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Abstract 
We present a method for interpolation of sparse two-dimensional vector data.  The method is 
based on the Green’s functions of an elastic body subjected to in-plane forces.  This 
approach ensures elastic coupling between the two components of the interpolation.  Users 
may adjust the coupling by varying Poisson’s ratio. Smoothing can be achieved by ignoring 
the smallest eigenvalues in the matrix solution for the strengths of the unknown body forces.  
We demonstrate the method using irregularly distributed GPS velocities from southern 
California.  Our technique has been implemented in both GMT and MATLAB®. 
 
Introduction 

Interpolation of randomly located scalar data onto a uniform grid is commonly performed 
using the finite-difference, multigrid, minimum curvature method [Briggs, 1974; Swain, 
1976; Smith and Wessel, 1990] or the direct biharmonic spline method [Sandwell, 1987; 
Wessel and Bercovici, 1998].  The multigrid minimum curvature approach is extremely 
efficient and can handle large data sets of perhaps a billion data points, but suffers from slow 
numerical convergence.  The direct biharmonic spline approach is more flexible and can 
interpolate data with differing uncertainties but is limited to only a few thousand points 
because an N-data by N-data matrix inversion is required.  Moreover, the inversion usually 
requires some numerical stabilization to achieve a smooth result.  The basic approach is to 
apply vertical point loads to a thin elastic sheet at the locations of the data constraints.  The 
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strengths of these forces are then adjusted through a least squares inversion such that the 
deformed sheet matches the data points within their uncertainties.  Then the deformation, or 
its derivatives, can be calculated anywhere within the boundaries of the data.  The Green’s 

function for the response of a thin elastic sheet to a point load at xo, yo( )  is simply 

 
φ
!r( ) = r2 ln r( )−1#$ %&  where  

!r = x − xo, y− yo( )  [Sandwell, 1987].  Wessel and Bercovici 

[1998] extended the method to include in-plane tension, which damps the undesirable 
overshoots of the elastic sheet.  In this case the Green’s function is slightly more 

complicated, i.e.,   φ
!r( ) = Ko pr( )+ ln pr( ) , where Ko  is the zero order, modified Bessel 

function of the second kind and p is related to the prescribed tension factor. 
Here we investigate a similar Green’s function approach for interpolation of 2-D vector 

data. This is not a new idea. Haines and Holt [1993] and Haines et al., [2015] proposed 
using a 2-D elastic model to provide coupling between the two horizontal velocity 
components of GPS models.  The basic approach is similar to the biharmonic spline 
interpolation approach.  One imposes vector forces at the data locations.  These forces 
deform the elastic body, resulting in a vector deformation field.  The strengths of the force 
vectors are adjusted until velocities match the vector data.  Haines et al., [2015] used a finite 
element modeling approach where element nodes are placed at the data locations to compute 
the Green’s functions and then used a least-squares approach to adjust the forces to match 
the data.  Here we replace the finite element computations with analytic Green’s functions 
for the in-plane response of a 2-D elastic body to in-plane forces.  This greatly simplifies the 
computations and allows for the analytic calculation of deformation gradients (i.e., the strain 
tensor).  Moreover, by adjusting Poisson’s ratio the strain field can be tuned to extremes such 
as incompressible (1.0), typical elastic (0.5) or even a value of -1 that basically removes the 
elastic coupling of vector interpolation.  

 
Green’s Functions 

We wish to calculate the 2-D displacement vector  
!u x, y( ) = u x, y( ) î + v x, y( ) ĵ  due to a 2-

D vector in-plane body force.  Haines et al., [2015] developed the quasi-static force balance 
equations in 2-D as 
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where ν  is Poisson’s ratio, µ is the shear modulus, and fx , fy( )  is the force vector.  The units 

are force per distance and forces are applied at a point using the 2-D delta function 

δ x( )δ y( ) .  This problem is most easily solved by taking the 2-D Fourier transform of (1).  

