects of radar design and ocean reflec-
tion characteristics see the primary references (Brown 1977; Hayne
1980; MacArthur et al. 1987; Hayne et al. 1994; Rodriguez & Martin
1994; Chelton et al. 2001; Amarouche et al. 2004). The radar altime-
ter emits a short pulse, or more precisely, a frequency-modulated
chirp that reflects from the ocean surface and returns to the antenna.
The recorded power is the double convolution of the system point
target response with the ocean surface height distribution and the
two-way antenna pattern. The height distribution of ocean waves
is well approximated by a Gaussian function (Stewart 1985); if the
point target response is also approximated with a Gaussian form
then the form of the return power is well approximated by an error
function with a slow decay of the trailing edge due to the finite an-
tenna beam width. A model for the expected power versus time is
(Brown 1977; Amarouche et al. 2004).

M(t, to, σ, A) = A

2
[1 + erf(η)]

{
1, t < to

exp[−(t − to)/α], t ≥ to
, (1)

where

η = (t − to)√
2σ

, (2)

and where t is the time since the pulse was transmitted, to is the arrival
time of the half power point of the returned energy, σ is the arrival
rise-time parameter, A is the amplitude of the returned waveform,
and α is an exponential decay in the trailing edge due to the finite
beam width of the antenna. In addition to these four parameters,

waveforms from some altimeters also show a background noise
level.

The pointing accuracy of the ERS spacecraft was generally very
good and the antenna mispointing was much less than the antenna
beam width, so we set this decay parameter α to a constant (137
nsec). The ERS-1 altimeter hardware truncated small power levels
to zero (discussed below), and so we do not need a background
noise level parameter. Therefore our retracking model for ERS-1
has only three free parameters, A, to and σ . The automatic gain
control loop in hardware maintained A at a relatively constant level,
and the significantly variable parameters of chief concern in this
paper are to and σ . In our model fitting, these are treated as non-
dimensional parameters in dimensionless units of waveform sample
gate widths; the physical time sampled by an ERS-1 waveform gate
sample is 3.03 ns of two-way travel time, corresponding to 0.4545
m of range to the sea surface. The rise width of the waveform, σ , is a
convolution of the effective width of the point target response and the
vertical distribution of ocean surface waves, usually parameterized
in terms of a Gaussian standard deviation equal to one-fourth of
the significant wave height, SWH. An example model waveform for
σ = 6.67 ns (significant wave height of 3.6 m) is shown in Fig. 1
(upper).

The objective of our analysis is to reduce the error in the esti-
mated arrival time of the pulse, t0. However, before considering this
problem one must understand the signal and noise characteristics of
the return waveform. The ERS radar altimeter emits 1020 pulses per
second and the returned power Pi is recorded in 64 gates spaced at
3.03 ns. An onboard tracker is used to keep the pulse approximately
centred in the traveltime window (gate 32) while 50 returned pulses
are averaged. The averaged returned waveforms are available from
the European Space Agency in the ‘WAP’ data product, which also
contains the onboard tracker’s estimate of the expected range to the
ocean surface used to align the waveforms.

An individual radar pulse reflects from numerous random scat-
terers on the ocean surface so the return power versus time will
be noisy—essentially following a Rayleigh scattering distribution.
This high noise level is reduced in the 50 waveform average. As-
suming the speckle is incoherent from pulse to pulse, this inco-
herent average will reduce the speckle noise by a factor of

√
50.

Ideally, in averaging 50 values one first sums the individual con-
tributions and then divides the sum by 50. However, to avoid over-
flow in the ERS-1 hardware, each waveform gate sample was first
divided by 50, the result truncated downward to an integer, and
then the truncated value added to the accumulating sum. Since each
waveform contains random fluctuations the effect of this hardware
truncation can only be investigated with a Monte Carlo simulation
(Appendix A). We have found that expected mean power levels be-
low about 23 will be truncated to zero, so the emergent leading
edge of the pulse is lost. The averaging of 50 pulses combined with
the truncation issue leads to the following functional form for the
uncertainty in the power Wi as a function of the recorded power Pi

