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S U M M A R Y
Thin plate flexure theory provides an accurate model for the response of the lithosphere
to vertical loads on horizontal length scales ranging from tens to hundreds of kilometres.
Examples include flexure at seamounts, fracture zones, sedimentary basins and subduction
zones. When applying this theory to real world situations, most studies assume a locally
uniform plate thickness to enable simple Fourier transform solutions. However, in cases
where the amplitude of the flexure is prominent, such as subduction zones, or there are rapid
variations in seafloor age, such as fracture zones, these models are inadequate. Here we present
a computationally efficient algorithm for solving the thin plate flexure equation for non-uniform
plate thickness and arbitrary vertical load. The iterative scheme takes advantage of the 2-D fast
Fourier transform to perform calculations in both the spatial and spectral domains, resulting
in an accurate and computationally efficient solution. We illustrate the accuracy of the method
through comparisons with known analytic solutions. Finally, we present results from three
simple models demonstrating the differences in trench outer rise flexure when 2-D variations
in plate rigidity and applied bending moment are taken into account. Although we focus our
analysis on ocean trench flexure, the method is applicable to other 2-D flexure problems having
spatial rigidity variations such as seamount loading of a thermally eroded lithosphere or flexure
across the continental–oceanic crust boundary.

Key words: Numerical approximations and analysis; Lithospheric flexure; Mechanics,
theory, and modelling.

1 I N T RO D U C T I O N

The oceanic lithosphere has an almost uniform composition and
a well-understood thermal evolution away from spreading ridges
(Parsons & Sclater 1977). Simple thermal evolution models, com-
bined with isostasy and thin plate flexure theory, form the foun-
dational methodology for understanding the gravity and topogra-
phy of the deep oceans (Watts 2001). Examples include flexure
at seamounts (Kim & Wessel 2010), spreading ridges (Luttrell &
Sandwell 2012), fracture zones (Sandwell & Schubert 1982), con-
tinental margins (Erickson 1993) and most importantly subduction
zones (Watts & Talwani 1974; Parsons & Molnar 1976; Levitt &
Sandwell 1995; Bry & White 2007). In most of these cases, the
flexural modelling uses a uniform-thickness plate (or, in some in-
stances, a plate with smooth thickness variations over wavelengths
greater than the flexural wavelength) because it is theoretically sim-
ple, computationally fast and usually provides an adequate descrip-
tion of the data if the results are interpreted in terms of an effective
elastic thickness (Goetze & Evans 1979; McNutt & Menard 1982).

Over the past decade there have been dramatic improvements
in the accuracy of the marine gravity field from satellite altimetry

(Sandwell et al. 2013). In addition, the multibeam coverage of the
seafloor topography has expanded. Inverse spectral techniques have
been used to estimate elastic thickness of the oceanic lithosphere
by examining the admittance and coherence between gravity and
topography measurements (Kirby 2014). The spatial resolution of
these estimates can be increased by using either wavelets (Kirby
& Swain 2011), multitapers (Pérez-Gussinyé et al. 2009) or a con-
volution method (Braitenberg et al. 2002). However, variations in
rigidity may occur over short spatial scales that are smaller than
the typical flexural wavelength of a uniform rigidity plate. There
is now an advanced understanding of the fracturing that occurs on
the outer trench walls of subduction zones when the plates are bent
beyond their elastic limits (e.g. Massell 2002; Ranero et al. 2003).
Therefore, realistic models, which account for spatial variations in
rigidity arising from the combination of along-trench age gradients
and inelastic yielding on the outer trench wall are needed to explain
the improved seafloor data.

Most previous studies on trench flexure have adopted an elas-
tic rheology and focused on reproducing profiles along one
dimension perpendicular to the trench (Hanks 1971; Watts &
Talwani 1974; Caldwell et al. 1976; Bodine & Watts 1979; Levitt &
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Sandwell 1995). However, in an attempt to explain the misfit in re-
sults for some trenches, other rheologies have been proposed for the
oceanic lithosphere that account for perfectly plastic (Lobkovsky &
Sorokhtin 1976), elastic-perfectly plastic (Turcotte et al. 1978), vis-
coelastic (Melosh 1978) or fully viscous behaviour (de Bremaecker
1977). One approach that allows plate rheology and failure con-
dition to vary with depth is to construct a yield strength envelope
(Goetze & Evans 1979; McNutt & Menard 1982). In this formu-
lation, brittle failure in the upper, colder portion of the lithosphere
together with ductile flow in the lower, hotter portion serve to con-
strain the thickness of an unyielded layer in the middle of the plate
that behaves elastically. This effective elastic thickness Te can be
related to the flexural rigidity D of a thin plate, given a Young’s
modulus E and Poisson’s ratio ν, through the relation

D(x, y) = ET 3
e (x, y)

12(1 − ν2)
. (1)

By letting the effective elastic thickness, or more generally the
flexural rigidity, serve as a proxy for a more complete description
of oceanic lithosphere rheology, we are able to adopt a thin elastic
plate model for lithospheric flexure. In doing so, we can mathe-
matically capture the gross behaviour of a plate with varying and
non-elastic rheology without having to specify an exact rheolog-
ical structure. At well-studied outer rise regions, high-resolution
multibeam bathymetry data (Massell 2002), seismic refraction pro-
files (Ranero et al. 2003) and focal mechanism orientations (Craig
et al. 2014) indicate pervasive extensional faulting. This increased
yielding at the top of the plate decreases the plate’s effective elastic
thickness and hence flexural rigidity. As such, it is important to
develop a computational model which includes variable rigidity in
thin elastic plate flexure. In particular, 2-D variation is likely to be
significant in some instances.

For example, elastic plates with variable rigidity in two dimen-
sions were used to model the deformation of continental lithosphere
in rifted basins (van Wees & Cloetingh 1994) and foreland basins
(Garcia-Castellanos 2002). Flexure of the oceanic lithosphere at
the trench outer rise has also been modelled using variable rigidity
(Manriquez et al. 2014). These studies all noted the importance of
including realistic variations in rigidity for successfully matching
the observed topography (or bathymetry) with the output of their
computational models. In the first two examples, the governing flex-
ural equations were solved using finite difference techniques, while
a finite element approach was taken in the last case. In this work,
we present a method that solves the flexural equations by iteration
in the spectral domain.

This iterative spectral method was originally developed in one di-
mension to model elastic flexure at oceanic fracture zones (Sandwell
1984), and has been further extended to 2-D applications for other
geophysical problems dealing with inhomogeneous elastic media
(Barbot et al. 2008; Luttrell & Sandwell 2012). Our method is
able to obtain sufficiently accurate solutions for the deflection of a
thin elastic plate with variable rigidity in two dimensions subject
to arbitrary vertical loading and constant in-plane forces. When
restrictions on the scale and amplitude of the variations in plate
rigidity are followed, the iterative scheme converges rapidly. The
high computational speed of our model is an advantage because it
allows for finer grid spacing. Direct comparisons between model
output and high-resolution data can be carried out without resort-
ing to interpolation. Similarly, wider or more extensive searches for
parameter values would then be possible for inverse problems.