The transformed equations become 
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where kx  and ky are wavenumbers (1/wavelength). To determine the response from a point 

force we need to invert this set of equations and take the inverse 2-D Fourier transform of the 
result.  The matrix inverse is  
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where kr
2 = kx

2 + ky
2 .  Note that in the special case of a Poisson’s ratio of -1 the solution 

simplifies to  
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This corresponds to interpolation with no coupling between the two velocity components and 

the Green’s function is simply  φ
!r( ) = ln r .  Here, the two components of GPS velocities 

would be decoupled and interpolated separately. The general solution depends on three 
functions in equation 3: 
 

 

Q
!
k( ) = 2kr

2 − 1+ν( )kx2

kr
4 , P

!
k( ) = 2kr

2 − 1+ν( )ky2

kr
4 , W

!
k( ) = − 1+ν( )kxky

kr
4 .  (5) 

 
To obtain the space domain solution we will need to evaluate the 2-D inverse Fourier 
transform of the following four component functions: 
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The inverse transforms of these four functions are straightforward and yield 
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In the space domain the three Green’s functions given by (5) can be written as 

 

q !r( ) = 4 ln r+ 1+ν( ) y2
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− ln r
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 (8) 

We checked the Green’s functions by showing they solve the original differential equation 
(1). This was accomplished using the computer algebra capabilities in MATLAB. 
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A description of the numerical approach follows.  We wish to compute a smooth vector 

velocity field that matches a finite set of N  measured vectors  u
!ri( ),v !ri( ) , where  

!ri = xi , yi( )  

are the locations of the vectors.  This is accomplished by solving for a set of N  vector body 

forces fx
j , fy

j  that are applied at the locations of the velocity measurements. To determine the 

strength of the body forces we invert the following 2N  by 2N  linear system of equations: 
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Finally, the vector velocity field can be computed at any location using 
 

 

u !r( ) = q !r − !rj( ) fxj +w
!r − !rj( ) fyj"# $%

j=1

N

∑

v !r( ) = w !r − !rj( ) fxj + p
!r − !rj( ) fyj"# $%

j=1

N

∑
. (10) 

 
We have implemented this approach as a new module gpsgridder to the Generic Mapping 
Tools (GMT) [Wessel et al., 2013].  The 2N  by 2N  matrix in equation 9 can be solved in a 
variety of ways.  For the gpsgridder implementation we use the singular value 
decomposition algorithm implemented in LAPACK.  The user can decide to keep all the 
singular values (solved by LU decomposition) or a subset which results in some smoothing 
of the solution.  Starting at GMT release 5.3.0, the new module can be found in the 
supplemental “potential” package. 
 
Application to GPS data 

The 2-D velocity field derived from surface geodetic measurements is an important 
quantity used to measure strain localization above locked faults as well as strain 
accumulation in the interiors of crustal blocks.  Faults that have a shallow locking will 
require spatial resolution of 2-3 km [Smith and Sandwell, 2003]. However, the typical 
spacing of GPS points in California is ~9 km [Wei et al., 2010] so the strain-rate field is not 
completely resolved by the GPS data. Currently there are several approaches to mapping 
strain rate from vector GPS data.  The most accurate approaches make assumptions about the 



6 

locations, slip rates, and locking depths of the major faults [Hearn et al., 2010].  These are 
typically based on block models.  The models sometimes have a uniform strain in the block 
interiors to absorb the residual velocity not captured by the locked dislocations [McCaffrey et 
al., 2013].  Another approach is to make no assumptions about the fault structure and simply 
do a biharmonic interpolation of each velocity component independently [Hackl et al., 
2009].  However this leads to suboptimal results.  A distance-weighted, least-squares 
approach, recently developed by Shen et al., [2015], provides an improved strain-rate map 
without using a priori information about fault locations and orientations.  The interpolation 
approach developed in Haines et al., [2015] provides coupling between the two horizontal 
velocity components, resulting in a more accurate interpolation of the velocity and strain 
field. 