Wi = (Pi + Po)√
K

, (3)

where K is the number of statistically independent waveforms used
in the average and Po is the offset due to the truncation. Our Monte
Carlo simulation of the truncation process and our experiments in
optimizing the retracking of real ERS waveforms led us to use
K = 44 and Po = 50, which is essentially the same weighting
used by Maus et al. (1998). While the results are largely insensitive
to the exact numerical values for K and Po, the functional form of
this uncertainty leads to a high correlation between the arrival time
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Figure 1. Upper—average of 10 000 ERS-1 radar waveforms (dotted) and a simplified model (solid, equation 1) with three adjustable parameters: A—
amplitude, to—arrival time, and σ—rise time. Time parameters are measured in dimensionless waveform gate widths equal to 3.03 ns of two-way travel time
or 454 mm of range to the sea surface. middle—partial derivatives of model (eq. 1) with respect to A (solid), to (dashed) and σ (dotted) versus gate number.
Note the functions dM/dt 0 and dM/dσ are orthogonal. Lower—partial derivatives of the model waveform weighted by the expected uncertainty in the power
(eq. 3). Note the functions dM/dt 0 and dM/dσ appear similar. This leads to a high correlation between arrival time and rise time during the least-squares
estimation.

and the rise time when they are estimated using a weighted least-
squares approach. Overcoming this correlation is the essence of our
study.

L E A S T - S Q UA R E S M O D E L F I T T I N G :
C O R R E L AT E D M O D E L E R RO R S

A standard least-squares approach is used to estimate the three pa-
rameters (to, σ and A). Because the problem is non-linear in arrival
time and SWH, we use an iterative gradient method. The chi-squared
measure of misfit is

χ2 =
N∑

i−1

[
Pi − Mi (to, σ, A)

Wi

]2

, (4)

where N is the number of gates used for the fit and Mi is the model
evaluated at the time of the ith gate. One starts the iteration by
subtracting a starting model based on parameters to

o , σ o and Ao. The
updated model parameters t1

o, σ 1 and A1 are found by solving the

following linear system of equations


P ′
1

P ′
2
...
...

P ′
N




=




∂ M1
∂to

∂ M1
∂σ

∂ M1
∂ A

...
...

...
...

...
...

∂ MN
∂to

∂ MN
∂σ

∂ MN
∂ A







t1
o − to

o

σ 1 − σ o

...
A1 − Ao


 , (5)

where P ′
i is the waveform power minus the model from the previous

iteration. The derivatives of the model with respect to the parameters
are

∂ M

∂to
= −A

σ
√

2π
e−η2

, (6)

∂ M

∂σ
= −A

σ
√

π
ηe−η2

,

∂ M

∂ A
= M

A
.
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We have not included the complications of the exponential decay in
the partial derivatives of eq. (1) because this effect is largely removed
with the starting model, and because residual misfits in the plateau
of the waveform are chiefly random and do not significantly drive
the fit of the three important parameters. These partial derivatives
are shown in Fig. 1 for the case of an unweighted and weighted least-
squares adjustment. A standard Newton iteration algorithm is used
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Figure 2. Simulations of least-squares parameter estimation. For each case (A, B, C) 2000 random models were constructed by adding noise to the exact model
waveform (solid curve left plots) and a non-linear least-squares approach was used to recover the model parameters. Right plots show errors in estimation of
arrival-time (delta t) and rise-time (delta sigma) parameters. Case A with uniform noise and uniform weight has no correlation between arrival time and rise time
(rms-arrival-time error equivalent to 20.9 mm in sea surface height). Case B with noise proportional to power and uniform weight has some correlation between
arrival time and rise-time (rms-arrival-time error 25.6 mm of height equivalent). Case C with noise proportional to power and weight inversely proportional to
power has high correlation between arrival time and rise time (rms-arrival-time error 28.4 mm in height). If the rise-time parameter were known the rms error
in arrival time could be reduced to 18.1 mm of height, corresponding to a 36 per cent reduction in noise.

to determine the three model parameters (to, σ , A) that minimize
the rms misfit.

An interesting feature of this least-squares problem is an inherent
correlation between errors in estimated arrival time and errors in
estimated rise time. We explore this with Monte Carlo experiments
simulating model fitting to noisy data. In an experiment we gener-
ate 2000 realizations of noisy waveforms, each waveform having the
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same known true parameters for arrival time, rise time and ampli-
tude, plus an independent realization of random noise. We then do a
least squares fit to each waveform, obtaining 2000 noisy estimates of
each model parameter, and we examine the error distribution in these
estimated parameters. The results of these experiments are shown in
Fig. 2, for each of three different cases we examined: experiment ‘A’
employs constant waveform error and uniform least-squares weight-
ing; experiment ‘B’ employs waveform error proportional to wave-
form power but uniform least-squares weighting; and experiment
‘C’ has waveform error and least-squares weight both proportional
to waveform power.

