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Lithospheric rheology and flexure 
at Artemis Chasma, Venus 

C. David Brown and Robert E. Grimm 
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Abstract. Artemis Chasma is an arcuate, 2000-km-diameter zone of convergence and litho- 
spheric underthrusting on Venus. Inelastic flexure modeling of the topography at Artemis, 
combined with observations of trench tectonics, allow us to document local temperature gradients 
below 4 K km -1 and an immense compressive in-plane force at the trench. Lithospheric rheology 
on Venus may be stronger than would be predicted from conventional extrapolations of rock 
mechanics experiments; in particular, the brittle surface strength must reach a few tens of mega- 
pascals to satisfy the observed lack of flexurally induced surface faulting. Elastic plate bending 
models provide an adequate estimate of the bending moment at Artemis, but they fail to con- 
strain---or even recognize--the in-plane force. The inelastic analysis implies an in-plane force of 
the order of-1 x 10 TM N m-l; a potential driving force is thermal thinning of regionally thick 
lithosphere in the highlands to the north. The low heat flux at Artemis, which is a comparatively 
young structure, is compatible with the notion that Venus has experienced a prolonged period of 
cooling in the last several hundred million years. The inference of such exceptionally low thermal 
gradients embraces three end-member possibilities: (1) the surface age is >600 Ma, (2) the litho- 
spheric thermal age is greater than the surface age, and/or (3) the upper mantle temperature is 
anomalously low (•-1550 K). 

Introduction 

Artemis Chasma is a 2000-km-diameter arcuate trough in 
Aphrodite Terra, Venus, that is the manifestation of litho- 

spheric underthrusting and intense surface deformation (Figure 
1). Our examination of the tectonics of Artemis [Brown and 
Grimm, 1995] has revealed a coherent, plate-like motion of 
the circular interior platform which produced southeast vergent 
deformation on the southeast chasma margin akin to that at 
terrestrial subduction zones and prominent left-lateral strike- 
slip dis. placements on the east margin. Two independent mea- 
surements of strain agree that horizontal motions were limited 
to no more than -250 km. Artemis is relatively young, both 
with respect to nearby Aphrodite chasmata as well as in the 
global stratigraphy, and its tectonics are not directly 
attributable to mantle plume processes. 

Southeast Artemis Chasma is distinguished by its paired -l- 
km-deep trench and -1-km-high outer rise, which Sandwell and 
Schubert [1992a] interpreted to be analogous to the flexural 
trench-outer rise structures of subduction zones on Earth. 

There are several observations in support of a flexural origin 
for this topography: (1)the tectonic environment is one of 
lithospheric underthrusting [Brown and Grimm, 1995], which 
is amenable to flexure caused by surface, subsurface, and hori- 
zontal loading; (2) the outer rise is smooth and largely unde- 
formed, indicating it was uplifted not by folding or faulting but 
by bending of the lithosphere; (3) a gravity high northwest of 
the trench closely matches the region of geologically inferred 
convergence, is indicative of the mass anomaly expected from 
underthrusting [Schubert et al., 1994], and is associated with 
the loading responsible for the flexure. One observation in 
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striking conflict with the flexural interpretation is the 
complete absence of trench-parallel normal faulting on the 
outer trench wall (Figure 1, inset), a characteristic property of 
the convex upward bending of the lithosphere at subduction 
zones [e.g., Jones et al., 1979]. 

Artemis Chasma is an excellent site for examining flexure 
on Venus because the lithospheric strength of the underthrust 
plains should provide a sense of how low the venusian heat 
flux might be. Other flexure studies have relied on topography 
and gravity at coronae and volcanoes [Sandwell and Schubert, 
1992a; Johnson and Sandwell, 1994; Phillips, 1994; Mc- 
Govern et al., 1995], which are products of mantle upwelling 
and magmatism. Sites of lithospheric underthrusting and 
orogeny, on the other hand, are regions less "contaminated" 
by thermal anomalies, and they potentially provide more 
representative constraints on the geotherm of ancient litho- 
sphere. Such information is particularly valuable for compari- 
son to interior thermal evolution models [Turcotte, 1993; 
Arkani-Hamed et al., 1993; Parmentier and Hess, 1992] in- 
voked to explain the apparently near-uniform surface age of 
-400 Ma [Phillips et al., 1992; Schaber et al., 1992]. Artemis 
is unique for another reason: its flexural outer rise towers 
above those of subduction zones on Earth, where outer rises are 
typically only a few hundred meters high. Conventional 
flexure models may be inadequate for explaining such 
topography. 

Artemis Chasma Topography 

A map view of the topography at the southeast margin of 
Artemis is provided in Figure 1. The tectonics and structural 
geology of Artemis as a whole imply northwest-southeast- 
directed convergence at this boundary, at an azimuth of-125 ø 
[Brown and Grimm, 1995]. Sandwell and Schubert [1992a] 
performed flexural fits to topography on the southern margin 
where the trench and outer rise may also originate from 
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Figure 1. Shaded relief image of the southeast margin of 
Artemis Chasma. The image, approximately 650 km across, is 
in equidistant cylindrical projection. Topography is low-pass 
filtered and contoured in kilometers above mean planetary 
radius (6051.85 km), which is marked by the unlabeled, striped 
contour. The three profiles indicated are shown in Figure 7. 
The arrows point out wrinkle ridges. Profile 19 is marked in 
25-km intervals; the dot on each profile denotes the origin. 
The inset image (left-looking synthetic aperture radar) 
illustrates the lack of trench-parallel deformation on the outer 
rise. This image is an enlargement of the boxed area and is 130 
km across. 

bending, but the loading configuration is probably more 
complex there. 