To illustrate the benefits of the coupled interpolation in relation to the biharmonic spline 
approach we begin with a realistic model for the vector velocity field for a large region 
surrounding the San Andreas Fault system [Tong et al., 2013; 2014].  The velocity model is 
based on 1981 GPS velocity vectors as well as higher spatial resolution line-of-sight velocity 
measurements from ALOS-1 radar interferometry.  The slip rates and locking depths along 
41 fault segments are adjusted to match all the velocity data (Figure 1).  This model results 
in north and east grids of velocity at 1 km spacing. A prominent feature of the model is a 
creeping section of the San Andreas Fault system where there is an abrupt change in velocity 
across the fault (Figure 1 – green box).  We sample the two components of velocity at 1768 
unique locations (Figure 1 – red dots) resulting in 3536 observations.  We then use the 
biharmonic and coupled methods to interpolate over the areas of adequate data coverage and 
compare the interpolated velocity and strain rate grids with the “known” velocity and strain 
rates.  The biharmonic and coupled approaches are implemented in GMT as greenspline and 
gpsgridder, respectively.  Each program has a number of parameters that can be adjusted to 
achieve an optimal fit.  The greenspline approach achieves the best fit for zero tension factor, 
which corresponds to biharmonic spline interpolation [Sandwell, 1987].  The gpsgridder 
approach has two main parameter adjustments.  The first is a minimum radius factor that 
needs to be added to all radial differences in equations (9) and (10) to keep the Green’s 
functions from becoming singular.  After some trial and error, we found that a minimum 
radius of 8 km provides the best overall fit to the data; this also roughly corresponds to the 
mean spacing of the GPS points of ~9 km [Wei et al., 2010].  The second parameter is the 
value of Poisson’s ratio used for the interpolation. We tested a range from -1 (fully 
decoupled) to 0.5 (elastic) to 1.0 (incompressible). The results, provided in Table 1, show the 
rms misfit of the interpolated velocity and strain rate grids with respect to the starting model. 
We also performed the statistics for the interpolation over just the creeping section (bold in 
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Table 1). The rms misfits for this creeping area are larger than the rms misfits for the entire 
area although the optimal minimum radius is also 8 km.   

122˚W 121˚W 120˚W 119˚W 118˚W 117˚W 116˚W 115˚W

33˚N

34˚N

35˚N

36˚N

37˚N

38˚N

50 mm/yr

 
Figure 1. Velocity vectors over a large area surrounding the San Andreas Fault system based 
on an earthquake cycle model [Tong et al., 2013; 2014].  The total change in velocity across 
the fault system is 45 mm/yr. The red dots show locations of the GPS velocity measurements 
used to construct this model.  We sample the model at these locations and then use various 
interpolation methods to re-estimate the model.  The green box shows the sharp velocity 
change across the creeping section.  These results are highlighted in Figure 2. 
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Table 1. 
model Poisson’s 

ratio 
minimum 

radius 
(km) 

rms misfit 
u  

mm/yr 
v  

mm/yr 
exx  

10-8/yr 
exy  

10-8/yr 
eyy  

10-8/yr 
biharmonic - - 0.229 0.279 3.89 1.99 4.16 

(un)coupled -1.0 8 0.186 0.223 3.48 1.99 3.83 

coupled .0 8 0.165 0.190 2.90 1.82 3.12 

“ .5 8 0.162 0.171 2.66 1.82 2.81 

“ 1.0 8 0.863 0.894 4.91 4.29 4.89 

“ .5 0 - - - - - 

“ .5 2 0.281/0.710 0.306/0.903 3.77 2.38 3.87 

“ .5 4 0.215/0.509 0.232/0.637 3.11 2.08 3.22 

“ .5 8 0.162/0.432 0.171/0.450 2.66 1.82 2.81 

“ .5 12 0.182/0.583 0.188/0.577 3.05 2.16 3.21 

Optimal model parameters are highlighted in blue.  Bold are rms misfit for just the creeping 
section shown in Figure 2. 
 

The results for three of the most interesting cases are shown in Figure 2 where we have 
zoomed in on the creeping section of the fault where the interpolation is most challenging.  
Figure 2a shows velocity vectors from the Tong et al., [2014] model.  The vectors are 
parallel to the fault and have relatively uniform length along the fault, although the direction 
of the vectors reverses abruptly at the fault.  The first example (Figure 2b) corresponds to the 
biharmonic interpolation method where the east and north components of the vector velocity 
are interpolated independently. The residual velocity field shows large spatial scale 
variations in strength that results from the overshoot of the biharmonic spline. This 
scalloping results in a relatively large misfit for both the velocity and strain rate components.  
The second interpolation example (Figure 2c) corresponds to interpolation where the 
Poisson’s ratio is -1.0.  This parameter selection results in no coupling between the east and 
north components and the residuals are similar to the biharmonic case although somewhat 
smaller.  The last example (Figure 2d) is the coupled interpolation with a Poisson’s ratio of 
0.5.  The residuals are significantly smaller and show more of a random orientation 
reflecting the coupling between the two velocity components.  This case also has a much 
smaller misfit in both velocity and strain rate than the two uncoupled cases. 
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a

dc
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0.57 mm/yr 0.44 mm/yr

 
Figure 2. Velocity vectors across the creeping section of the San Andreas Fault. (a) Original 
Tong et al., [2014] model has an rms variation of 10.6 mm/yr. (b) Residual model based on 
biharmonic spline interpolation has an rms error of 0.94 mm/yr. (c) Residual model based on 
the coupled interpolation with a Poisson’s ratio of -1 (no coupling between east and north 
velocity) has an rms error of 0.57 mm/yr.  (d) Residual model based on the coupled 
interpolation with a Poisson’s ratio of 0.5 has an rms error of 0.44 mm/yr. 

