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Abstract. The southern oceans (south of 30°S) are densely covered with satellite-derived grav-
ity data (track spacing 2—4 km) and sparsely covered with shipboard depth soundings (hundreds of
kilometers between tracks in some areas). Flexural isostatic compensation theory suggests that
bathymetry and downward continued gravity data may show linear correlation in a band of wave-
lengths 15-160 km, if sediment cover is thin and seafloor relief is moderate. At shorter wave-
lengths, the gravity field is insensitive to seafloor topography because of upward continuation
from the seafloor to the sea surface; at longer wavelengths, isostatic compensation cancels out
most of the gravity field due to the seafloor topography. We combine this theory with Wiener
optimization theory and empirical evidence for gravity noise-to-signal ratios to design low-pass
and band-pass filters to use in predicting bathymetry from gravity. The prediction combines
long wavelengths (>160 km) from low-pass-filtered soundings with an intermediate-wavelength
solution obtained from multiplying downward continued, band-pass-filtered (15-160 km) gravity
data by a scaling factor S. S is empirically determined from the correlation between gravity data
and existing soundings in the 15-160 km band by robust regression and varies at long wave-
lengths. We find that areas with less than 200 m of sediment cover show correlation between
gravity and bathymetry significant at the 99% level, and S may be related to the density of
seafloor materials in these areas. The prediction has a horizontal resolution limit of 5~10 km in
position and is within 100 m of actual soundings at 50% of grid points and within 240 m at
80% of these. In areas of very rugged topography the prediction underestimates the peak ampli-
tudes of seafloor features. Images of the prediction reveal many tectonic features not seen on any

existing bathymetric charts. Because the prediction relies on the gravity field at wavelengths
<160 ki, it is insensitive to errors in the navigation of sounding lines but also cannot
completely reproduce them. Therefore it may be used to locate tectonic features but should not
be used to assess hazards to navigation. The prediction is available from the National

Geophysical Data Center in both digital and printed form.

Introduction

Topographic elevations are a fundamental physical
characteristic of a planet, and yet the topographies of Mars
[Carr et al., 1977] and Venus [Ford and Pettengill, 1992] are
better mapped than that of most oceanic areas of Earth [Smith,
1993]. In the Southern Ocean there are many gaps of hundreds
of kilometers between available bathymetric survey tracks
(Figure 1), and many of the data are of poor quality. In some
areas, the majority of available data were collected with only
celestial navigation and discrepancies in depths reported at
intersecting survey tracks exceed 100-250 m at half of the
track crossings [Smith, 1993]. The area south of 30°S has the
least detailed bathymetric coverage but the most detailed
gravity coverage thanks to recent declassification of Geosat
Geodetic Mission (GM) altimeter data [Marks et al., 1993].
Figure 2 shows the ground tracks of the Seasat, Geosat, and
ERS 1 satellites used by Sandwell and Smith [1992] to compile
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a marine gravity field (top), and the tracks of available
shipboard depth soundings [Smith, 1993; National
Geophysical Data Center, 1993] (middle). Also shown
(bottom) are local plate boundaries and a port (Easter Island);
the ship coverage is biased toward ports and tectonic features,
while the satellite coverage is uniform.

Marine gravity anomalies and seafloor topography can be
highly correlated over a band of wavelengths {McNuzt, 1979;
Smith and Sandwell, 1992; Neumann et al., 1993] so that
ocean depths may be inferred from sea surface gravimetry.
This was first suggested in the 19th century by Siemens
[1876], but it was more than a century later when Dixon et al.
[1983] demonstrated that the technique was feasible. Dixon et
al. used profiles of geoid height data obtained along tracks of
the Seasat satellite altimeter in an area where the bathymetry
was already well known from conventional surveys. This
“ground truth” allowed Dixon et al. to demonstrate that the
predictions depended strongly (£1 km of topography) on the
assumed form of isostatic compensation, and that topographic
features out of the profile plane also had a strong influence on
the solution. Subsequent studies [White et al., 1983; Baudry et
al., 1987; Craig and Sandwell, 1988; Jung and Vogt, 1992,

21,803



21,804

Goodwillie and Watts, 1993] have also been confined to the
vertical plane under altimeter profiles and have thus been
forced to make some assumptions about symmetry because of
their lack of gravity data in the across-track direction. Now
that complete gravity coverage in two horizontal dimensions
is available from the Geosat GM data, it is time to attempt
bathymetric prediction throughout the southern oceans.

In this paper, we present a new technique which makes full
use of the Geosat GM data, avoids most assumptions about
isostatic compensation, and allows for regionai variations in
the correlation between bathymetry and gravity. We show
that these regional changes are necessary to accommodate
changes in the thickness of sediments on the ocean floor. The
images of the seafloor we obtain resolve tectonic details to 5—
10 km in location and within 100~250 m in depth in many
cases. However, the method underestimates peak amplitudes
in rugged areas and at very tall seamounts, so it is not suitable
for charting hazards to navigation. In the next section we
give a broad overview of the technique; later sections will
explain each step more fully.

General Description

The relationship between seafloor topography and sea
surface gravity is conveniently described by functions which
depend on the wavelength of the topography [Dorman and
Lewis, 1970; McKenzie and Bowin, 1976]. Theoretical and
empirical studies (discussed below) suggest that we can hope
for correlation between gravity and bathymetry only in a
limited band of wavelengths between about 15 and 160 km.
The shorter-wavelength part of the gravity field (<15 km) is
attenuated by upward continuation from the seafloor to the sea
surface so the signal-to-noise ratio is small, and it is unsafe to
attempt prediction. Similarly, at longer wavelengths (>160
km), seafloor topography can be isostatically compensated so
that it produces little or no gravity anomaly. Our approach is
to use gravity to predict bathymetry in the 15-160 km band.
Shorter-wavelength topography (<15 km) can only be recov-
ered through detailed shipboard surveys, while longer-wave-
length (> 160 km) topography may be constrained by low-
pass-filtering grids of existing ship soundings.

Within the prediction band, the ratio of topography to
gravity, S(x), is determined empirically in areas where these
are well correlated. The topography-to-gravity ratiois
allowed to vary at long wavelengths (> 160 km) to
accommodate regional variations in sediment thickness and
seafloor density. High topography-to-gravity correlations are
generally found over unsedimented topography because of the
large seawater-to-rock density contrast. Low correlations are
generally found in areas where the topography is buried by
thick sediments; in these areas the buried structures produce
gravity anomalies, while the seafloor relief is low.
Fortunately, thesé sedimented areas are nearly flat at short
wavelengths so that we may take S=0 here. In practice, we
band-pass filter the gridded ship soundings and gravity and
downward continue the gravity to the regional seafloor depth.
The theory predicts a linear relationship between these data,
and so we use a linear regression method to estimate both
topography-to-gravity ratio and correlation. This method,
which we call the "inverse Nettleton procedure,” uses only
those points in the grid where actual soundings are available.
The total predicted bathymetry bp(x) is the sum of the
passband prediction and long-wavelength regional depth d(x):
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bp(x) = d(x) + S(x)g(x), 1)

where the passband prediction is the product of the band-pass-
filtered and downward continued gravity g(x) and the scaling
factor S(x). Note that with this method, bp(x) will not fit the
original soundings exactly. Soundings which are misplaced
by a few tens of kilometers will introduce little error into d(x)
but would have a severe effect at shorter wavelengths, where
we choose to rely on the gravity data to locate the predicted
features.