In the following sections, we describe the mathematical frame-
work of our computational scheme, and then report on its perfor-

mance with respect to benchmark tests based on available analytic
solutions. Finally, we demonstrate the potential utility of such a
scheme by discussing some example cases of lithosphere flexure
in a downgoing oceanic slab with varying rigidity or an arcuate
trench shape and the subduction of a plate of varying age subject to
inelastic yielding.

2 T H E O RY

Consider a thin elastic plate extending infinitely along two horizon-
tal dimensions x and y. The plate’s flexural rigidity D(x, y) is in
general a spatially varying function, and the plate is floating on an
inviscid fluid substratum. The upward deflection of the plate surface
w(x, y) is the flexural response to the application of a vertical load
distribution p(x, y) and a constant in-plane force with components
Nx, Ny and Nxy. The values of these in-plane forces are taken to
be positive when the plate is subject to tension, and negative when
it is under compression. Furthermore, a restoring force is exerted
by the material of the substratum. This force is proportional to the
acceleration due to gravity g and the density contrast "ρ between
the substratum and the material in-fill above the plate.

The partial differential equation describing the vertical flexural
deflection w of the plate can then be written as:

∇2
[
D∇2 w

]
− (1 − ν)

×
[

∂2 D
∂x2

∂2 w

∂y2
− 2

∂2 D
∂x∂y

∂2 w

∂x∂y
+ ∂2 D

∂y2

∂2 w

∂x2

]

−Nx
∂2 w

∂x2
− 2Nxy

∂2 w

∂x∂y
− Ny

∂2 w

∂y2
+ "ρgw = p. (2)

The boundary conditions are such that the deflection w vanishes at
infinity,

lim
|x |,|y|→∞

w = 0 (3)

as should the slopes of the deflection along the corresponding
dimensions:

lim
|x |→∞

∂w

∂x
= 0, lim

|y|→∞

∂w

∂y
= 0. (4)

When the rigidity D has a spatially uniform value D0, the solution
for 2-D flexure of a plate with uniform rigidity D0 subjected to arbi-
trary vertical and in-plane loads may be written in the wavenumber
domain of kx and ky (Banks et al. 1977; Wessel 1996). Denoting
the Fourier transform of the deflection F[w(x, y)] by ŵ(kx , ky), the
uniform plate solution can be written as

ŵ0(kx , ky) = p̂(kx , ky)%̂(kx , ky), (5)

where we have defined a ‘uniform response function’ %̂(kx , ky):

%̂(kx , ky) =
[
(2π )4 D0

(
k2

x + k2
y

)2 + (2π )2

×
(
Nx k2

x + 2Nxykx ky + Nyk2
y

)
+ "ρg

]−1
. (6)

The thin elastic plate formulation as expressed in (2) is valid
when the rigidity D(x, y) is slowly varying. To make this require-
ment explicit, the form of the rigidity must be such that it can
be decomposed into a spatially uniform value D0 and a spatially
variable part D′ (x, y),

D(x, y) = D0 + D′(x, y). (7)
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By using the decomposition in (7), we can rewrite (2) as an integral
equation in the wavenumber domain,

ŵ(kx , ky) = p̂(kx , ky)%̂(kx , ky)

− (2π )4

{ +∞∫

−∞

+∞∫

−∞

dsx dsy D̂′(kx − sx , ky − sy)ŵ(sx , sy)

×
{(

k2
x + k2

y

) (
s2

x + s2
y

)
− (1 − ν)

×
[
(kx − sx )2s2

y − 2(kx − sx )(ky − sy)sx sy + (ky − sy)2s2
x

] }}

.

(8)

We show in Appendix A that (8) is in the form of a 2-D Fredholm
integral equation of the second kind, and may be solved through
an iterative process as described in Appendix B. Our iterative solu-
tion to this problem for arbitrary, square-integrable rigidity D and
load distribution p is developed using Fourier transforms in the
wavenumber domain, but some calculations are performed in the
space domain to improve accuracy and execution time. The iteration
that is implemented in our computer algorithm is

ŵ(n)(kx , ky) = ŵ0(kx , ky) − %̂(kx , ky)F
{

∇2
[
D′∇2 w(n−1)

]

− (1 − ν)

[
∂2 D′

∂x2

∂2 w

∂y2

(n−1)

− 2
∂2 D′

∂x∂y
∂2 w

∂x∂y

(n−1)

+ ∂2 D′

∂y2

∂2 w

∂x2

(n−1)
]}

. (9)

An updated solution ŵ(n) in the wavenumber domain is equal to
the uniform plate solution ŵ0 that is corrected by a small pertur-
bation related to the spatial derivatives of the varying part of the
rigidity D′ , as well as the spatial derivatives of the previous solu-
tion w(n − 1). The iteration is allowed to continue until the root mean
square differences between successive solution estimates wn and
wn − 1 drop below a specified tolerance value. The boundary con-
ditions (3) and (4) are enforced by setting the mean value of plate
deflection to zero which corresponds to setting the zero wavenum-
ber component to zero. In addition, the applied load distribution
p must have zero mean.

While the differential equation and boundary conditions could be
solved in the space domain using a finite difference or finite element
approach, the Fourier analysis is helpful in four areas. (1) The
Fourier approach provides an optimal initial guess as the well-known
solution to flexure of a uniform rigidity plate under an arbitrary load
(Banks et al. 1977; Wessel 1996). (2) For periodic band-limited
functions D′(x, y) and w(x, y), the most accurate estimates of the
derivatives with respect to x and y are performed by wavenumber
multiplication in the Fourier domain (Trefethen 2000). One could
design an optimal finite difference operation in the space domain
to perform the derivative, but as shown in (Trefethen 2000), the
length of that space domain operator is equal to the length of the
w or D′ arrays. The most accurate and efficient way to perform
this differentiation is by taking the discrete Fourier transform of
each array, multiplying by the appropriate wavenumbers, and then
inverse transforming the result. The three terms involving spatial
derivatives of the D′ array need to be evaluated only once while
the three spatial derivatives of the w array need to be evaluated

at each iteration. (3) By iterating in the Fourier domain, the band-
limited requirement for convergence can be enforced by suppressing
numerical instabilities that can occur at the shortest wavelengths.
(4) Finally, the conditions for convergence of the iterative scheme
are best exposed in the Fourier domain as shown in Appendix C.