First consider experiment ‘A’, the physically unrealistic case
where the waveform noise is uniform across all gates. Noise in the
waveform power introduces an error in all three estimated parame-
ters. The simulation shows that the error in rise time and arrival-time
are uncorrelated, and for this case, the rms uncertainty in the arrival-
time estimate is equivalent to 20.9 mm of uncertainty in resolved
sea surface height (Fig. 2a).

It is physically more realistic to consider cases in which the re-
ceived waveform noise is proportional to the received power (eq. 3).
In this situation we may choose to make a uniformly weighted least-
squares fit, setting all Wi equal in eq. (4) (effectively an unweighted
fit), or we may choose non-uniform weighting, substituting (3) in (4),
(a weighted fit). Our simulations of these two cases are experiments
‘B’ (unweighted) and ‘C’ (weighted).

In the unweighted case (Fig. 2b) the simulation shows a corre-
lation between rise time and arrival time and rms uncertainty in
the arrival time has increased to 25 mm of height equivalent. More
important, the two parameters are now correlated so a positive er-
ror in the estimate of rise time will produce a positive error in the
estimate of arrival time. Since rise time and arrival time are re-
lated to the physical parameters of SWH and sea surface height, the
inherent correlation has the same effect as the so-called sea state
bias. True electromagnetic (EM) bias occurs because more energy
reflects from the troughs of the waves than from the crests so ar-
rival time increases with increasing SWH. The simulation shows
the same type of behaviour. Indeed we suggest that the so-called
sea state bias (different for each altimeter, Scharroo & Lillibridge
2005) consists of a true EM bias and an artificial bias that is related
to the least-squares estimation approach as well the noise response
characteristics of the radar instrument.

Finally we consider the case of a weighted least-squares estimate
of the three waveform parameters (Fig. 2c). Maus et al. (1998) pro-
posed that to obtain an improved estimate of the arrival time one
should weight the least-squares adjustment where the gates with
higher noise (i.e. higher power) are down weighted (eqs 3 and 4). We
remark that in theory, this weighted least-squares approach should
yield the maximum likelihood model parameters if there is no gate-
to-gate or waveform-to-waveform correlation of the waveform er-
rors. This weighted approach is the basis of the ‘SMLE’ retracker
used by the European Space Agency to make the ‘OPR’ retracked
data product. However, in this case our simulations and previous
studies (Dumont 1985; Rodriguez 1988), show even a more severe
correlation between rise time and arrival time having a slope of 1,
which translates into a sea state bias of nearly 25 per cent. We con-
firmed this effect by retracking ERS-1 data using the three-parameter
weighted least-squares approach and then determining the sea state
bias that provides the best rms match between retracked sea surface
slopes and slopes of the GFSC00 mean sea surface model (Wang
2000). The analysis of real data requires a 23 per cent SSB for best
fit. Note when the sea state bias is estimated for heights rather than
slopes, the best SSB is about 8 per cent. This is because the errors in
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Figure 3. Upper—SWH profile across the South Pacific Ocean derived
from the 3-parameter retracking algorithm. Lower—Power spectrum of
SWH for six profiles shows a noise floor intersecting the SWH signal at
a wavelength of about 100 km. We filter the SWH using a Gaussian filter
with a 0.5 gain at 90-km wavelength (grey curves upper and lower) to provide
a stable estimate of SWH for the 1-parameter retracking algorithm.

the SWH primarily occur at short wavelengths which are enhanced
in the slope profiles. In addition to the adverse correlation of the
weighted least-squares approach, the rms error in the arrival time
increases to 28.4 mm of height equivalent, which is worse than the
case of uniform weight.