An example is shown in Plate 1. The top image shows the
sea level gravity field of Sandwell and Smith [1992], while the
middle image shows the predicted bathymetry. For compari-
son, the bottom image shows the best available gridded
bathymetry data known as ETOPO-5 [National Geophysical
Data Center, 1988], which is based on the earlier DBDB-5, or
SYNBAPS data [Van Wyckhouse, 1973] (ETOPO-5, Earth
TOPOgraphy-5 minute; DBDB-5, Digital Bathymetric Data
Base-5 minute; SYNBAPS, SYNthetic BAthymetric Profiling
System). The prediction shares some features with each of
these other images, and one could imagine combining the
regional features of ETOPO-5 with the local features of the
gravity to produce the predicted bathymetry. If S(x) were
everywhere constant and ETOPO-5 matched d(x) exactly at
long wavelengths, then the middle image (the prediction).
would be a simple combination of the top and bottom images.
In fact, ETOPO-5 does not fit the ship data very well [Smith
and Wessel, 1990; Smith, 1993], and variations in S(x) make
the prediction more cbmplicated, and more interesting. We
find that S varies geographically in accordance with the thick-
ness of sediment cover, and in some areas, gravity and topog-
raphy are uncorrelated and S = 0. Estimation of S at the areas
labeled A, B, and C in Plate 1 will be discussed in the section
on the inverse Nettleton procedure.

Data Preparation

Digital shipboard soundings south of 30°S were derived
from two sources. The primary source was assembled from the
Lamont-Doherty Earth Observatory holdings and put through
extensive quality control procedures [Smith, 1993]. This was
augmented by data compiled by the National Geophysical Data
Center [1993]. Most of these additional data were recent sur-
veys along the Antarctic coast by foreign Antarctic agencies,
particularly the British and Japanese; a few were newly
contributed data from domestic laboratories. ‘Notable among
these were a R/V Moana Wave survey of the Australian-
Antarctic Discordance and R/V Thomas Washington surveys of
the East Pacific Rise and the Louisville Ridge. All new data
from the CD-ROM were put through the quality screening
recommended by Smith [1993]. The Japanese data were found
to have navigation reporting errors when latitude or longitude
was equal to an integer number of degrees; these erroneous data
were deleted. A total of 581 legs were used in our study (Figure
1).

These data were gridded onto a mesh having 20 samples per
degree longitude and 40 samples per degree latitude and span-
ning an area between 25.8°S and 73.8°S. This procedure
allowed us to use results in the area 30°-70°S without edge
effects from our filters and resulted in grid “cells" which are
squares approximately 2.75 km on a side at 60°S. The grid was
prepared by first assigning all soundings to their nearest grid
point and then at each grid point with one or more soundings
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Plate 1. (top) Free-air gravity field from Sandwell and Smith [1992]. Areas labeled A, B, and C are discussed
in connection with Figure 6, and the dashed line is the location of the profile shown in Figure 8. (middle)
Bathymetric prediction made from gravity by the method of this paper. (bottom) ETOPO-5 bathymetry for
comparison.
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Figure 1.

Ship tracks of digitally available bathymetric
soundings. One-quarter of Earth's surface is shown (south pole
to 30°S) in an equal-area projection.

assigned, retaining the median of the assigned values. Grid
points so constrained were marked for use later in the "inverse
Nettleton" determination of the topography-to-gravity ratio.
Grid points without control data were interpolated using a
continuous curvature spline in tension [Smith and Wessel,
1990] with a tension value of 1, corresponding to a harmonic
spline. With this approach, the grid points constrained by
ship soundings retain their initial values, and the harmonic
spline assures that the solution has local maxima and minima
only at these points [Smith and Wessel, 1990]. The resulting
grid has hills and valleys only where the ship data require
them. During this gridding process, areas on land were fixed to
values interpolated from ETOPO-5.

The gravity data set [Sandwell and Smith, 1992] was derived
from radar altimeter measurements of sea surface heights made
by the Seasat, Geosat, and ERS 1 satellites [Sandwell, 1984,
1992]. The precision of the Seasat, Geosat, and ERS 1
altimeter data has been studied by Marks and Sailor [1986],
Sandwell and McAdoo [1990], and Sailor and Driscoll {1993],
respectively. The resolution of the derived gravity depends on
the spacing of the satellite tracks (24 km, Figure 2, top) and
also to a limited extent on latitude; the estimation method used
by Sandwell and Smith [1992] takes account of this depen-
dence and filters the data appropriately. Therefore in the
appendix we assume that the noise spectrum of the gravity
map is isotropic, i.e., independent of azimuth. The gravity
grid has a root-mean-square error of 3-5 mGal, high correla-
tion with ship gravity measurements at wavelengths longer
than 20 km [Smith et al., 1993], and high correlation with
ship bathymetry for wavelengths greater than 26 km
[Neumann et al., 1993]. The gravity grid was resampled onto
the same grid as the initial bathymetry grid.

Admittance Theory

Flexural isostatic compensation theory is used as a guide to
design various low-pass, high-pass, and band-pass filters used
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in the bathymetric prediction procedure outlined above. Here
we give a detailed description of the filter design and imple-
mentation. The theory is developed in terms of the Fourier
transforms of gravity and topography data. A flat Earth
approximation is used throughout the analysis because the
longest cutoff wavelength in any filter is only 160 km, which
is much less than the radius of Earth. Our grids are sampled
with equal spacing in latitude and longitude, so the distance
between adjacent east-west grid points varies with latitude. To
accommodate this latitude-dependent scale, we divided the
30°~70° latitude range into smaller overlapping strips, cosine
windowed each strip, performed the filtering by fast Fourier
transform with the correct scale in each strip, and then
combined the strips. All filtering and downward continuation
described here was performed in this fashion.

The design of the bathymetric prediction filter is motivated
by theoretical and empirical studies of Z(k), known as the
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Figure 2. Mercator track maps for an area of the South Pacific
2790 km E-W by 1670 km N-S. (top) Seasat, ERS 1, and
Geosat satellite tracks. Geosat GM data available south of
30°S are spaced 2—4 km apart; north of 30°S there are 40 by
100 km gaps in coverage. (middle) Ship sounding lines in
same area. There are 500 by 750 km gaps, and coverage is
biased toward ports (Easter Island) and particular features (East
Pacific Rise). (bottom) Geographic references. EI, Easter
Island; EPR, East Pacific Rise; JF, Juan Fernandez microplate.
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gravitational "admittance"” in the literature {Lewis and Dorman
1970; Dorman and Lewis, 1970; McKenzie and Bowin, 1976;
Watts, 1978, 1979, McNutt, 1979]. Z(k) is the transfer
function of a linear, isotropic, and spatially invariant filter
which takes a topography field A(x) as input and produces a
gravity field g(x) as output. In the Fourier transform domain
this is written

G(k) = H(k)z(k). 2
The definitions of Bracewell [1978] are used here for two-
dimensional Fourier and Hankel transforms: H(K) is the
Fourier transform of A(x), where x is [x,y] and Kk is [u=1/A,,
v=1/7»y]. A one-dimensional Hankel transform is used for
isotropic functions dependent only on the scalar distance r =
Ix!, and scalar wavenumber k = Iki; Z(k) is the Hankel trans-
form of z(r). In formulating (2), the topography A(x) is
defined as the local relief of the seafloor measured from a
constant regional depth d. Parker [1973] has shown that (2) is
only approximately true, as the correct relationship is nonlin-
ear. The approximation is a good one when h is small
compared with 4. We retain this linear approximation
throughout the paper and discuss its limitations in evaluating
the bathymetric prediction.