3 B E N C H M A R K S

We tested the accuracy of the iterative algorithm given in eq. (9)
through comparisons with analytic, closed-form solutions to thin
plate flexure problems. As there is a paucity of such solutions in two
dimensions which involve variable rigidity, we drew most bench-
mark cases from textbook examples of 1-D solutions (Hetenyi 1946;
Turcotte & Schubert 2002). The numerical algorithm was coded in
FORTRAN and utilizes a multidimensional fast Fourier transform
(FFT) routine written by Brenner (1967). The inputs to the program
are grids of plate rigidity D(x, y) and the load distribution p(x, y).
The program calculates grids of plate deflection, plate curvature and
gravity anomaly as output. Typical grid sizes are 2048 × 2048 pixels
and grid spacing is about one hundredth of the flexural wavelength
so most cases had grid sizes of 20 flexural wavelengths across both
grid dimensions. Such spatially large grids are needed to ensure that
the numerical solutions approach zero at the boundaries.

The benchmark results, (a) through (g), are summarized in Fig. 1.
The first column of the figure provides a short description of the
benchmark as well as the equation in this section for the analytic
formula. The second column shows the loading configurations of
benchmarks in diagrams. Note all these cases are 1-D benchmarks
except for (f). Also note that only benchmarks (b) and (g) have
variable rigidity. The third column shows profiles of plate deflection
taken across each model where the horizontal scale is normalized
by the appropriate flexural parameter. At this vertical scale the
profiles from the numerical models and analytic solutions cannot
be distinguished. The last column shows the difference between
the numerical and analytic solutions, which range from about 1 to
10 per cent depending on the benchmark.

(a) Line load, uniform D

The first benchmark is a line load on a plate with uniform rigidity D0

(Fig. 1a). The load distribution has the form p(x, y) = V0δ(x), where
V0 is the amplitude of the vertical load. The upward deflection w(x)
then has the expression (Hetenyi 1946; Turcotte & Schubert 2002):

w = −wl exp
(

− |x |
α

)[
cos

( x
α

)
+ sin

( |x |
α

)]
, (10)

where the amplitude is wl = V0α
3/8D0 and the flexural parameter

α is given by

α =
[

4D0

"ρg

]1/4

. (11)

In this case as well as the other tests that followed, we assumed a
density contrast "ρ that is appropriate for the oceanic lithosphere,
where the substrate has a density similar to that of the uppermost
mantle and the in-fill above the plate has the density of seawater.

We use our numerical approach to simulate this simple case.
The difference between the analytic and numerical solutions are
everywhere smaller than 1 per cent. The difference is caused by
the finite length of the numerical model and could be improved by
increasing the x-dimension of the model.
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Figure 1. Summary of benchmark tests.

(b) Line load, variable D (line crack)

The second benchmark is a line load on a cracked plate (Fig. 1b).
The analytic solution is (Watts 2001; Turcotte & Schubert 2002)

w = −2wl exp
(

− |x |
α

)
cos

( x
α

)
, (12)

where wl and α have the same values as in (10). We model this
broken plate as a sharp reduction in rigidity at the origin. In practice,
the code will not converge if the rigidity contrast between the plate
and the hole is greater than about 1000, corresponding to a reduction
in elastic thickness by an order of magnitude. In addition the shape
of the rigidity reduction was modelled using a Gaussian function
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with a half width of 20 pixels while the load was 1 pixel wide.
This finite width of the rigidity hole corresponds to smoothing the
rigidity to enable convergence as discussed in Appendix C while still
permitting variation over wavelengths considerably shorter than the
flexural wavelength. The path to convergence is shown in Fig. 1(b).
The first iteration provides a good fit to the uniform rigidity plate
flexure solution. After 10 iterations the fit at the origin improves
and by 84 iterations the solution has converged. The model error
plot shows some large differences of up to 10 per cent between the
converged numerical solution and the analytic solution (12). These
are primarily due to the need to have a finite width flexural rigidity
hole, which moves the region of maximum flexure by about 5 pixels
away from the origin. This misfit illustrates the band-limited nature
of this numerical modelling approach and demonstrates the error
introduced when this smoothness constraint is not met.

(c) Line load, in-plane compression, uniform D

The third benchmark is a line load on a uniform rigidity plate
(Fig. 1c). An additional constant compressional in-plane force Nx

is applied along the x-direction. The analytic solution is (Hetenyi
1946):

w = −we exp
(

− |x |
β

) [
β cos

(
x
γ

)
+ γ sin

( |x |
γ

)]
, (13)

where we = V0/2α2"ρg with α as in (11) and the other flexural
parameters β and γ have the expressions

β =
[(

"ρg
4D0

)1/2

+
(

Nx

4D0

)]−1/2

(14)

γ =
[(

"ρg
4D0

)1/2

−
(

Nx

4D0

)]−1/2

. (15)

From the form of β and γ , we can identify the critical buckling load
Nc as

Nc = 2 ("ρgD0)1/2 . (16)

We tested both extensional and compressional regimes for our
benchmarks, but here we show only one case in which the magni-
tude of the compressional in-plane force is 0.95Nc (Fig. 1c). The
numerical model differs from the analytic formula by less than
1 per cent even when the loading conditions are close to inducing
plate buckling.

(d) Line moment, uniform D

The fourth benchmark is a line moment on a uniform rigidity plate
(Fig. 1d). The deflection w may be found by approximating the
applied moment as a couple of equal and opposing vertical loads
(Hetenyi 1946; Watts 2001). We illustrate the assumptions and im-
plications of this approximation in Appendix D. Adapting the 1-D
solution arising from this approximation for the case of a line mo-
ment applied along the y-direction on a plate leads to the expression

w = −wm exp
(

− |x |
α

)
sin

( x
α

)
, (17)

where wm = M0α
2/4D0. The numerical model differs from the

analytic formula by less than 1 per cent for this case.

(e) Line moment, in-plane compression, uniform D

The fifth benchmark is a line moment on a uniform rigidity plate
including an in-plane force (Fig. 1e). The deflection may be obtained
as (Hetenyi 1946),

w = −w f exp
(

− |x |
β

)
sin

(
x
γ

)
, (18)

where in this case wf = M0βγ /4D0 and the same expressions for β

and γ as in (14) and (15) are used. As with the previous example,
the numerical model differs from the analytic formula by less than
1 per cent.

(f) Concentrated moment, uniform D

The sixth benchmark is a concentrated moment applied to a uniform
rigidity plate (Fig. 1f). The moment is oriented along the x-direction
and is applied at the origin. The deflection due to this concentrated
moment is given by:

w = wp

[
x

21/2l (x2 + y2)1/2

] {

Kei1

[(
x2 + y2

)1/2

l

]

− Ker1

[(
x2 + y2

)1/2

l

]}

, (19)

where we are using Kelvin–Bessel functions Ker and Kei of order
1, and wp = V0l2/2πD0. The flexural parameter l has the form,

l =
[

D0

"ρg

]1/4

. (20)

The numerical model differs from the analytic formula by less than
1 per cent for this case as well.