A P P ROA C H E S T O R E D U C E T H E S E A
S U R FA C E H E I G H T E R RO R

Assume for the moment that the true rise time and amplitude were
known a priori so that the least-squares model fit could be performed
for only one parameter, the arrival time. This case is illustrated in
Fig. 2(c) where we have assigned zero error to our rise-time estimate.
For this one-parameter model, the rms in the arrival time is reduced
to 18.1 mm of height equivalent. This is a 30 per cent improve-
ment over the three-parameter unweighted solution and nearly a 40
per cent improvement over the three-parameter weighted solution.
Therefore if the rise time, or equivalently, the SWH was known a
priori, then the arrival time could be measured more precisely which
would lead to an improved estimate of slope and ultimately gravity
anomaly.
To achieve this objective, we assume that the SWH varies smoothly
along each satellite profile. There is a physical basis for making the
assumption—at least in the deep ocean. Spatial variations in SWH
will depend on convolution of temporal variations in wind forcing
with the wave group velocity (6–12 m s−1). Typically a storm takes
a day or so to pass over a fixed point and during this time the sur-
face waves will travel 500–1000 km usually outrunning the storm.
Therefore, SWH should be very smooth over length scales less than
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a few hundred kilometres. The assumption will break down as the
waves approach depths comparable to their wavelength ∼300 m,
since the amplitudes will increase and the wavelength will shorten
over distances related to the bathymetric gradient. Therefore, the
assumption will not be as good in coastal areas. Monaldo (1988)
found correlation scales of order 100 km in the SWH field.

Our overall approach for minimizing error in sea surface slope
is to: (1) retrack each waveform (or several waveforms) indepen-
dently using the full three-parameter model, (2) smooth the rise-time
and amplitude parameters in the along-track direction with a low-
pass filter and (3) retrack the data again using the smoothed rise
time and amplitude as a priori constraints in the more precise one-
parameter fit for arrival time only. The appropriate low-pass filter
wavelength for the rise-time parameter was determined through a
power spectral analysis of six altimeter profiles crossing the Pacific
basin. An example is shown in Fig. 3 where the SWH power de-
creases with increasing spatial frequency until 0.01 cyc-km−1. At
higher wavenumbers the power is relatively flat and we interpret
this as white noise caused by errors in our estimate of the rise-time
parameter; to suppress this noise we have adopted a Gaussian low-
pass filter with a 0.5 gain at 90 km full wavelength. In addition
to smoothing the rise-time parameter prior to retracking, we also
smooth the amplitude but over a shorter wavelength, using a Gaus-
sian low-pass filter with a 0.5 gain at 14 km full wavelength. This
length is slightly less than the characteristic length scale of a noise
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Figure 4. Profiles of along-track sea surface slope for 6 repeat cycles crossing the South Pacific Ocean in a region of generally high SWH. The upper profiles
were derived from the onboard tracker available in the waveform data record (rms deviation from model of 8.23 µrad). The middle profiles were derived using
a weighted least-squares 3-parameter retracking algorithm as in Monte Carlo experiment ‘C’ shown in Fig. 2(c) (rms = 6.45 µrad). The lower profiles were
derived from a 1-parameter retracking algorithm constrained by smoothing the rise-time and amplitude parameters as in the text (rms = 4.01 µrad).

resonance in the onboard alpha/beta tracking software that adjusts
the tracking parameters and gain onboard the satellite (Rodriguez
& Martin 1994).

I M P ROV E M E N T S I N P R E C I S I O N,
R E S O L U T I O N, A N D C OV E R A G E

We have implemented this retracking algorithm using the ERS-1
Altimeter Waveform Product (WAP, Infoterra Limited, Farnbo-
rough, UK, 2001) provided by the European Space Agency at the
full 20 Hz sampling rate. These data include the ocean-mode wave-
forms sampled at 64 range gates. Phases E and F provide an 8-km
track spacing at the equator that is needed for construction of 16-km
wavelength resolution gravity models. The six repeat cycles from
phase G were used to assess the performance of the retracking al-
gorithm.

Waveform data were pre-processed to add the latest orbits and cor-
rections. Precise ERS-1 orbits (Scharroo et al. 1998) were used to
recompute the latitude, longitude and height of the spacecraft above
the WGS84 reference ellipsoid. The CSR4.0 tide model (Bettadpur
& Eanes 1994) was computed at each location while the other envi-
ronmental corrections available on the WAP record were used. For
recovery of the gravity field from altimetry, the only corrections that
exceed the 1 µrad desired error threshold are due to coastal tides
and large orbit error (>2 m). The 550 days of waveform data were
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reformatted into 184-byte records at a 20-Hz sampling rate, which
amounts to about 0.5 billion waveforms (95 Gbytes). The three-
parameter retracking was performed using a standard non-linear
Newton–Raphson iteration where typically five to nine iterations
were needed to achieve convergence. The data were segmented into
profiles having time gaps no greater than 4 s and low-pass Gaus-
sian filters were applied to the rise-time and amplitude parameters.
The data were retracked a second time using the smoothed rise-time
and amplitude parameters and solving for the arrival time using a
Golden section search in one dimension as implemented in Numer-
ical Recipes (Press et al. 1992).