In flexural isostatic compensation theory, the seafloor
topography & acts as a load on a thin elastic lithosphere, and
the lithosphere flexes under the load in a linear, spatially
invariant, and isotropic manner. The gravity field g(x) is the
sum of the direct topographic effect and its isostatic
compensation. When the wavelength of the topographic load
is much less than the flexural wavelength of the lithosphere
(defined below), the admittance function is given by the
uncompensated model

Z(k) = 2nlp exp [-2mkd], 3)
where d is the regional depth, p is the density of the seafloor
relative to seawater, and I" is the Newtonian gravitational
constant (2rl'p is known as the Bouguer constant). The
exponential decay with increasing wavenumber is known as
"upward continuation" and is shown in Figure 3 (solid curve).
The gravity anomaly produced by an uncompensated conical
seamount (2 km high and 60 km in diameter) is shown in
Figure 4 (long dashed curve). The exponential decay in Z acts
as a smoothing filter, so that the sharp edges in the topogra-
phy are not present in the gravity profile. Also, the peak
amplitude of the gravity anomaly is less than 2xl’p times the
peak amplitude of the topography. Implicit in the bathymet-
ric prediction problem is the need to undo this smoothing,
which is unstable.

When the wavelength of the topographic load matches or
exceeds the flexural wavelength, the plate deflects under the
load causing a downwarping of the Mohorovicic discontinuity
(Moho), m(x). Assuming that the deflection of the plate is
much less than the flexural wavelength and the plate has no
inelastic response, the Moho deflection is related to the topo-
graphic load by another linear isotropic filter [Banks et al.,
19771:
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Figure 3. Transfer functions versus wavenumber. Scale at

bottom in wavenumber; scale at top in equivalent wavelength.
(top) Z, the transfer function for topography input and gravity
output. A constant value (dotted line) holds for uncompen-
sated topography on the gravity observation level. Upward
continuation to a level 4 produces exponential decay (solid
curve). Isostatic compensation causes Z to approach zero at
wavelengths longer than a parameter A (dashed and dot-dashed
curves). (bottom) @ = Z'1, the transfer function for gravity
input and topography output. Each curve is the reciprocal of
the corresponding one in the top panel.

o (k) =[ 1+(0)T". ®
Here (p, - p,,) is the density contrast of the seafloor relative to
seawater and (p,, - p.) is the density contrast of the mantle
relative to the crust. The flexural wavelength A is the wave-
length at which @ = 0.5; at wavelengths much longer than A
the topography is Airy compensated, while at wavelengths
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Figure 4. (top) Gravity anomalies due to a seamount. Dashed
curve, effect of topography only; dotted curve, effect of com-
pensation only; solid curve, combined effect. (bottom) Cross
section through the ocean crust showing a conical seamount
(h, dashed curve) and the moho deflection (m, dotted curve)
which compensates it. Also shown are water depth d, crustal
thickness c, and densities p_, P, P, appearing in the text.

much shorter than A the topography is uncompensated. The
admittance function for this model is

Zk) = 2aTp exp[-2nkd]{ 1 - exp [-2nkc] ®(k)}  (6)

where c is the normal crustal thickness (7 km) and p =p_-p,,.
Admittance functions for A of 800 km and 135 km are shown
in Figure 3 (dashed/dotted curves); these are typical minimum
and maximum values for A. The isostatic compensation of the
conical seamount is diagrammed in Figure 4 (bottom) for A =
135 km. The gravity effect of the Moho deflection is shown
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by the dotted curve in the top panel of Figure 4, and the
combined gravity is shown as the solid curve. The filter (6)
reduces the peak gravity amplitude relative to the uncompen-
sated model and introduces negative side lobes so the resulting
gravity does not look exactly like the topography. Attempts
to recreate the missing signal with an inverse filter are
unstable.

Window Carpentry and Filtering

By analogy with (2), we may define a linear, isotropic, spa-
tially invariant process which takes gravity as input and
produces seafloor topography as output; it will have a transfer
function Q(k) such that

H(k) = G(k)Q(k). @)

Inspection of equations (2) and (7) suggests that Q(k) = Z (k)
[Dixon et al., 1983]. However, this definition results in a
function which approaches infinity at both the low and high
wavenumber ends of the spectrum (Figure 3, bottom) and
whose Hankel transform does not exist. Thus topography
prediction using (7) is unstable. At short and long wave-
lengths any noise in the gravity field, or slight deviations in
density from the assumed density, will be greatly amplified
resulting in a poor prediction. Moreover at long wavelengths,
uncertainty in the flexural wavelength will result in a poor
prediction because Q is very sensitive to A. Thus @ must be
taken as a band-limited approximation of Z-! [Dixon et al.,
1983]

0(k) = " (k)W (k). (8)

where W(k) is any band-pass fiiter (also called a spectral
window function) which stabilizes the prediction problem and
forces Q(k) to have a Hankel transform which exists. This
means that predictions formed using equation (7) can only
resolve a limited range of wavelengths in A.

Dixon et al. [1983] used the above isostatic flexure theory
for O to attempt a prediction. Their study covered a limited
area so they were able to assume that d and p were constants, as
the above theory requires. They chose a rectangular window
W(k), which produced spurious oscillations in their predicted
bathymetry due to Gibbs' phenomenon [e.g., Bracewell,
1978]. Their window included some isostatically compensated
wavelengths in the passband, and so they found that their
results depended strongly on the value of A they assumed:
predicted heights of seamounts varied by 1 km according to
the choice of A.  Finally, and perhaps most importantly, they
used only one-dimensional profiles of gravity data and
assumed that both the gravity and topography fields were
lineated perpendicular to the track, when in fact their study
area (the Musician Seamounts) contains many pointlike
features.

The flexural wavelength of the lithosphere, A, is related to
the thickness of the elastic part of lithosphere which in turn
increases with the age of the lithosphere {Warrs, 1978,
Caldwell and Turcotte, 1979, Sandwell and Schubert, 1982]
because the base of the elastic layer follows an isotherm. The
thinnest lithosphere is found at the seafloor spreading ridges.
Over the fast spreading East Pacific Rise, elastic thicknesses
range between 2 and 6 km, while over the slower spreading
Mid-Atlantic Ridge, the elastic plate is a somewhat thicker 7—
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13 km [Cochran, 1979]. All of the ridges south of 30°S are
spreading at rates of 98 mm/yr or less. We follow Watts et al.
[1980] and assume an elastic thickness of 5 km (A = 135 km)
as a minimum value. Topographic features on the seafloor
which form away from the ridge axis may exhibit admittance
functions indicating a range of elastic thicknesses [Watts,
1978], and in some cases, quite different values may be found
within 150 km of one another [Smith et al., 1989]. If the
cooling of the lithosphere follows the plate model of Parsons
and Sclater [1977], then the maximum value of A we would
expect to find is about 800 km; this range of wavelengths
between approximately 135 and 800 km has been called the
"diagnostic waveband of flexural response” [Watts, 1983].
We designed our filter W(k) as the product of two filters
W, (k) and W,(k) to suppress the long- and short-wavelength
singularities, respectively. To design W,, we assumed that A
>= 135 km in the southern oceans, and we formed the function
Q../Q 35, where the subscript indicates the & value and A = oo
corresponds to the uncompensated case (solid curve in Figure
3, bottom); this ratio removes the effects of d and p and
isolates the effect of A. From equation (6) it follows that

<2 —exp [-2mkc] D13s(k), ®
Q135

where c is the thickness of the crust. The ratio 0./0 35 is well
approximated by a simpler Gaussian high-pass filter with
parameter s = 30 km

wilk) = 1-exp [-2(mks)]. (10)
W, =05 when k! = 160 km. This filter removes the flexural
waveband and longer wavelengths and is easier to compute in
the form (10) than (9).