(g) Line moment, variable D (sharp contrast)

The final benchmark is a line moment applied to a plate with a
stepwise change in rigidity (Fig. 1g). The rigidity has a variation
described by

D(x) =
{

D1: x < 0

D2: x > 0
(21)

and a line moment is applied along the boundary at x = 0 between
the two regions of the plate. As derived in Appendix E, the formulas
for the deflection w1 and w2 in each region are

w1 = exp
(

x
α1

) [
A1 cos

(
x
α1

)
+ B1 sin

(
x
α1

)]
: x < 0 (22)

w2 = exp
(

− x
α2

) [
A2 cos

(
x
α2

)
+ B2 sin

(
x
α2

)]
: x > 0,

(23)

where α1 and α2 are the flexural parameters for the plate regions
on each side of the boundary. The values for the coefficients A1,
A2, B1 and B2 are given in Appendix E. The deflection computed
by the iterative spectral method agrees to within 10 per cent with
the analytic solutions for a rigidity contrast of a factor of 1000
(corresponding to a Te contrast of ∼10 times).

 at U
niversity of California, San D

iego on D
ecem

ber 22, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Iterative solution for plate flexure with variable rigidity 1017

Figure 2. (a) Plate deflection due to a uniform bending moment applied to a trench having a sinusoidal planform. The flexural rigidity of the plate to the
right-hand side of the trench is 1000 times less than the flexural rigidity on the left-hand side of the trench resulting in an asymmetry across the trench. Red
colour indicates deflection upwards while blue colour indicates deflection downwards. Contours of deformation shown every 1 m. (b) Profiles across the most
concave and convex parts of the trench illustrate the effects of curvature on the amplitude and wavelength of the flexure.

4 D I S C U S S I O N

4.1 Example 2-D models

In the previous section, we evaluated the accuracy of the iterative
spectral method through comparisons with analytic solutions, un-
der a variety of the loading and rigidity configurations. We also
examined the validity of the vertical load couple approximation
to the effect of an applied moment in the plate interior. This new
modelling approach is particularly appropriate for simulating plate
flexure outboard of deep ocean trenches. The most general case of
trench flexure has a plate of variable age, and thus variable flex-
ural rigidity, being subducted along a trench that has an arcuate

planform. The first two models presented in this study illustrate the
importance of these two effects as well as the robustness of our solu-
tion algorithm by deliberately exaggerating the rigidity contrast and
trench axis geometry. The computer algorithm can accommodate
both effects simultaneously but we separate them to isolate their
relative importance, then show their combined effects in the third
and last model.

The first case illustrates the importance of an arcuate trench plan-
form on trench depth and outer rise height. The model trench has
a sinusoidal planform as shown in Fig. 2, representing an extreme
case of an arcuate trench. A uniform bending moment of 1.0 ×
1015 N was applied along the trench by constructing a 2-D force
grid containing mostly zeros but having force couples that are
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approximated by the derivative of a Gaussian function, effectively
producing a force couple with a finite width of one pixel. The plate
on the left-hand side of the trench was assigned a uniform flexural
rigidity of 1.0 × 1023 Nm while the plate on the right-hand side
was assigned a rigidity 1000 times smaller, corresponding to a Te

of 25 and 2.5 km, respectively. In an actual subduction zone, the
subducted plate ends somewhere deep in the mantle. Our solution
method is designed only for continuous plates where the deforma-
tion goes to zero at the edges of the model. To simulate the plate
having an end in the mantle we dramatically weaken the subducted
plate so its finite strength does not have a dominant effect on the
flexure outboard of the trench. The sinusoidal model with variable
rigidity was embedded in a larger 2048 × 2048 grid with a pixel
spacing of 1.85 km. The larger grid has a uniform rigidity around
the perimeter of the smaller subgrid. Convergence to an accuracy of
better than 0.004 was achieved after 60 iterations in 130 s of CPU
time on a personal computer.

The results (Fig. 2) illustrate the importance of accommodating a
realistic trench planform as well as the ability to dramatically lower
the flexural rigidity of the ‘subducted’ plate. Fig. 2 shows a con-
tour plot of the plate deflection. Similarly as in (Tanimoto 1998),
the physical interpretation of the ‘outboard’ deflection should be
restricted to regions where the deflection curve is concave down-
ward, which for Fig. 2(b) is to the right of 25 km for profile 1 and
50 km for profile 2. There, the flexure has a broader response than
the flexure on the right-hand side of the trench. This is due to the
1000 times difference in flexural rigidity. By simulating a broken
end of the subducted plate in the mantle in this way, the numerical
values of the applied loads lose absolute physical meaning, but the
deflection and curvature of the trench and outer rise are accurately
preserved. Two profiles taken across the most concave (profile 1)
and convex (profile 2) planforms of the trench illustrate the impact
of trench curvature on both the amplitude and wavelength of the
flexure. Profile 1 has an outer rise that is 1.5 times taller than profile
2 and the distances to the first zero crossing outboard of the outer
rises are significantly different. If one modelled these two flexure
profiles using the standard 1-D approach the estimates of bending
moment and flexural rigidity for profile 1 would be too large while
the same estimates for profile 2 would be too small. When mod-
elling real seafloor topography data, the position of the trench and
outer rise will depend on the location of the applied bending mo-
ment. The benchmarks provided above show that the location of the
first zero crossing point seaward of the trench axis can be adjusted
by changing the ratio of the downward load V0 and the bending
moment M0 (Turcotte & Schubert 2002).

The second case illustrates the ability and importance of varying
the flexural rigidity along the strike of the trench. When modelling
actual trenches, the rigidity outboard of the trench will vary accord-
ing to the rigidity expected for the actual age of the plate. In this
model, the flexural rigidity varies smoothly over a range appropriate
for oceanic lithosphere (Te of 5–25 km) as shown in Fig. 3. This cor-
responds to an along-strike variation in rigidity of 125 times. Elastic
thicknesses and flexural rigidity are provided along six sample pro-
files in Fig. 3. As in the previous case a uniform bending moment
of 1.0 × 1015 N was applied along the trench by constructing a 2-D
force grid and utilizing the derivative of a Gaussian to assign forces
to pixels. The results show a reduction in flexural amplitude and an
increase in flexural wavelength as the flexural rigidity is increased
from the bottom to the top of the plate, as is expected in a plate with
gradually varying rigidity.

The third and final case we present is a toy model of the expected
plate deflection along a portion of the South America trench offshore

Chile (Fig. 4a), using the actual trench geometry but synthetic esti-
mates of the rigidity and loading properties. We caution the reader
that it is outside of the scope of the present study to obtain rigorous
estimates for these parameters that agree well with observations.
For this toy model, the vertical loads and moments were applied
along a digitized planform of the trench that was divided into 25-
km-long segments. The magnitudes for this load distribution were
chosen arbitrarily in order to reasonably simulate variations in load-
ing along the Chile trench (Bry & White 2007; Contreras-Reyes &
Osses 2010). The rigidity variations (shown in Figs 4e and f) out-
board of the trench reflect a reasonable estimate of variations due
to lithosphere age and plate weakening due to yielding, while the
rigidity inboard of the trench was set to a constant value which is
an order of magnitude lower. Note that the rigidity values assumed
here will differ from those corresponding to previous estimates of
effective elastic thickness for the outer rise at this particular region
(Bry & White 2007; Contreras-Reyes & Osses 2010), in part due to
the choice of thermal parameters. However, what we seek to demon-
strate here is the significance of relative variations in rigidity. When
lithospheric yielding is taken into account in our model, the plate
can be as much as ten times weaker at the trench than otherwise.
This in turn results in significant curvature of the model deflec-
tion at the outer rise that is not captured when plate rigidity varies
only with age without any imposed weakening (Figs 4b and d).
While the depth at the trench is about the same for both test cases,
the outer rise is more prominent for the case that allows yielding.
This model, though using synthetic rigidity and loading parameters,
demonstrates the potential utility of our iterative solution to future
studies involving flexural modelling, particularly those concerned
with the curvature of the outer rise in subducting oceanic plates.