I M P ROV E M E N T S I N S L O P E A C C U R A C Y
A N D A L O N G - T R A C K R E S O L U T I O N

Accuracy and resolution were estimated using the 6 repeat profiles
from phase G of the ERS-1 mission. Accuracy was assessed by com-
puting along-track slope for profiles crossing the Pacific ocean over
areas of both high and low SWH (Fig. 4). Slope was computed at
20 Hz sampling rate and then low-pass filtered with a 0.5 gain at
18 km to simulate the smoothing filters that are applied when a
gravity field is constructed. Slopes based on the arrival-time estimate
from the onboard tracker are shown in the top panel and have an rms
deviation about the mean profile of 8.23 µrad. Slopes derived from
the three-parameter retracking algorithm (centre panel) have an rms
deviation of 6.45 µrad while slopes derived from the one-parameter
retracking algorithm (lower panel) have an rms deviation of
4.01 µrad. Further analysis shows the greatest improvement in areas
of generally high SWH. Although we have not analysed the com-
parable Ocean Product (OPR V3) for these ERS-1 data, we expect
the noise level is similar to the three-parameter retracking results.
Thus this new algorithm reduces the rms error to 62 per cent of the
rms error for the standard retracking methods which corresponds to
a 38 per cent improvement in range precision.

Improvements in along-track slope accuracy translate into im-
provements in along-track resolution. To assess the resolution im-
provement we selected two areas for repeat-track analysis that match
the two areas used by Yale et al. (1995). The first area is the
equatorial Atlantic, which has high gravity signal and low oceano-
graphic noise (Fig. 5, top). Coherence between repeat tracks was
computed for the three cases of onboard tracking (dotted), three-
parameter retrack (dashed line) and one-parameter retrack (solid
line). This area shows an improvement in resolution from 36 to
32 km. A similar analysis in the South Pacific, which is an area of
low gravity signal and high oceanographic noise, shows an improve-
ment from 43 to 33 km.

Finally, we demonstrate the improvement in altimeter coverage in
coastal areas. The test area is the back-arc region between Indone-
sia and Borneo. This is a challenging area for gravity field recovery
from altimetry because the tracks run mainly N–S and the track
spacing is greatest at the equator (∼8 km). The gravity anomalies
have relatively short wavelength and low amplitude in relation to the
noise. We plot along-track slope profiles minus EGM96 (Lemoine
et al. 1998) for two cases—onboard tracking (Fig. 6—left) and re-
tracked (Fig. 6—right). The lower noise level of the retracked data
reveals previously unseen gravity signals spanning multiple adja-
cent tracks; note that both sets of profiles were edited and filtered
using the same algorithms. The lower noise level of the retracked
data causes fewer data to be edited, especially near the coastline so
near-shore coverage is improved.
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Figure 5. Coherence between repeat altimeter profiles in two areas studied
in Yale et al. (1995). Dotted curve no retracking, dashed curve 3-parameter
retracking, solid curve 1-parameter retracking. Retracking improved the
0.5 coherence from 36 to 32 km in the Equatorial area and from 43 km to
33 km in the South Pacific area. An important result is that the 1-parameter
approach yields a wavelength of 0.5 coherence, which is essentially inde-
pendent of sea state.

Using the retracked ERS-1 data we have also constructed a grav-
ity model and compared the satellite-derived gravity to a ship profile
to determine the improvement in accuracy due to retracking (Fig. 7).
The comparison with anomalies from gravity model Version 9.1 (no
retracking) has a mean difference of 25.3 mGal and an rms differ-
ence of 5.62 mGal. Retracking of ERS-1 results in an improved
rms of 4.75 mGal. (Non-zero mean differences are expected due
to absolute calibration errors in ship gravimetry, Wessel & Watts
1988.) In addition to retracking ERS-1 data we are experimenting
with retracking Geosat data and using a least-squares method of bi-
harmonic splines (Sandwell 1987; Wessel & Bercovici 1998) to grid
the along-track residual slopes. These combined effects improve the
rms misfit to 2.98 mGal. We believe that a more careful treatment
of all the non-repeat orbit altimeter data will result in significant
improvements in the global marine gravity field.

C O M PA R I S O N W I T H T H E M E T H O D
O F M AU S E T A L .