The low-pass filter W, was designed fo suppress the high
wavenumber band where the exponential growth in @ due to
the downward continuation becomes large. At wavelengths
where the gravity data are very accurate, W, should be near 1
(the passband), while at wavelengths where the gravity data
are unreliable, W, should be near O (the stopband). The choice
of ftransition wavelength is important; if it is too low, the
predicted topography will have low resolution, while if it is
too high, the prediction will be overwhelmed by noise. If the
ﬂoise-to-signal ratio as a function of wavenumber R(k) is
known, then W, can be designed so as to minimize the mean
square error in the downward continued gravity field (and hence
the predicted topography). This method of optimizing filters
to minimize the variance in an estimated signal is from Wiener
[1949]. In the appendix we sketch the derivation of the
Wiener filter and show how published studies of the spectral
coherency in Geosat altimeter data [Sandwell and McAdoo,
1990] can be used to make an inspired guess at the functional
form of R(k). It turns out that W, depends on the regional
water depth d, because the gravity signal strength decays at a
rate dépending on d (Figure 3, top) while the noise process is
independent of d. The form we adopted for W, is

Walk) = { 1 + Ak*exp [4mkd] )" (11)
which can be found by substituting equation (A13) into (A8).
In (11)-, A is a constant chosen so that R(k) fits the observed
spectral coherency; we used A = 9500 km*. With this value,
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W, = 0.5 when k! = 15, 20, and 25 km, for water depths of 2,
4, and 6 km, respectively.

The combined filter W(k) = W, (k) W,(k) is shown in Figure
5 (top), and its Hankel transform w(r) in Figure 5 (bottom).
The dotted, solid, and dashed curves correspond to water depths
of 2, 4, and 6 km, respectively. The impulse response w(r)

wavelength (km)

oo 50 25 16.7 12.5 10

W(k)

W(k) exp[2nkd]

] i i 13

0.02 0.04 0.06
k (1/km)

r (km)

Figure 5. The filters (top) W(k) and (middle) W(k) exp[2nkd],
and (bottom) the impulse rcspohse w{r). Dotted, solid, and
dashed curves correspond to water depths of 2, 4, and 6 km,
respectively.
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shows that the filter acts as a local averaging operation, which
limits the resolution of our prediction. One definition of
resolving power [Backus and Gilbert, 1968] concerns the
averaging length of a linear system, which Constable and
Parker [1991] take as the width of the impulse response at
half-maximum amplitude. For d = 2, 4, and 6 km this width is
8.5, 11.4, and 13.8 km. Another measure of resolving power
is Rayleigh's criterion as used in optical imaging systems
[Goodman, 1968]; by this criterion, two point features can be
distinguished if they are separated by a distance greater than
the distance from the center of w(r) to the first minimum. For d
= 2, 4, and 6 km this distance is 11.2, 14.6, and 19.2 km.
Because w(r) depends on the water depth, our method will have
higher resolution in shallow water.

The theory for Z(k) and Q(k) is derived assuming a constarit
water depth d. We allow a slowly varying water depth d(x) by
using the low-pass filtered version of the observed bathymetry
grid b (x):

Dik) = Bo{k)[ 1 - wik)). (12)
The local seafloor topography is the band-pass-filtered
version of the observed bathymetric grid:

Hk) = Bo(k) W),

where d is set to 0 in (11) as used in (13).
Finally, the downward continued and band-pass-filtered
gravity g(x) is related to the observed gravity g (x) by

Ak) = Go{k) W(k)exp [2nkd].

This filter is shown in the middle panel of Figure S. Since the
depth varies spatially and (14) depends strongly on depth, a
different filter was applied to each grid cell. In practice, an
initial solution was calculated using (14) for constant values
of d, in multiples of 1 km of depth. Then the actual g(x) was
obtained at each grid cell x using 4d(x) and linearly interpolat-
ing among the solutions found using constant 4. In this
manner, g(xX) is the band-passed gravity field "draped over" the
regional depth d(x). We are now assuming that the theory
derived using a constant d can be applied locally (at wave-
lengths shorter than 160 km) since d(x) varies only region-
ally (at wavelengths longer than 160 km).

(13)

(14)

Inverse Nettleton Procedure

After the above processing, we have all but one of the
components needed for the bathymetric prediction given by
equation (1). The total predicted bathymetry b _(x) is the sum
of the passband prediction S(x)g(x) and long-wavelength
regional depth d(x). Since the analysis is limited to the
uncompensated band, the theoretical value of S is [2rTp]l,
where p is the density of the seafloor material relative to
seawater. If g and & obey the theory, then & = Sg. Our task is
to determine whether g and % are in fact correlated and the best
value of S to predict 4 from g. Nettleton [1939] suggested
that the appropriate density for Bouguer gravity reductions
could be found by trial and error, selecting the density which
yielded the Bouguer correction looking most like the free-air
anomaly. In essence, Nettleton's method for density
estimation is a regression procedure: find p such that 2rT'ph
best fits g by regression of g onto 2xT'A. Our problem is the
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inverse of Nettleton's (hence "inverse Nettleton procedure"),
but we use a robust regression technique constrained to pass
through the origin.

In order to obtain S(x) as a smoothly varying function with
spectral content comparable to d(x), we estimate S at points
on a grid (the "Nettleton grid") sampled 2.5 degrees in longi-
tude and 1.25 degrees in latitude. This yields a grid spacing of
135 km at 60°S. At each Nettleton grid point we form the set
of all g,h pairs which are at points in the 4 grid originally
constrained by ship soundings and which are within a 135 km
radius of the Nettleton grid point. Each pair is assigned a
weight based on its distance from the estimation point using a
cosine window. If there are n data in the set then the sum of
the weights will be about 0.3 n when the data are distributed
uniformly through the region r < 135 km. We found that
weight sums of 10 or more gave good estimates of S.

In Plate 1, three areas are labeled A, B, and C, and the data
from these areas used in the inverse Nettleton procedure are
shown in Figures 6a, 6b, and 6¢, respectively. Area A is
located on young seafloor along the Pacific-Antarctic Ridge,
area B is on older seafloor in the vicinity of a large fracture
zone system, and area C is on the South Indian Abyssal Plain.
Sediment cover is negligible in area A and increases from A to
B to C, reducing the spread in the distributions of g and A.
Figures 6a, 6b, and 6¢ show histograms of g in the top panel,
h in the second panel, and the scatter plot of & versus g in the
bottom panel. The scatter plots are shown at the same scale in
each figure to illustrate the reduction in spread caused by the
sediment cover. The histograms change bin width and scale
from one figure to the next in order to show the data
distributions. The effect of increasing sediment cover is to
increase the skewness of the distributions, particularly in the
h data.