4.2 Some practical considerations

In all of the test cases and benchmark models described above,
the load and rigidity are embedded in a grid having dimensions
of a power of 2. In actuality, any grid having dimensions that can
be factored into small prime numbers is nearly optimal for the FFT
algorithm (Brenner 1967). One minor issue occurs at the boundaries
of the model when there are sharp variations in rigidity. The Fourier
analysis assumes all the functions repeat cyclically over the length
and height of the grid. The rate of convergence of the iteration
method depends on both the magnitude and rate of variation of
the flexural rigidity grid. To improve convergence rate, the part
of the rigidity grid that is external to the model area is smoothly
tapered to a constant background value. Hence the rigidity along the
perimeter of the total grid becomes set to a constant value as well.
In addition the rigidity grid is low-pass filtered in the wavenumber
domain using a Gaussian function to reduce the amplitudes of the
transformed rigidity grid near the Nyquist wavenumber. The half-
wavelength of this Gaussian filter is 10 pixels which is similar to
the smoothing needed for the cracked plate benchmark.

While this paper is largely focussed on potential applications to
modelling flexure outboard of trenches, the model formulation is
quite general and could be applied to any thin-plate flexure prob-
lem where variable rigidity is needed. One case where this method
(1-D) was already used is to model the flexural evolution of an
oceanic fracture zone where a step contrast in age across the frac-
ture zone results in a sharp contrast in flexural rigidity (Sandwell
1984). The young side of the fracture zone subsides at a faster rate
than the older side and this differential subsidence drives the flex-
ure. Another potential example is the modelling of flexure beneath
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Iterative solution for plate flexure with variable rigidity 1019

Figure 3. Plate deflection due to a uniform line moment applied to a plate of spatially variable rigidity. (a) The rigidity variations from the bottom to the top of
the plate correspond to elastic thickness variations appropriate for oceanic lithosphere (5–25 km). Red colour indicates deflection upwards while blue colour
indicates deflection downwards. Contours of deformation shown every 1 m. (b) Six profiles extracted from the plate deflection model illustrate the changes in
amplitude and flexural wavelength due to along-strike variations in rigidity.

very large seamounts which have bent the plate beyond its elastic
limits. Accordingly, a cracked plate model has been proposed for
the Hawaiian Chain (Watts 2001). A third potential application is
the flexure of foreland basins where the amplitude of the flexure is
sufficient to weaken the plate (Watts 2001). Indeed this formulation
could be used to model any type of thin plate flexure where the size
of the plate is much greater than the flexural wavelength such that
the boundary conditions given in eqs (3) and (4) are appropriate.

5 C O N C LU S I O N S

We have developed a 2-D iterative spectral method to compute the
flexural response of a thin elastic plate of variable rigidity floating on

an inviscid fluid half-space that is subjected to an arbitrary vertical
load and in-plane force. The method will converge as long as the
spatial variations in flexural rigidity are band-limited. In practice, we
note that the rigidity grid must be low-pass filtered over a distance
of about 10 pixels to achieve convergence.

We have assembled seven analytical benchmarks for testing the
code. Five of these benchmarks have uniform rigidity plates so ac-
curate solutions are achieved in one iteration. The two non-uniform
rigidity benchmarks correspond to a broken plate and a plate with a
step in rigidity. The numerical result for the 1000-times step varia-
tion in rigidity shows excellent agreement with the analytic solution
while there are up to 10 per cent differences between the numeri-
cal broken plate result and its analytic solution. This broken plate
case reveals the limitation of the approach in that the rigidity must
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Figure 4. Plate deflection due to a varying moment and vertical load applied to a plate of spatially variable rigidity based on plate age and lithospheric yield
strength envelopes. (a) Map of high-resolution multibeam and predicted bathymetry (Smith & Sandwell 1997) with contours every 500 m from depths of 4 to
6 km. Contours of seafloor age (Müller et al. 2008) every 5 Ma are also shown. (b) Profiles of flexural deflection are compared for the cases when the plate
rigidity is only based on age, and when weakening from increased curvature due to bending occurs. The location of the profile is shown as a dotted track in
the maps along the left-hand panel. (c) Model results for flexural deflection, with contours every 500 m. The moment and vertical loads were applied along
the trench planform outlined in dark green. (d) Profiles of the deflection curvature (second spatial derivative). (e) The rigidity grid used to compute the final
deflection solution displays some weakening towards the trench, with cooler colours representing a stronger plate and warmer colours corresponding to a
weaker plate. The transition from cool to warm colours occurs around the mean value of the rigidity for this grid, which is around 5 × 1023 Nm. (f) Rigidity
values along the profile are compared. The sharp spike upwards in rigidity around 300 km away from the trench corresponds to a change in the sign of the
curvature.
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be smooth relative the Nyquist wavelength, but can still vary over
wavelengths shorter than the flexural wavelength. For Earth appli-
cations we expect smooth spatial variations in rigidity in this range
so the accuracy of the solutions should be better than 10 per cent.

To illustrate the 2-D capabilities of the approach we considered
three variable rigidity test cases to simulate subduction zones. The
first case has a sinusoidal trench planform and dramatic weakening
of the ‘subducted’ plate. The results show a factor of 1.5 difference
in outer rise height on the plate outboard of the concave trench plan-
form relative to the plate outboard of the convex trench planform.
This highlights the need to have a 2-D formulation for modelling
actual trenches. The second case is a linear trench where the sub-
ducting plate has an along-trench ramp in elastic thickness from 5
to 25 km. As expected the flexural profiles across the trench vary
dramatically with the underlying plate thickness. In the third case,
we have combined these two features to simulate a more realistic
subduction geometry with a synthetic model of the Chile trench,
offshore South America. This final model demonstrates the utility
we expect this solution to bring to flexural modelling studies in the
future.