To increase the precision of estimated arrival time, Maus et al. (1998)
invert 408 waveforms simultaneously to recover 408 estimates of
arrival time but constrained to share only a single estimate of rise
time. In addition, the 408 arrival-time estimates are coupled, as in
a smoothing spline, to guarantee that the power spectrum of the
resulting sea surface height will have a desired shape. We believe
the key to their approach, which was not highlighted in their study,

C© 2005 RAS, GJI, 163, 79–89



86 D. T. Sandwell and W. H. F. Smith

105 110 115

-5

0

105 110 115

Figure 6. Along-track sea surface slope for ascending profiles from the ERS-1 geodetic phases with the EGM96 model removed. Left—arrival time from
onboard tracker, right—arrival time from 1-parameter retracking algorithm. The decrease in noise level reveals gravity lineaments associated with basement
structure of this continental margin. Retracking also improves recovery of data near shore. The trackline of the shipboard gravity profile used to assess the
accuracy of the satellite-derived gravity is shown in the right panel.
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Figure 7. Comparison between satellite-derived gravity models (thin lines) and a shipboard gravity profile (points) across the Java Sea (trackline in Fig. 6).
(top) Gravity model version 9.1 does not use retracked altimeter data and has an rms misfit of 5.62 mGal. The mean difference of 25 mGal is due to a mean
error commonly found in shipboard gravity (Wessel & Watts 1988). (middle) Gravity model version 11.1 uses retracked ERS-1 altimeter data but the Geosat
data were not retracked; the rms misfit is improved by nearly 1 to 4.75 mGal. (bottom) Gravity model version 15.1 is based on both retracked ERS-1 and Geosat
altimeter profiles and also used a local least-squares adjustment to simultaneously fit the residual along-track slopes from ERS-1, Geosat, and Topex. The rms
is improved further to 2.98 mGal, which is about one-half the rms of the V9.1 gravity field.

is that they force the rise time (i.e. the SWH) to remain constant
across a window of 408 points (132 km). Our experiments show
that any a priori constraint that suppresses freedom for error in rise
time will also reduce the error in sea surface height. If the Maus

et al. (1998) approach were implemented in a running window, it
would have the effect of applying a boxcar filter to SWH with a filter
width of 132 km. This is similar to our use of a Gaussian filter with
a characteristic wavelength of 90 km. We did not find that it was
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necessary to simultaneously impose a smoothness constraint on the
geoid as performed by Maus et al. (1998). Instead we perform the
along-track filtering after the retracking process. However, we found
that the overall results were improved by simultaneously fitting three
waveforms in a moving window to effectively reduce the along-track
sampling rate from 20 to 10 Hz.

The Maus et al. approach is cumbersome to implement because
it requires simultaneous inversion of 408 waveforms with an im-
posed correlation among the arrival-time parameters to ensure sea
surface height smoothness. However, it has the advantage that the
retracking only needs to be performed once. Our approach, although
it requires a three-step process, is easy to understand and trivial to
implement, as the inversion operation works on only one waveform
(or a few waveforms) at a time. Furthermore, our scheme allows
direct estimation of the resolved correlation scale in the SWH field
(Fig. 3) and makes explicitly clear the role of the smoothing applied
to the SWH and amplitude parameters.

C O N C L U S I O N S

The Monte Carlo simulation of altimeter waveforms, as well as the
analysis of ERS waveform data, demonstrates an inherent correla-
tion between least-squares estimates of arrival time and rise time.
The correlation is caused by the noise properties of the return wave-
form. Noise is low prior to the arrival of the waveform and increases
later in the waveform as more energy scatters off the rough ocean
surface. This change in noise introduces the inherent correlation that
can mimic true sea-state bias. The correlation is greatest over short
length scales (<90 km) and can be removed by low-pass filtering
SWH along profiles. Most oceanographic studies of repeat altimeter
profiles are focused in intermediate and long wavelength variations
in height where this correlation is less of a problem. Nevertheless
it is likely that some of this correlation is falsely absorbed into the
parameterization of the true EM sea state bias.