In simple linear regression we would fit a line to g,k pairs
by ordinary least squares assuming that g was known perfectly
and h contained some random error. We could take S as the
slope of that line. If there are errors in both g and 4, simple
linear regression leads to biased estimates for the slope of the
regression line [Brownlee, 1965]; in this case a better esti-
mate is S = ¥6, /G, where 0, O, are the standard deviations of
g and h [Bendat and Piersol, 1986]. In either case the line
passes through the point with coordinates mean g, mean A,
and the portion of the variance in A which can be explained by
its relationship with g may be characterized by the linear
correlation coefficient. The parameter estimates are maximum
likelihood only if the data are drawn from a normal, or bivari-
ate normal, distribution [Browrnlee, 1965].

Because the data exhibit nonnormal distributions, we did
not use the conventional standard deviation in estimating ©,
the spread of the data; instead, we defined 6 by 6 = 1.4826 X,
where X is the weighted median absolute value of g or 4. The
median absolute deviation is a well-known nonparametric
estimate of the spread of a distribution, and the factor 1.4826
makes this 6 equivalent to the o of a normal distribution (the
expected value for ¥ of a normal distribution is 6/1.4826)
[Rousseeuw and Leroy, 1987]. The weighting we applied in
the calculation of X makes our estimate of ¢ depend more
strongly on points near the center of the window. When the
mean value of a distribution is unknown, one computes the
standard deviation with respect to the mean; similarly, X is
usually computed as the median absolute deviation of the data
from some location estimate. We computed X using the
median absolute value of the data, which is equivalent to
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Like the ordinary linear correlation coefficient, the magnitude
of T is < 1, with the sign indicating the sense of the correla-
tion. The distribution of T is known in the case of the null
hypothesis (H,) that g and & are uncorrelated, and we can
calculate the confidence with which this hypothesis can be
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Figure 6a. Histograms and scatter plot of gravity and ship-
constrained topography from area A in Plate I, representing
young seafloor with little sediment.

assuming the data are distributed around zero; this is so that if
we take S = ich/csg, then S will be the slope of a line through
the origin.

We also used a nonparametric estimate of T, the correlation
between g and A, called "Kendall's tau" [Press et al., 1986].
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Figure 6b. Same as Figure 6a, except for area B, representing
partial burial of basement by sediment.
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Figure 6c. Same as Figure 6a, except for area C, representing
an abyssal plain.

rejected; that is, the significance of the correlation [Press et
al., 1986].

The scatter plots (bottom panels of Figures 6a, 6b, and 6c)
show the T value we determined for these areas. Also shown
are solid and dashed lines. The solid lines are drawn through
the origin with a slope given by i-ch/cg, C being estimated by
the T method and the sign being taken from the sign of T. The
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dashed lines are formed in the same manner but using the root-
weighted-mean-square to estimate ¢ and the ordinary linear
correlation coefficient to determine the sign of the slope;
these represent the weighted least squares solution. Areas A
and B illustrate that the % method yields a line which seems to
fit the majority of the data more closely; the dashed line is
pulled toward the outlying data. In area C, the signs of the
correlation coefficients are different, but both are so small in
magnitude that the confidence that Hy, can be rejected is also
small; these data show no significant correlation.

The confidence with which we can reject H, and the
estimated value of 7 for all Nettleton grid points are shown in
the top two panels of Figure 7. Some of these can be related to
the major geological features shown in the bottom panel of
Figure 7. Both of these are shown as zero where no data are
available. In most other areas, the confidence in the
correlation is greater than 99%. Correlation coefficients are
particularly high over some continental shelf breaks and some
active plate boundaries (Mid-Atlantic and Southwest Indian
Ridges; Chile, Hjort, and Tonga Trenches; Scotia Sea), as well
as the aseismic Louisville and Broken Ridges. All of these are
areas of large signals in g and A, similar to area A in Figure 6a.
Correlations are low, and even slightly less than zero, and
confidences also low, over the abyssal plains. These areas are
like area C in Figure 6¢c. Other areas yield intermediate values.
At two Nettleton grid points southwest of the intersection of
the Pacific-Antarctic ridge and the Eltanin Fracture Zone
system (220°E, 55°S) there is a strongly negative correlation
with high confidence; this is, of course, contrary to
theoretical expectations. We examined this area and found a
narrow ridge in both the gravity and depth data, but in slightly
different locations. The depth soundings were all collected by
the R/V Vema using only celestial navigation, and we believe
the soundings are mislocated here, causing the inverse correla-
tion.

These experiences with estimating correlations led us to
define S as follows: We only estimate S where the sum of the
weights is at least 10. We take S = 0,/0, whenever the
confidence that Hy can be rejected is 95% or more and T is
positive. If T is negative or the rejection confidence is less
than 95%, we proceed based on the value of 6,. If 6, < 50 m,
we assume we have a situation like in arca C, where the
seafloor is nearly flat and g is uncorrelated with A; we set S=0.
If o, > 50 m, we assume that the seafloor is rough enough that
g and h would have a strong correlation if the ship data were
better navigated; we leave S unspecified at this point. We feed
these values of S into the Smith and Wessel [1990] gridding
program used earlier for the ship data and use it to estimate
S(x) on the same grid mesh as the g and % grids. The result is
shown in Figure 7, third panel from top. If the seafloor topog-
raphy has a density of 2600-2800 kg/m3, appropriate for
basalt, then we expect S in the range 13-16 m/mGal. Slopes
in this range occur over some parts of the active ridge system.
Slopes are generally less than 6 m/mGal in the abyssal plains.
Intermediate values may indicate areas where large features
formed at a ridge axis have been partially buried by sediment,
as in area B. Much higher values are found in areas of extreme
topographic variation, such as at the continental shelf breaks
and the trenches.

Results

 The S(x) grid obtained above was combined with the
downward continued, band-passed gravity g(x) and low-passed



SMITH AND SANDWELL: BATHYMETRIC PREDICTION FROM ALTIMETRY 21,813

000 001 005 010 050 090 095 099 1.00

Correlation Coefficient, T

0’ 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

Figure 7. Results of "inverse Nettleton" procedure (top three panels), and corresponding geologic features
(bottom panel). AAP, BAP, EAP, SIAP, and WAP are the Argentine, Bellingshausen, Enderby, South Indian,

and Weddell Abyssal Plains. BR and LR are the Broken and Louisville Ridges. Lines indicate plate
boundaries.
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bathymetry d(x) to form the prediction by equation (1). The
results are shown as Mercator projected images in Plates 2
through 5. A large format polar stereographic projection
poster is available from the National Geophysical Data Center
and the digital grid file is available by anonymous ftp from
Internet site ftp.ngdc.noaa.gov [Smith and Sandwell, 1994].