Finally, we note that the vertical loading grid and rigidity grids
can be arbitrarily complex as long as they satisfy the smoothness
needed for convergence. Therefore this approach could be applied
to all types of geophysical flexure problems ranging from seamount
loading to thermomechanical evolution of sedimentary basins.
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A P P E N D I X A : E X P R E S S I N G 2 - D F L E X U R E A S A F R E D H O L M I N T E G R A L E Q UAT I O N
O F T H E S E C O N D K I N D

Recall that we specified the following decomposition for the plate rigidity D(x, y) in (7) in the main text,

D(x, y) = D0 + D′(x, y). (A1)

By its definition as a material parameter, the plate rigidity cannot have a negative value, so a restriction for D′(x, y) is that D′(x, y) > −D0

for all (x, y). If we substitute the above decomposition for D into the governing equation (2),

D0∇2
(
∇2 w

)
+ ∇2

[
D′∇2 w

]
− (1 − ν)

[
∂2 D′

∂x2

∂2 w

∂y2
− 2

∂2 D′

∂x∂y
∂2 w

∂x∂y
+ ∂2 D′

∂y2

∂2 w

∂x2

]

− Nx
∂2 w

∂x2
− 2Nxy

∂2 w

∂x∂y
− Ny

∂2 w

∂y2
+ "ρgw = p. (A2)

Eventually, we will express this partial differential equation in the space domain as an integral equation in the wavenumber, or Fourier domain.
Formally, the 2-D Fourier transform of a function f is defined as,

F [ f (r)] = f̂ (k) =
∫

X
dS f (r)e−i2πk·r . (A3)

The surface integral is taken over the entire x–y plane denoted by X. The transformed function f̂ is a function of the wave vector k, which has
components kx and ky. In this work, we evaluate (A3) and the corresponding inverse Fourier transform using iterated integrals over x and y,
as well as kx and ky,

F [ f (r)] = f̂ (k) =
+∞∫

−∞

+∞∫

−∞

dx dy f (x, y)e−i2π (kx x+ky y) (A4)

F−1
[

f̂ (k)
]

= f (r) =
+∞∫

−∞

+∞∫

−∞

dkx dky f (kx , ky)ei2π (kx x+ky y). (A5)

We assume that D′ and w are band-limited functions so that their Fourier transforms exist. These variables can therefore be written using
inverse Fourier transforms over the dummy variables (ζ x, ζ y) and (sx, sy), respectively,

D′(x, y) =
+∞∫

−∞

+∞∫

−∞

dζx dζy D̂′(ζx , ζy)ei2π(ζx x+ζy y) (A6)

w(x, y) =
+∞∫

−∞

+∞∫

−∞

dsx dsy ŵ(sx , sy)ei2π(sx x+sy y). (A7)

The expressions (A6) and (A7) are then substituted in the governing equation (2). After performing this substitution, we interchange the order
of integration with respect to ζ x and sx and similarly for ζ y and sy. This manipulation is valid when the absolute value of the integrands are
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finite. Carrying out the successive differentiations over x and y leads to:
+∞∫

−∞

+∞∫

−∞

dsx dsy

{[
(2π )4 D0

(
s2

x + s2
y

)2 + (2π )2
(
Nx s2

x + 2Nxysx sy + Nys2
y

)
+ "ρg

]
ŵ(sx , sy)ei2π(sx x+sy y)

}

+ (2π )4
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−∞
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dsx dsy dζx dζy
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s2
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}

− (2π )4(1 − ν)

+∞∫

−∞
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x ζ
2
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yζ
2
x

]
D̂′(ζx , ζy)ŵ(sx , sy)ei2π[(sx +ζx )x+(sy+ζy)y]

}
= p(x, y). (A8)

All the terms in the above equation are still functions of (x, y) since we are just using integral representations for the terms in the left-hand
side (LHS). We can then apply the forward transform (A4) to both sides of the equation and get:
+∞∫
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= p̂(kx , ky). (A9)

From the properties of the Dirac delta distribution, we can write the following relations:
+∞∫

−∞

dx ei2π (sx −kx )x = δ (sx − kx ) ,

+∞∫

−∞

dx ei2π [ζx −(kx −sx )]x = δ [ζx − (kx − sx )] (A10)

+∞∫

−∞

dy ei2π(sy−ky)y = δ(sy − ky),

+∞∫

−∞

dy ei2π[ζy−(ky−sy)]y = δ
[
ζy − (ky − sy)

]
. (A11)

We substitute these relations (A10) and (A11) into (A9), and then integrate over sx and sy for the first set of integrals, while we integrate over
ζ x, ζ y for the remaining set of integrals. What remains after invoking the sifting property of the Dirac delta distribution is an equation in the
wavenumber domain:
[
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Rearranging terms slightly and combining the integrals over sx and sy, we see that this can be cast in the form of an integral equation,
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We can write (A13) compactly by adopting a couple of definitions. First, we recall the form of the response function to uniform rigidity D0,
given in (6). Second, we define the kernel K(kx, sx; ky, sy) as:

K (kx , sx ; ky, sy) = −(2π )4%̂
{(

k2
x + k2

y

)2 (
s2

x + s2
y

)2 − (1 − ν)s2
x (ky − sy)2 − 2sx (kx − sx )sy(ky − sy) + s2

y (kx − sx )2
}

× D̂′(kx − sx , ky − sy). (A14)

Using the notations specified by (6) and (A14) enables us to express (A13) in the standard form of a 2-D Fredholm integral equation of the
second kind,

ŵ(kx , ky) = p̂(kx , ky)%̂(kx , ky) +
+∞∫

−∞

+∞∫

−∞

dsx dsy K (kx , sx ; ky, sy)ŵ(sx , sy), (A15)

where the nonhomogeneous term of the integral equation is p(kx , ky)%̂(kx , ky), which is identical to the uniform plate solution ŵ0(kx , ky)
stated in (5). Verifying that (A13) is indeed a Fredholm integral equation of the second kind enables us to refer to the well-developed theory
behind these types of equations in establishing the existence and uniqueness of a solution. If a solution ŵ can be found in the Fourier domain,
then by taking the inverse transform we obtain the desired solution w(x, y) to the governing eq. (2). One method of solving Fredholm integral
equations is through successive approximation, and in the following section we describe our implementation of such an iterative algorithm.

A P P E N D I X B : A N I T E R AT I V E S C H E M E T O S O LV E T H E E Q U I VA L E N T
I N T E G R A L E Q UAT I O N

If we consider the Fredholm integral equation of the second kind as expressed in (A15) with kernel (A14), for many forms of D′ (and hence
D̂′), the kernel turns out to be neither symmetric, degenerate, nor separable. This implies that some standard methods of solving integral
equations are not feasible for our purposes. Ideally, we want to develop a computational framework for solving thin elastic plate flexure
problems involving arbitrary variations in rigidity, valid under some criterion of smoothness. In pursuit of this generality, we resort to an
iterative solution method.