 
One of the main applications of this method is to calculate a grid of strain rate from 

randomly distributed vector velocity measurements.  Our analysis provides an estimate of the 
type of errors to expect in the second invariant of the strain rate when it is undersampled 
using the GPS station distribution provided in Figure 1.  The original velocity model results 
in the strain rates shown in Figure 3a where there are areas of very high strain rate above 
faults that are creeping or have shallow locking depth (e.g. red areas > 500 nanostrain/yr).  
The model also has very low strain rate in the interiors of the blocks (e.g. blue areas < 10 



10 

nanostrain/yr). The difference between the original and recovered strain rate tensor converted 
to second invariant are shown in Figure 3b.  Errors are small (< 3 nanostrain/yr) in areas that 
have adequate GPS sampling (white dots) and where the model strain rate is also small.  
Errors are large (100 – 1000 nanostrain/yr) in areas where the model strain rate is large and 
the GPS sampling is inadequate.  To illustrate a couple of cases, the red arrow points to a 
region of high strain rate where there is also dense GPS coverage.  The strain rate error in 
this area is quite low because of the good GPS coverage.  In contrast the blue arrow points to 
a region of high strain rate where there is sparse GPS coverage.  The strain rate error in this 
area is quite high because of the poor GPS coverage.  Indeed this interpolation tool could be 
used, along with a reasonable strain rate grid, to estimate the improvement in strain rate 
accuracy for a prescribed GPS or InSAR data coverage. 

122˚W 120˚W 118˚W 116˚W

34˚N

36˚N

38˚N

1 10 100 1000

2nd invariant (nanostrain/yr)

122˚W 120˚W 118˚W 116˚W

1 10 100 1000

2nd invariant (nanostrain/yr)

a b

 

Figure 3 (a) Second invariant of 2-D strain tensor ! II = !xx
2 +!yy

2 +2!xy
2( )1/2 derived from the 

Tong et al., [2014] velocity grid. (b) Second invariant of the difference between the model 
strain rate tensor and the strain rate tensor derived from the gpsgridder program with a 
Poisson ratio of 0.5. 

Discussion and Conclusions 
While this method is not new, our analytic approach provides some insight into the 

behavior of the coupled interpolation for a wide range of Poisson’s ratio.  As discussed in 
Haines et al., [1993, 2015] this approach provides improved interpolation of sparse vector 
data when the physics of the deforming material follows elasticity equations.  There are other 
attributes of this approach that have not been fully discussed in the paper although they will 
be important for interpolation of noisy data.  The first is the inversion of the set of linear 
equations in (9) will be numerically unstable if the ratio of the largest to smallest spacing of 
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vector positions becomes too great.  The gpsgridder program automatically eliminates 
duplicate locations that would make the inversion exactly singular.  In addition, the 
blockmedian program can be used to combine nearby measurements. The second obvious 
attribute not discussed above is that uncertainties are easily added to this formulation by 
dividing both sides of equation (9) by the standard deviations of the data.  This extension is 
implemented in the gpsgridder program via the –C, –W options where the rms misfit of the 
model to the noisy data can be adjusted by reducing the number of eigenvalues to use for the 
singular value decomposition of the inversion.  In the case above there were 3563 
observations but tests where the number of eigenvalues was reduced to 2400 provided almost 
identical uncertainties. We have found that an adequate fit to real GPS data is obtained when 
the number of eigenvalues is ¼ the number of data points.  The user will need to experiment 
with these paramters to find acceptable solutions to fitting the data within the uncertainties. 

One other important issue not discussed here is that this approach can only interpolate 
thousands and not millions of data because of finite computer memory, computer precision 
and computer time.  A practical solution to dealing with very large data sets is to assemble 
the data into finite size rectangular grids having 50% overlap.  Data within each full subgrid 
are used to solve for the vector forces but the vector model velocity is only computed in the 
interior of each subgrid [e.g., Sandwell, 1987].  One final issue is that a variety of data types 
such as GPS vectors and 2-D tensor strain measurements could be combined in the inversion.  
This would require an extension of (9) to include analytical derivatives of Green functions, 
which are messy but not difficult.  
 