It is beyond the scope of this paper to present a detailed
comparison between the predicted bathymetry images and
previously published bathymetric maps such as the General
Bathymetric Chart of the Oceans (GEBCO) [Carnadian
Hydrographic Service, 1981] or ETOPO-5. Moreover, there
are many detailed local bathymetric maps that should be
considered in such a comparison [e.g., Lonsdale, 1988;
Mammerickx, 1992]. Using the digital data grid file, the reader
can prepare a local map at the scale and projection needed for
such quantitative comparisons. There are, however, some
general features that should be noted, especially in relation to
the published gravity anomaly maps.

Most short- and intermediate-wavelength features (15-160
km) apparent in the gravity map [Sandwell and Smith, 1992]
are also apparent in the predicted bathymetry map. The main
differences are that the bathymetric prediction contains
considerable long-wavelength information and the downward
continuation procedure amplifies the shortest-wavelength
gravity structure with respect to the intermediate-wavelength
gravity structure. The combination of these has a profound
effect on the appearance of the bathymetric map. For
example, the gravity anomaly map shows large-scale struc-
tures such as continental margins and oceanic plateaus as a
gravity low seaward of the shelf, a gravity high inboard of the
shelf and a decay of the gravity toward zero as one moves
further inboard of the shelf. This is the classic gravitational
edge effect of a compensated margin. When the ship sound-
ings and gravity are processed and combined as described
above, these dipolar edge effects change to the true steplike
edge. There are many examples of this throughout the map;
the most prominent is the Campbell Plateau (45°-55°S lati-
tude, 165°-180° longitude; see also Plate 1). The gravity map
shows gravity lows on shallow parts (< 1000 m deep) of the
plateau, while the bathymetry map clearly reflects the high
plateau topography.

A second major change between gravity and bathymetry
occurs at isolated loads such as seamounts and plateaus
containing imbedded seamounts. On the gravity map, these
structures appear as an isolated gravity high ringed by a
prominent gravity low. As shown in Figure 4 the gravity low
reflects the component of gravity caused by downward flexure
of the Moho; most seamounts do not have prominent
bathymetric moats. In the above analysis we tried to avoid the
longer wavelengths associated with lithospheric flexure in
order to suppress these negative sidelobes. A visual
examination of the bathymetric chart shows that only a few of
the predicted seamounts have moats. Most show conical
shapes that better reflect the true seafloor morphology. For
example, predicted seamounts on the Louisville Ridge
compare well with actual bathymetric profiles [Lonsdale,
1988].

There are at least two other classes of tectonic features that
are enhanced and clarified by the above processing. First,
while the detailed location of the spreading ridge axis is
apparent in almost all locations on the gravity anomaly map,
there are a couple of areas where the ridge axis location is
ambiguous. For example, in the gravity map there is no clear
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ridge expression of the southernmost Mid-Atlantic Ridge (45°-
55°S). The bathymetric map contains longer-wavelength
topographic information that creates a symmetrical crest
which can be used to infer the approximate ridge axis location;
morphology considerations can be used to trace the axial
valley to 50°S where it ends abruptly and becomes a broad
axial dome perhaps associated with the Bouvet Hot Spot. A
similar situation occurs along the Southeast Indian Ridge at
~80° longitude where, using symmetry arguments, an axial
valley can be located to the southeast of Amsterdam and St.
Paul Islands.

Second, sharp linear structures such as transform fault
valleys, transverse ridges, and fracture zones become sharper
and more continuous after the above processing. For example,
the long transverse ridges of the Heezen, Tharp, and Udintsev
Fracture Zones (South Pacific) are readily apparent in the
bathymetric chart, while they were sometimes obscured in the
gravity chart by longer-wavelength information perhaps
related to lithospheric flexure or thermal isostasy.

While in many cases the bathymetric map clarifies the
tectonic structures, it hides many important features that are
buried by sediments. Thus the gravity anomaly map may be
better for investigating the tectonics of the old sedimentary
basins.

Validation

In January and February of 1992, the R/V Maurice Ewing
made a survey across the Pacific-Antarctic Rise near Fracture
Zone XII (now also called the Pitman Fracture Zone) using
Global Positioning System navigation and Hydrosweep
multibeam sonar data. These data have not yet been released to
the National Geophysical Data Center and were not available
to us when we compiled the soundings which form our grids.
After we had made our prediction, we obtained the center beam
depths from the Hydrosweep survey (S. C. Cande, personal
communication, 1993) to compare with our prediction. These
data lie in an area of holes in our survey coverage (Figure 1)
where our prediction was poorly constrained, so they can put
the prediction to a strong test.

Figure 8 (top) shows a profile across the ridge; the profile
location is shown in Plate 1. The small crosses are soundings
from the Ewing, and the curve is drawn showing our prediction
at the corresponding points. The Hydrosweep data are very
dense, and we have decimated them to only one point per
kilometer in Figure 8 for clarity. The bottom panel of Figure 8
shows the Ewing soundings and the ETOPO-5 data for compar-
ison. The prediction resolves many details not seen in
ETOPO-5, including the correct location of the ridge crest.

We sampled our prediction grid at the Ewing data points for
11,748 km of the cruise, and used a linear interpolant to
sample both data at 1 km intervals; the two series were then
fed to a cross-spectral analysis program (spectrumld of the
Generic Mapping Tools (GMT) system of Wessel and Smith
[1991]). The program employs Welch's [1967] method . to
estimate spectra; we used a window length of 1024 points. We
also formed the difference between the Ewing data and our
prediction and estimated its spectrum by the same method.
The results are shown in Figure 9. The power spectral densi-
ties (top) are similar at wavelengths longer than 30 km or so,
while at shorter wavelengths the prediction has much less
power than the Ewing data. This is to be expected from the
high-cut properties of W(k) (middle). The gain (middle) and
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Plate 2. Mercator projection of the bathymetric prediction for the area 0°~90°E.
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Plate 3. Mercator projection of the bathymetric prediction for the area 90°~180°E.
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Figure 8. (top) Observed ship soundings (crosses) from R/V Ewing, which were not used to constrain the
prediction, and the prediction (solid curve). Location of profile is shown in Plate 1. (bottom) Same as top,
but solid curve indicates corresponding ETOPO-5 data, not prediction.

coherency (bottom) are calculated assuming that the Ewing
data are the input and the prediction is the output of a linear
system, with noise in the output. The gain and coherency are

low at wavelengths shorter than 30 km, again because of the

high cut in W(k). An interesting feature of both the gain and

coherency plots is that these are slightly higher in the 100-30

km range than they are in the 250-100 km range. The former
is within the passband of W(k), where the prediction relies on
S(x) and g(x), while the latter is the range where the predic-

Evaluation and Discussion

tion is based upon d(x), which has been interpolated through
the holes in ship coverage. Figure 9 suggests that the interpo-
lated solution is not very good at these wavelengths.

We computed the misfit between our prediction and our
gridded soundings at all grid points constrained by data. A
histogram of the differences is shown in Figure 10 (top). The
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Figure 10. (top) Histogram of differences between prediction
and ship soundings shows a distribution more peaked and
longer tailed than the normal distribution. (bottom)
Cumulative distribution of absolute differences shows that the
difference is less than 100 m 50% of the time and less than
240 m 80% of the time.

distribution appears to be symmetric around zero with a
sharper peak and longer tails than a normal distribution. The
mean difference is 7.8 m and the median difference is -2.6 m.
The root-mean-square value (rms) is 257 m and the median
absolute value (mav) is 96 m. As explained above, if the
distribution were normal, we would expect 1.48 times the
median absolute value to equal the root-mean-square value
(assuming the distribution to be located at zero); clearly, the
rms is much larger due to the long-tailed distribution.