A solution to the Fredholm integral equation (A15) can be obtained by starting with a guess for ŵ, then evaluating the right-hand side
(RHS) of the equation. This result is then substituted again into the RHS, giving a new estimate for the solution. The process is repeated
until the desired accuracy is reached. We will delve further into the conditions for the convergence of this scheme in the next section. In the
meantime, we will be demonstrating the iteration process. Suppose that our guess is ŵ = 0 for all wavenumbers, and so by substituting this
into the RHS of (A15), we get that the first solution is ŵ(1) = ŵ0. By induction, the nth approximation to the solution of the integral equation
is given by

ŵ(n) = ŵ0 +
+∞∫

−∞

+∞∫

−∞

dsx dsy K (kx , sx ; ky, sy)ŵ(n−1)(sx , sy). (B1)

At each step of the algorithm, we substitute the kernel as given in (A14), then calculate the integral. This may be done completely in the
wavenumber domain. However, as some of the individual terms comprising K(kx, sx; ky, sy) are in the form of a convolution, they may also
be computed as multiplications in the space domain. To see this, we rewrite the integrand by separating it according to the constituent terms
of the kernel:
+∞∫

−∞

+∞∫

−∞

dsx dsy K (kx , sx ; ky, sy)ŵ(n−1)(sx , sy)

= −(2π )4%̂

{
(
k2

x + k2
y

)2
+∞∫

−∞

+∞∫

−∞

dsx dsy

[
D̂′(kx − sx , ky − sy)

] [(
s2

x + s2
y

)2
ŵ(n−1)(sx , sy)

]

− (1 − ν)

{ +∞∫

−∞

+∞∫

−∞

dsx dsy

[
(ky − sy)2 D̂′(kx − sx , ky − sy)

] [
s2

x ŵ
(n−1)(sx , sy)

]

− 2

+∞∫

−∞

+∞∫

−∞

dsx dsy

[
(kx − sx )(ky − sy)D̂′(kx − sx , ky − sy)

] [
sx syŵ

(n−1)(sx , sy)
]

+
+∞∫

−∞

+∞∫

−∞

dsx dsy

[
(kx − sx )2 D̂′(kx − sx , ky − sy)

] [
s2

yŵ
(n−1)(sx , sy)

]
}}

. (B2)

The individual terms on the RHS may be identified as convolutions in the wavenumber domain. By the convolution theorem, these terms have
equivalent representations in the space domain. The presence of terms proportional to powers of the wavenumber components suggests that

 at U
niversity of California, San D

iego on D
ecem

ber 22, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Iterative solution for plate flexure with variable rigidity 1025

we are dealing with the derivatives of D′ and w. Thus, an alternate way of expressing (B2) is

+∞∫

−∞

+∞∫

−∞

dsx dsy K (kx , sx ; ky, sy)ŵ(n−1)(sx , sy)

= −%̂(kx , ky)F
{

∇2
[
D′∇2 w(n−1)

]

− (1 − ν)

[
∂2 D′

∂x2

∂2 w

∂y2

(n−1)

− 2
∂2 D′

∂x∂y
∂2 w

∂x∂y

(n−1)

+ ∂2 D′

∂y2

∂2 w

∂x2

(n−1)
]}

. (B3)

Substitution of (B3) in (B1) leads to the expression (9) that was presented and discussed in the main body of the paper.

A P P E N D I X C : C O N D I T I O N S F O R C O N V E RG E N C E O F T H E I T E R AT I V E S O LU T I O N

The Fredholm theory of integral equations provides a framework for discussing the existence and uniqueness of a solution obtained by an
iterative technique. When written in a standard form such as in (A15), the RHS of an integral equation is regarded as an operator T acting
on the unknown function. In our case, the unknown function we are solving for is ŵ, and the operator T [ŵ] may be defined as,

T [ŵ] = ŵ0 +
+∞∫

−∞

+∞∫

−∞

dsx dsy K (kx , sx ; ky, sy)ŵ(sx , sy). (C1)

In the operator view of integral equations, the Banach fixed point theorem ensures that a unique solution will exist for ŵ = T [ŵ] for a
contractive mapping T on a complete metric space (Korevaar 1968; Jerri 1999). Now, the operator T can be considered to be a contractive
mapping on the metric space M if for each u1, u2 ∈ M the following relation holds,

d[T (u1), T (u2)] ≤ ϒd(u1, u2). (C2)

In the above condition, 0 < ϒ < 1 , and the metric d between two continuous functions u1(k) and u2(k) in the set C[(ξa, ξb); (ηa, ηb)] is defined
as

d[u1(kx , ky), u2(kx , ky)] = max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb )]

∣∣∣u1[(kx , ky), u2(kx , ky)] − u2[(kx , ky), u2(kx , ky)]
∣∣∣. (C3)

Before we evaluate the criterion (C2) as it applies to consecutive estimates of ŵ resulting from the iterations, we make a few more
assumptions. First, ŵ0 must be continuous over the region described by (kx, ky) ∈ [(ξ a, ξ b); (ηa, ηb)] . The kernel K(kx, sx; ky, sy) must also be
continuous in {(kx , sx ; ky, sy) : (kx, ky) ∈ [(ξ a, ξ b); (ηa, ηb)], (sx , sy) ∈ [(ξa, ξb); (ηa, ηb)]}. Furthermore, the kernel must be bounded such that
|K(kx, sx; ky, sy)| < ϑ where ϑ is some finite constant. Note that these assumptions are consistent with our previously set requirements that
the Fourier transforms of the load distribution p and rigidity D must exist, and furthermore band-limited.

Considering the LHS of (C2) as it applies to successive estimates for ŵ, we get

d[T (ŵn+1), T (ŵn)] = max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb )]

∣∣∣∣∣ŵ0 +
∫ ξb

ξa

∫ ηb

ηa

dsx dsy K (kx , sx ; ky, sy)ŵ(n+1)(sx , sy)

− ŵ0 −
∫ ξb

ξa

∫ ηb

ηa

dsx dsy K (kx , sx ; ky, sy)ŵ(n)(sx , sy)

∣∣∣∣∣

d[T (ŵn+1), T (ŵn)] = max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb )]

∣∣∣∣∣

∫ ξb

ξa

∫ ηb

ηa

dsx dsy K (kx , sx ; ky, sy)
[
ŵ(n)(sx , sy) − ŵ(n+1)(sx , sy))

]
∣∣∣∣∣. (C4)

Meanwhile, it may be shown that the RHS fulfills the inequality

max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb)]

∣∣∣∣∣

∫ ξb

ξa

∫ ηb

ηa

dsx dsy K (kx , sx ; ky, sy)
[
ŵ(n)(sx , sy) − ŵ(n+1)(sx , sy))

]
∣∣∣∣∣

≤ max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb)]

∣∣ŵ(n)(sx , sy) − ŵ(n+1)(sx , sy))
∣∣ max

(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb)]

∫ ξb

ξa

∫ ηb

ηa

dsx dsy

∣∣∣K (kx , sx ; ky, sy)
∣∣∣

max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb)]

∣∣∣∣∣

∫ ξb

ξa

∫ ηb

ηa

dsx dsy K (kx , sx ; ky, sy)
[
ŵ(n)(sx , sy) − ŵ(n+1)(sx , sy))