The noise properties of the return waveform are well understood,
so it seems reasonable to perform a weighted least-squares esti-
mate of the waveform parameters. However, simulations show that
weighting the fit leads to a more significant correlation between
arrival time and rise time with a slope of one (in dimensionless
waveform gate width units). This high correlation also increases the
error in the arrival time suggesting that a weighted least-squares
approach is inferior to the unweighted least-squares approach
(Rodriguez 1988). Maus et al. (1998) overcome the higher errors
introduced by a non-uniform weight function by using a multiple
waveform retracking algorithm that solves for a single rise-time pa-
rameter and multiple arrival-time parameters. While their approach
provides significant improvements in range precision, they left un-
stated the fundamental assumption of their parameterization: that
the rise time (i.e. SWH) varies smoothly along the satellite track.
Here we explicitly make this assumption and establish the wave-
length of the low-pass filter that is optimal for smoothing the rise
time (∼90 km). We argue that the rms-height distribution of waves
in the deep ocean will vary smoothly in space due to the high group
velocity of the wave trains relative to the speed of the storms that
generate the waves. This assumption may become invalid across
sharp wind fronts and in shallow coastal areas just seaward of the
surf zone.

Our retracking algorithm works on individual waveforms, but
three steps are involved. First, a standard three-parameter retracking
algorithm is used. Second, the rise-time and amplitude parameters
obtained at the first step are low-pass filtered along continuous pro-

files. Third, the data are retracked again, using the smoothed values
from the second step and solving for only the arrival time. Note that
fixing the rise time and amplitude to the smoothed values basically
fixes the shape of the waveform to agree with surrounding wave-
forms; this in turn provides stability to the least-squares estimate.
Using this approach we obtain a 38 per cent improvement in range
precision between the standard three-parameter approach and the
one-parameter approach. Moreover, we find that the precision of the
arrival time is less sensitive to the SWH. Maus et al. (1998) reached
a similar conclusion.

Finally we have used this approach to retrack all ERS-1 data for
the geodetic phases (E and F) as well as six repeat cycles of phase
G. These data were combined with all available Geosat geodetic
mission data, Geosat exact repeat mission data and Topex/Poseidon
altimetry data to construct a new marine gravity field. The method
of combining the along-track slopes is described in Sandwell &
Smith (1997). A 1-min grid is available by ftp (version 11.1 at
http://topex.ucsd.edu). We have experimented with a similar ap-
proach to retrack all of the data from the Geosat Geodetic Mis-
sion. Preliminary results are shown in Fig. 7. The value of re-
tracking all of the repeat-track altimetry from Geosat, ERS-1/2 and
Topex/Poseidon is unclear. Retracking will certainly improve the
short-wavelength precision of the measurements. Moreover, it is
possible that this retracking will eliminate the artificial component
of the sea state bias and provide a consistent SSB model for all al-
timeters. However, the long-wavelength accuracy of this retracking
approach still needs to be investigated.
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A P P E N D I X A : T H E E F F E C T O F E R S - 1
H A R DWA R E T RU N C AT I O N O N T H E
E X P E C T E D M E A N A N D VA R I A N C E O F
WAV E F O R M G AT E S A M P L E S

The ERS-1 spacecraft transmitted radar pulses with a pulse rep-
etition frequency of 1020 Hz. Fifty consecutive waveforms were
accumulated on-board in hardware to form a quasi-average wave-
form, and only these quasi-average waveforms were telemetred to
the ground for processing. Unfortunately the reported quasi-average
waveform is not precisely the arithmetic mean of the received and

gated values,

P̄ = 1

50

50∑
k=1

Pk .

Instead, to prevent the sum from overflowing the hardware, the
following formula was used to accumulate the average waveform
power:

P̃ =
50∑

k=1

floor(Pk/50).

where ‘floor(x)’ in the above expression is the greatest integer less
than or equal to x. This appendix explores the probability distribu-
tions for P, P̄ and P̃ .

The probability distribution for the power in a returned
radar pulse, P

The radar signal received by an altimeter has contributions from
many randomly distributed radar scatterers on the ocean surface.
The phase from each scatterer is uniformly and randomly distributed
(Brown 1977). The in-phase (C) and quadrature (S) components of
the received signal are each the sum of a large number of random
variables; therefore C and S have Gaussian distributions with zero
mean and equal variance. The relative phase of C and S, that is, φ =
atan2 (S, C), is uniformly and randomly distributed. The altimeter
detects the power of the returned waveform: P = C2 + S2. P is
thus a random variable that, apart from a scale factor, is distributed
as chi-square with two degrees of freedom, χ2

2, that is, it has an
exponential distribution, in which the standard deviation is equal to
the mean. If the expected value of P is P̂ then the variance of P is
P̂2.