Because of these long tails, the rms and mav do not fully
describe the distribution, and so we also computed the cumula-
tive distribution of the absolute value of the differences
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(Figure 10, bottom). With this we can see that more than 80%
of the differences are less than 257 m, the rms value, whereas a
normal distribution would have only 68% at this point. Since
the median absolute value is 96 m, 50% of the differences are
less than or equal to this value.

A map of the absolute differences is shown in Figure 11
(compare with Figure 7). Shown here are the average absolute
differences in 2.5° by 1.25° (135 km) "squares” as used for the
Nettleton grid. Squares without data are shown as having an
average difference of zero. The very large differences occur in
areas of very rugged topography, notably the Scotia Sea,
Southwest Indian Ridge, Louisville and Broken Ridges, and
Hjort and Chile trenches. There are two reasons why this is
expected. The first is that our 2.75-km grid has a Nyquist
wavelength of 5.5 km, while W has a cutoff at 15-25 km,
depending on water depth, so there can be wavelengths in the
observed data grid which we will not predict. In areas of
rugged topography, the short wavelengths which are missing
from the prediction will be needed to fit the data. The second
reason is that in some of these areas the local topography # is
not small with respect to d, the regional variation. This is
particularly true of features which rise to shallow levels.
Under these conditions the approximation that g and & are
related by a linear filter is a poor one [Parker, 1973).

The theory given in this paper is based upon the
assumption that gravity anomalies (in a limited band,
perhaps) are due entirely to seafloor topography. If this is
true, then the slope parameter S should be inversely
proportional to p, the density contrast at the seafloor. Only
part of the range of S values we found (Figure 7) can be
sensibly inverted for p, however. S in the range 13-16
m/mGal may be taken to indicate topography composed of
basaltic rocks, and slightly higher values of S may be
appropriate for continental shelf and slope materials.
However, the very small, and perhaps also the very large,
values of S indicate conditions that the theory given here is
not equipped to handle.

The areas of low (< 10 m/mGal) S and particularly of low
correlation and low confidence in rejection of H, correspond
well with the areas of thick (> 200 m) sediment in the isopach
map of Hayes and LaBrecque [1991]. In these areas, the
gravity anomalies arise from subseafloor structures and not
from seafloor topography. At any point where there is some
sediment cover over other than flat basement, there may be
some contribution to the gravity field from buried structures.
Area B (Figure 6b) exhibits a particularly challenging case.

150°
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Here the ridge and trough of a major fracture zone meets a
thickly sedimented area; sediment has nearly filled the trough,
while the ridge is still exposed. This has the effect of clipping
the negative h values while making little change in positive &
values, leading to the skewed distribution in Figure 6b.
Similarly, the positive gravity anomalies are large, while the
negative ones are smaller. If the trough is filled completely,
the negative gravity anomalies will not vanish, because the
sediment-basement density contrast will leave a small
negative anomaly. This means that the gravity anomaly
distribution must always be less skewed than the topography.
The method used here, and indeed any linear filtering method,
makes no provision for a S value which depends on the sign of
the gravity anomaly; it cannot predict topography with a
distribution more skewed than the original gravity anomalies.
In the case of area B, one may choose S to fit the ridge and thus
predict a too deep trough, choose S to fit the trough and thus
underpredict the height of the ridge, or choose an intermediate
value and fit both of them badly. One of the reasons we chose
slopes based on the X method was that it did a better job in
situations like area B than other methods we tried.

We are not sure what causes the very large values of S we
observe in some areas. These seem to indicate large topo-
graphic features associated with unusually low gravity anoma-
lies. One explanation would be that these features are isostati-
cally compensated. We designed the low cut of W (the stop-
band of W;) to remove wavelengths affected by compensation,
assuming that all areas of the map would have a flexural
compensation parameter A greater than or equal to 135 km. It
is possible that some features have a more local compensation
(smatller A). One could try to increase the stopband of W, to
guard against this, but then the passband of W would become
very narrow, leading to other problems. We think our choice
of W is a good one. Most of the very large S values occur at
the edges of plateaus and continental margins, where there are
abrupt and large changes in depth. When these changes are
band-pass filtered, the resulting # is probably a significant
fraction of d (for a Heaviside step function they would be
nearly equal), so that the linear approximation of the gravity-
topography relationship does not hold. However, the areas of
high S (Figure 7) are not well correlated with the areas of high
misfit (Figure 11), so nonlinear effects do not seem to entirely
account for the discrepancies.

The horizontal resolution of the prediction is also of
interest. We want to know what is the smallest feature that can
be resolved and how accurately particular features are located.

210° 240° 270° 300° 330°

0

1000
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50 100 150

Figure 11. Average absolute difference between prediction and ship soundings in cells same as in Figure 7.
Many areas show differences under 50 m. Large differences occur at areas of large variations in topography.
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Because the wavelengths shorter than the passband of W are
missing from the prediction, this limits the resolution of the
prediction. It is clear from Plates 1-5 that the resolution is at
least sufficient to distinguish axial highs from axial valleys at
mid-ocean ridges. While this paper was in review, P. Lonsdale
(personal communication, 1994) made a GPS navigated
SeaBeam-2000 survey of the Eltanin and Udintsev Fracture
Zones, and found that predicted bathymetric features appeared
within the width of the SeaBeam swath. Since the swath width
is about 3.4 times the water depth, this experience suggests
that the location precision is better than * 1.7d, or 8 km in
deep water. The definitions of resolving power based on
length scales in w(r) given above yield more conservative
(larger) limits.

As shown by equation (1) and discussed under the inverse
Nettleton procedure, our method bases the prediction on grav-
ity data in the passband of W, sometimes (where significant
negative correlations exist) in contradiction of the depth
sounding data. Smith [1993] has shown that the majority of
data may be poorly navigated in much of the southern oceans.
In these situations, we believe the gravity data are more likely
to be correct than the ship data, and we make no attempt to fit
the ship data. Thus our prediction cannot be taken as a
summary of, or substitute for, original soundings. Scientists
who fit physical models to bathymetric data should be aware of
these facts. Since we have produced a prediction which is
perfectly correlated with gravity in the passband of W wher-
ever S is nonzero, any attempts to interpret the gravity admit-
tance of our prediction would be circular. Proper uses of our
prediction may include (but are not limited to) proposal of new
surveys, reconnaissance of tectonic settings, plate reconstruc-
tions, ocean current modeling, etc. Our prediction cannot
contain very short wavelengths and underestimates topogra-
phy in rugged areas (Figure 11). We do not guarantee that the
actual topography of the ocean floor is as we have predicted.

Conclusions

Flexural isostatic compensation theory suggests that down-
ward continued gravity anomalies should be correlated with
seafloor topography in approximately the 15-160 km wave-
length band. The theory represents a linear approximation to
a nonlinear problem, and the underlying assumption of spatial
invariance must be relaxed in order to accommodate regional
changes in geology. Stable, high-resolution inversion of
gravity data for bathymetric prediction requires careful design
of filters to suppress noise in downward continuation.