]
∣∣∣∣∣

≤ d
(
ŵ(n+1), ŵ(n)

)
max

(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb )]

∫ ξb

ξa

∫ ηb

ηa

dsx dsy |K (kx , sx ; ky, sy)| (C5)
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as in (Korevaar 1968) and following the definition of the metric (C3). If we compare the RHS of (C2) with the required convergence criteria
for this case, which is

d
(
T (ŵ(n+1)), T (ŵ(n))

)
≤ ϒd

(
ŵ(n+1), ŵ(n)

)
(C6)

then ϒ = max(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb)]
∫ ξb

ξa

∫ ηb
ηa

dsx dsy |K (kx , sx ; ky, sy)| and so the condition for convergence is just

max
(kx ,ky )∈[(ξa ,ξb);(ηa ,ηb )]

∫ ξb

ξa

∫ ηb

ηa

dsx dsy |K (kx , sx ; ky, sy)| < 1. (C7)

Thus, for a fixed point to exist and for the iterative scheme to converge, the maximum of the integral of the absolute value of the kernel over
the wavenumber bands of interest must be a sufficiently small value. The implication for the form of D and q in the space domain is that they
must be smoothly varying functions over a narrow range of spatial scales.

A P P E N D I X D : A P P ROX I M AT I N G A P P L I E D M O M E N T S W I T H V E RT I C A L
L OA D C O U P L E S

Following an approximation that may be taken for infinite 1-D beams (Hetenyi 1946; Watts 2001), we also tested how well a moment along the
x-direction M0 applied to an interior point of the plate can be represented as a pair of opposing vertical loads V0 separated by an infinitesimal
distance "x (Fig. D1). This may be expressed formally as,

M0 ≈ lim
"x→0

V0"x . (D1)

Since the system (2) is linear, the solution for the deflection w due to two opposing loads is simply the superposition of the individual
solutions for each of the loads. Thus, in 1-D, if +V is applied at x = 0 and −V at x = "x, and if we refer to the solution in the line load
case (10) as wV, then solution for this load couple wc is given by the sum

wM = wV (x + "x) − wV (x). (D2)

Rewriting this expression slightly,

wM = "x
wV (x + "x) − wV (x)

"x
. (D3)

Thus, as "x becomes small,

wM = "x lim
"x→0

wV (x + "x) − wV (x)
"x

≈ "x
∂wV

∂x
. (D4)

Recalling (10) and taking its derivative along x, we get

wM (x) = − V "xα2

4D0
exp

(
− |x |

α

)
sin

( x
α

)
≈ − M0α

2

4D0
exp

(
− |x |

α

)
sin

( x
α

)
(D5)

following our assumption that V"x approaches M0. Thus, the approximate solution for an applied moment M0 is (Hetenyi 1946)

w = −wm exp
(

− |x |
α

)
sin

( x
α

)
, (D6)

where wm = M0α
2/4D0, which is included in the main text as eq. (17).

We may apply the same set of assumptions to obtain an expression for the deflection due to a concentrated moment on a 2-D infinite plate.
First, recall that the solution w for a point load with amplitude V0 can be written in terms of the Kelvin–Bessel function Kei of order zero as
(Brotchie 1971; Lambeck & Nakiboglu 1980)

w = wpKei0

[(
x2 + y2

)1/2

l

]

, (D7)

where wp = V0l2/2πD0 and the flexural parameter l is

l =
[

D0

"ρg

]1/4

. (D8)

Figure D1. (a) A clockwise moment M0 is applied at the origin. (b) The flexural deflection due to M0 may be approximated as being due to the superposition
of two opposing loads of equal magnitude V0 placed a small distance "x apart.
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By taking the partial derivative with respect to x of (D7), the solution for a concentrated moment aligned with the x-axis is

w = wr

{

Kei1

[(
x2 + y2

)1/2

l

]

− Ker1

[(
x2 + y2

)1/2

l

]}

, (D9)

where we are using Kelvin–Bessel functions Ker and Kei of order 1, and wr = wp[x/21/2l(x2 + y2)1/2]. This is also included in the main text
as eq. (19).

A P P E N D I X E : E X P R E S S I O N S F O R T H E S O LU T I O N O F A L I N E M O M E N T A P P L I E D
T O A P L AT E W I T H P I E C E W I S E R I G I D I T Y

We derive the analytic solution for deflection produced by a line moment applied to a plate with a sharp step in flexural rigidity such that

D(x) =
{

D1 : x < 0

D2 : x > 0
(E1)

following the approach of (Sandwell & Schubert 1982). In the absence of in-plane forces, the governing equations may be written as a coupled
system:

D1
d4w1

dx 4
+ "ρgw1 = 0 : x > 0 (E2)

D2
d4w2

dx 4
+ "ρgw2 = 0 : x < 0. (E3)

The boundary conditions are that the deflections w1, w2 and their slopes vanish as |x| → ∞. The general solutions in each region of the plate
have the form

w1 = exp
(

x
α1

)[
A1 cos

(
x
α1

)
+ B1 sin

(
x
α1

)]
: x < 0 (E4)

w2 = exp
(

− x
α2

)[
A2 cos

(
x
α2

)
+ B2 sin

(
x
α2

)]
: x > 0. (E5)

Note that the flexural parameters α1 and α2 are different for each region,

α1,2 =
[

4D1,2

"ρg

]1/4

. (E6)

The plate is subject to a line moment applied at x = 0. Apart from the boundary conditions at the edges of the model, the following matching
conditions must also be fulfilled at the discontinuity in rigidity (also at x = 0):

w1 − w2 = 0 (E7)

dw1

dx
− dw2

dx
= 0 (E8)

−D1
d2w1

dx 2
− D2

d2w2

dx 2
= M0 (E9)

−D1
d3w1

dx 3
− D2

d3w2

dx 3
= 0. (E10)

These matching conditions ensure the continuity of the deflections, slopes, and shear forces. The third condition accounts for the applied
moment at the origin. Solving the linear system resulting from these matching conditions leads to explicit expressions for the unknown
coefficients A1, B1, A2 and B2 in (E4)–(E5).

In our solution, we found that A1 = A2 = A, which may be expressed in terms of the flexural parameters α1, 2 and the moment M0 as

A = −
1
α1

(
1 + α1

D1

D2
α2

)
− α1

D1

D2
α2

(
1
α1

+ 1
α2

)

(
D1
α3

1
+ D1

α3
2

) (
1 + α1

D1

D2
α2

)
+ D2

α2

(
1
α1

+ 1
α2

)2

(
M0

2

)
. (E11)
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The respective expressions for B1 and B2 are

B1 = α2
1

D1

(
M0

2
+ D2

α2
2

B2

)
(E12)

B2 =
α2

[
α1
D1

M0
2 +

(
1
α1

+ 1
α2

)
A
]

(
1 + α1

D1

D2
α2

) . (E13)
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