Acknowledgements 
This work was inspired by a seminar given by John Haines and Lada Dimitrovia at IGPP in 
December of 2015 as well as by discussions with Duncan Agnew. Duncan Agnew also 
provided a review of a draft manuscript that resulted in clarifications and a more complete 
reference list. The paper also benefited from comments from Matthias Hackl and an 
anonymous reviewer. The research was supported by the NSF Geoinfomatics Program 
(EAR-1347204) and the Southern California Earthquake Center (SCEC). SOEST publication 
9837. We have implemented this method in both GMT and MATLAB and provide example 
data sets and programming parameters at the following ftp site 
(ftp://topex.ucsd.edu/pub/sandwell/strain/gpsgridder_tests.tar) 

 
References 
Briggs, I. C. (1974), Machine contouring using minimum curvature, Geophysics, 39(1), 39–

48. 
Gradshteyn, I. S., and I. M. Ryzhik (1980), Table of Integrals, Series, and Products, 4th ed., 

Academic Press, San Diego, CA. 
Hackl, M., R. Malservaisi, and S. Wdowinski (2009), Strain pattern from dense GPS 

networks, Nat. Hazards Earth Syst., 9., 1177-1187. 



12 

Haines, A. J., and W. E. Holt (1993), A procedure for obtaining the complete horizontal 
motions within zones of distributed deformation from the inversion of strain rate data, J. 
Geophys. Res., 98, 12,057–12,082. 

Haines, A. J., L. L. Dimitrova, L. M. Wallace, and C. A. Williams (2015), Enhanced Surface 
Imaging of Crustal Deformation: Obtaining Tectonic Force Fields Using GPS Data, 99 
pp., Springer International Publishing, doi:10.1007/978-3-319-21578-5. 

Hearn, E., K. Johnson, D. Sandwell, and W. Thatcher (2010), SCEC UCERF workshop 
report: http://www.scec.org/workshops/2010/gps-ucerf3/FinalReport_GPS-
UCERF3Workshop.pdf,. 

McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of 
northwestern US inferred from GPS‐derived surface velocities. Journal of Geophysical 
Research: Solid Earth, 118(2), 709-723. 

Sandwell, D. T. (1987), Biharmonic spline interpolation of Geos-3 and Seasat altimeter data, 
Geophys. Res. Lett., 14(2), 139–142. 

Shen, Z-K, M. Wang, Y. Zeng, and F. Wang, (2015) Optimal Interpolation of Spatially 
Discretized Geodetic Data, Bulletin of the Seismological Society of America, 105, 4, 
2117–2127, , doi: 10.1785/0120140247 

Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in 
tension, Geophysics, 55(3), 293–305, doi:10.1190/1.1442837. 

Smith, B., and D. Sandwell (2003), Coulomb stress accumulation along the San Andreas 
Fault system, J. Geophys. Res., 108(B6), 2296, doi:10.1029/ 2002JB002136. 

Swain, C. J. (1976), A FORTRAN IV program for interpolating irregularly spaced data using 
the difference equations for minimum curvature, Comput. & Geosci., 1(4), 231-240. 

Tong, X., D. T. Sandwell, and B. Smith-Konter (2013), High-resolution interseismic velocity 
data along the San Andreas Fault from GPS and InSAR, J. Geophys. Res.; Solid Earth, 
118, doi:10.1029/2012JB009442. 

Tong, X., B. Smith-Konter, and D. T. Sandwell (2014), Is there a discrepancy between 
geological and geodetic slip rates along the San Andreas Fault System?, J. Geophys. Res. 
Solid Earth, 119, doi:10.1002/2013JB010765. 

Wei, M., D. T. Sandwell, and B. Smith-Konter, Optimal combination of InSAR and GPS for 
measuring interseismic crustal deformation, J. Adv. in Space Res. 
doi:10.1016/j.asr.2010.03.013, 2010. 

Wessel, P., and D. Bercovici (1998), Interpolation with splines in tension: a Green's function 
approach, Math. Geol., 30(1), 77–93, doi:10.1023/A:1021713421882. 

Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe (2013), Generic Mapping 
Tools: Improved version released, Eos Trans. AGU, 94(45), 409–410, 
doi:10.1002/2013EO450001. 

 
 