We find significant correlations between downward
continued gravity and topography after these have been band-
pass filtered, in areas of rough seafloor topography or where
sediment cover is less than 200 m thick. In more heavily sedi-
mented areas, the seafloor appears quite flat, while gravity
variations persist; the latter may represent basement topogra-
phy buried under the sediments. In areas of partial sediment
cover, where basement highs are exposed, while lows are filled
in, the relationship between gravity and bathymetry cannot be
adequately expressed by a linear operation as used here.

We have predicted bathymetry in previously poorly charted
waters. Our prediction is validated in an area of the Pacific-
Antarctic Ridge by a GPS-navigated Hydrosweep survey. The
prediction resolves the location of important tectonic features
such as ridge axes better than previously existing gridded data
products such as ETOPO-5. The prediction is band-limited and
cannot resolve sharp features with their full amplitude; there-
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fore the variance of our prediction is less than that of the
actual seafloor topography.

We expect that our prediction will be useful in plate recon-
structions, analysis of regional trends in topography, and
planning of oceanographic cruises. It should not be used in
studies of the spectrum of topography data, in particular
roughness and topography-gravity admittance studies. It can-
not resolve peak amplitudes well, so the predicted depth to the
summit of a seamount may not be reliable; safety decisions
about hazards to navigation should not be made from it.
However, it may be useful in checking the reliability of appar-
ently dubious soundings on old charts.

Appendix: Optimal Downward Continuation
of Gravity Data

The exponential growth of downward continuation requires
a high-cut filter for stabilization. The choice of cutoff-wave-
length is important; too much smoothing will blur the details
of seafloor structure, while too little will swamp the prediction
with noise. The choice can be formalized using the Wiener
theory [Wiener, 1949; Gonzalez and Wintz, 1987] to design a
filter which is optimal in the mean-square sense, and the cutoff
wavelength can be taken from the results of repeat track
coherency studies.

Suppose that we estimate g(x), the gravity field at a depth d,
from our gravity observations at sea level, g (x), using the
downward continuation operator exp [2nkd] and a filter W,(k):

G(k) = Gdk) exp [2mkd] Wolk). (A1)
The circumflex on G in (A1) indicates that this is an estimate
of the downward continued gravity field. Suppose the true field
at depth d is given by
G(k) = S(k) exp [2nkd], (A2)
where s(x) is the "signal" and our observed gravity contains
both signal and noise;
go(X) = s(x)+n(x). (A3)
(In this appendix we use S for signal and N for noise; else-

where S is the slope from the inverse Nettleton procedure.)
Now the integrated squared error in our estimate E is

£ Jm[g )-8 (x)dx2= [ r|G(k Yowfare, (ag)

00

(the second equality in (A4) follows from Rayleigh's theorem
[Bracewell, 1978]), and the Wiener filter is that W, which
minimizes E. When we substitute the first three equations into
the fourth, there are signal-noise cross terms SN* and NS* (the
asterisk indicates a complex conjugate); these are Fourier
transforms of the cross covariance between the signal and
noise. Assuming that these are uncorrelated, these terms
become zero. We assume also that the power spectra of the
signal and the noise are isotropic and thus functions of k, not
k, so that

E=2nf exp[4nkd] {IS(k)!2[1—W2(k)]2+|N(k)|2W§(k)}dk. (A5)
0
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A stationary point of E with respect to W, is found by setting
OE/0W, = 0:

0:81;/52 —4ufo exp [4mkd] { [N (NP Wak HS (kY 1-Wa(k)] }dk. (A6)

This point is a minimum for £, which is shown by differentiat-
ing again:

IE ~ 2 2
0<—— =4n’ exp [4nkd] {IN(K)P +Is (k)P } dk. (A7)
JO

ow2

Now by the calculus of variations, (A6) is satisfied when the
integrand is zero, or

w2 (k)=[1+R (&), (A8)
where
_IN()P
S (49)

is the amplitude-squared noise-to-signal ratio as a function of
wavenumber. Note that W, does not depend on the factor
expl4nkd]; the Wiener filter is independent of the convolution
operator which relates g and g,

Sandwell and McAdoo {1990] have examined the coherency
between pairs of Geosat altimeter time series along repeating
ground tracks of the Exact Repeat Mission. The coherency in
these data can be used to estimate R(k) for the Geosat altime-
ter. Since the Sandwell and Smith [1992] gravity field is
dominated by the Geosat Geodetic Mission data, we expect R
for the gridded gravity field to be similar to that obtained by
Sandwell and McAdoo {1990]. If we assume that the two
samples of altimeter time series have the same signal and
noises uncorrelated with the signal and with each other, and
the two noises have the same spectrum, then the spectral
coherency is

v(k)=[1+R (k)] (A10)
[Bendat and Piersol, 1986]. The coherency is near 1 when R is
small and near O when R is large; Sandwell and McAdoo [1990]
gave plots of ¥ and estimates of the wavelength (1/k) at which
v = 0.5. They found that 7y is near 1 for long wavelengths and
near O for short wavelengths, with the transitional wavelength
in the range 20-30 km. They showed that the wavelength for
v = 0.5 varies with the depth to the ocean floor; in deep water
(d = 4 km) this wavelength is about 30 km, while in shallower
water (d = 2.5 km) this wavelength is about 20 km. (The
values given here are worked out from their results; they give
only one example of coherency between two individual time
series, and the remaining examples are coherency between
pairs of yearly average time series. The wavelengths for ¥ =
0.5 given here are appropriate for use in equation (A10).)

Here we create an analytic expression for R(k) which when
used in (A10) yields y(k) consistent with the results of
Sandwell and McAdoo [1990]. Our expression is inspired by
the following guesses about S(k) and N(k): Let the gravity
signal arise from application of (5) to a quasi-fractal, random
walk topography of the form H(k) proportional to k! [see
Malinverno, 1989, and references therein]; then
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IS (k) = A1 k2 exp [-4nk d], (A1)
where A, is some constant. Let the noise be white (constant
in wavenumber) in the altimeter sea surface height measure-
ment, so that it is proportional to k in the derivative gravity
data; then

IN(K)? = Ao k2, (A12)
where A, is another constant. Under these assumptions,
R(k)=A k* exp [4nkd], (A13)

where A is an unknown constant. If we choose A = 80,000
km?*, then when we substitute (A13) into (A10) we get y= 0.5
when d = 4 km and k = 1/(30 km), the predicted form for y(k)
matches Figure 6b of Sandwell and McAdoo [1990], and the
wavelengths at which y(k) = 0.5 vary with water depth in the
manner described by them. (Small increases in R in areas of
large currents were also detected by Sandwell and McAdoo and
are not described by (A13).) The Sandwell and Smith [1992]
gravity field shows coherency with ship gravity measurements
[Smith et al., 1993; Neumann et al., 1993] at shorter wave-
lengths than the Sandwell and McAdoo study would suggest,
and it appears that in shallow water over ridge axes the field
has short-wavelength details we want to preserve in our predic-
tion; we therefore chose A=9500 km?* rather than 80,000 km?.

Note that the derivation leading to (A8) shows that the
Wiener filter is independent of the downward continuation
term; however, because R(k) depends on depth via (A13),
W, (k) implicitly depends on d.
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