Factors affecting the distribution of a sequence
of 50 returned pulses

Traditional radar altimeters such as ERS-1 do not have a high enough
sampling rate to operate in a synthetic aperture mode (i.e. along track
spacing <1/2 antenna diameter) so each returned waveform may be
considered independent realization of the ocean surface. Over 1/20
of a second, the ocean wave height distribution, density of scatterers
on the surface, delay and attenuation of energy along the propagation
path and antenna pointing should not change appreciably. Therefore
during the acquisition of 50 consecutive pulses the expected returned
power, P̂ , should depend only on the receive time relative to the
return onset time: P̂ = P̂(t − t0). Hereafter, we will assume that the
radar instrument is tracking correctly, so that each of the waveforms
in a sequence of 50 is correctly aligned, meaning that the waveform
sample gates are distributed around t0 with the same distribution as
each pulse is sampled by the waveform gates. These conditions will
ensure that the expected value of the power in any one waveform gate
is a constant during the acquisition of 50 consecutive waveforms.
Each of the 50 waveforms then is independently and identically
distributed, by virtue of the short decorrelation time and the proper
tracking.

The distribution of the arithmetic mean of 50 returned
values, P̄

The arithmetic mean P̄ is a linear combination of 50 random vari-
ables and so should have an approximately Gaussian distribution,
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by the central limit theorem. More precisely, the distribution of P̄
is, apart from a scale factor again, that of chi-square with 100 de-
grees of freedom; however, the distribution of χ2

100 is very well
approximated by a Gaussian distribution (Abramowitz & Stegun
1972, section 26.4.11 and following). P̄ is an unbiased estimator;
its expected value is P̂ . This can be found directly by taking the
expectation of the equation for P̄ , or by appropriately scaling the
χ2

100 distribution, or simply making use of the fact that the arith-
metic mean is unbiased. The variance of P̄ obtained by scaling the
χ 2

100 distribution is the same as would be found by the Gaussian
approximation: Var{P̄} ≈ Var{P}/50 = P̂2/50. This means that
the expected standard deviation in a mean waveform P̄ is roughly
1/7 of P̂ .

The properties of the quasi-average, P̃

Applying again the assumptions that each Pk is independent and
identically distributed one reasons that the distribution for P̃ must
have a Gaussian form for any P̂ . This justifies the use of least-
squares fitting techniques in retracking. However, the ‘floor’ oper-
ation effectively applies an unpredictable scale factor to each Pk in
the quasi-average P̃ , and it is not immediately obvious how this will
affect the expectation (mean) µ = E{P̃} and variance σ 2 = Var{P̃}.

We estimated the mean and variance of P̃ as functions of the ex-
pected true power, P̂ , by Monte Carlo experiments as follows. We
generated pseudo-random deviates Xk uniformly distributed in the
interval (0, 1). From these we obtained exponentially distributed,
unit mean deviates Yk by the logarithmic transformation Yk =
−log(Xk) (Press et al. 1992, Section 7.2). By simply scaling Pk =
P̂Yk we generated quasi-random numbers Pk having the correct dis-
tribution for realizations of a single waveform pulse gate sample
with expected power level P̂ . It is then straightforward to form
many realizations of P̃ and compute the sample mean and standard
deviation of these realizations. Graphs of the bias E{P̃}− P̂ and the
standard deviation σ (P̂) are shown as Fig. A1. The bias is zero when
P̂ is zero, of course, but quickly approaches a steady value of −23.
Note that this is slightly less than half of the truncation factor of 50,
probably reflecting the asymmetry in the exponential distribution of
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Figure A1. Top: The bias (expected value of the quasi-mean power level,
P̃ , minus the correct true mean power level, P̂) as a function of the true
mean power level, P̂ . The asymptotic value of the bias is −23. Bottom: The
standard deviation of the quasi-mean power level (solid line) is slightly less
than the standard deviation of the true theoretical population (dashed line,
equal to P̂/

√
50). The dotted line shows the least-squares weight used in this

paper, (P̃ + 50)/
√

44 as a function of P̂ . Experimentation showed that this
weight gave the best results. It is somewhat higher than the actual standard
deviation to avoid overweighting the lowest power levels and to account for a
background thermal noise level that is missing from the waveforms because
of their truncation at low amplitude.

the Pk ; the expected difference between rounding and truncating a
symmetric distribution would be half the truncation factor. The stan-
dard deviation is slightly less than the theoretical value of P̂/

√
50,

perhaps also due to the exponential distribution.
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