We define the deformation front of the outer trench slope 
fold-and-thrust belt as the horizontal origin for our topo- 
graphic profiles. This nearly linear, ~300-km-long boundary 
between the severely deformed trench and the smooth, undis- 
rupted plains trends at azimuth 35ø; great circle topographic 
profiles are extracted perpendicular to this feature. We obtain 
34 profiles, spaced ~9 km apart (at the trench), by bilinearly 
interpolating elevations from the Global Topography Data 
Record (GTDR) [Ford and Pettengill, 1992]. We have examined 
both the Altimeter-Radiometer Composite Data Record 
(ARCDR) footprints and the altimeter profiles at the outer rise, 
and are confident our interpolated profiles accurately represent 
the topography. The GTDR error data over this region indicate 
that typical errors are ~50 m, with some orbits peaking at 
about 100 m. 

We characterize the flexural topography at Artemis in two 
ways. We build an average profile from the 34 original inter- 
polated profiles; this step serves to eliminate some of the 
short-wavelength noise in the data that is not associated with 
lithospheric flexure, and it provides us with a representative 
cross section. Also, for each of the 34 profiles we determine 
the topographic slope of the plains, the outer rise amplitude 
and width, and the trench depth. Slopes are small (~0.01 ø) and 

dip to the southeast; they increase in magnitude from south- 
west to northeast (Figure 2a). The slope is subtracted from each 
profile before measuring the maximum outer rise amplitude, 
full width at half-maximum (FWHM)of the outer rise, and 
maximum trench depth. The amplitude varies from 1160 to 
1570 km, generally decreasing from southwest to northeast 
(Figure 2b). The mean and standard deviation of the amplitude 
are 1290 _+ 90 m. The width ranges from 130 to 255 km, and 
also decreases from southwest to northeast (Figure 2c). The 
mean FWHM is 190 _+ 35 km. The trench depth shows no con- 
sistent trend along strike (Figure 2d). It varies from 450 to 
2030 m, with a mean value of 1180 _+ 420 m. 

Lithospheric Rheology 

We employ yield stress envelopes, which define the 
strength of the lithosphere as a function of depth, in our flex- 
ure models [Goetze and Evans, 1979; Kohlstedt et al., 1995]. 
Yield envelopes represent the maximum stress the lithosphere 
can sustain at a given depth, and they almost certainly overes- 
timate the.net strength [Kirby, 1983; Kohlstedt et al., 1995]. 
In this section we describe our two assumed rheoiogic models 
for the venusian lithosphere. In the "weak" model we follow 
conventional precepts in designing yield envelopes; these 
results are therefore most appropriate for comparison to the 
findings of previous workers. With the "strong" model our 
approach is to maximize the yield stresses, thereby placing an 
upper bound on the temperature gradient inferred from flexure 
modeling. General physical constants are defined in Table 1; 
the weak and strong rheology model parameters are listed in 
Table 2. 

Brittle Regime 

Yield envelopes usually describe the brittle, pressure- 
dependent strength of the lithosphere with the empirical 
"Byedee's rule" for frictional sliding [Byerlee, 1978], in 
Which strength is a linear function of confining pressure and 
vanishes at the surface [Brace and Kohlstedt, 1980] (Figure 3). 
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Figure 2. Topographic trends along strike of Artemis 
Chasma. (a) Topographic slope of plains southeast of Artemis; 
negative values indicate southeast dips. (b) Outer rise 
amplitude. (c)Outer rise width at half-maximum amplitude. (d) 
Maximum trench depth. Horizontal lines signify the mean 
values; one standard deviation is depicted by shaded regions. 
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Table 1. Model Parameter Values 

Symbol Definition Value 

A flow law coefficient 10 4'46 MPa -n s -1 

E Young's modulus 6.5 x 10 lø Pa 
g gravity at surface 8.87 m s -2 
n flow law stress exponent 3.6 
R molar gas constant 8.314 J mo1-1 K -1 
T s surface temperature 740 K 
bx.,c strain rate 10 -14 S -1 
tc thermal diffusivity 10 --6 m 2 s -• 
Pc crust density 2900 kg m -3 
Pm mantle density 3300 kg m -3 
v Poisson's ratio 0.25 

We incorporate Byerlee's rule in the weak rheology model. 
Application of Byerlee's rule assumes that preexisting faults at 
suitable orientations are present to accommodate bending 
strains. If faults of optimum orientation are not available, the 
brittle strength will be greater, possibly reaching the ultimate 
fracture strength of the rock [Sibson, 1985]. 

The lithosphere being flexed at Artemis Chasma may not 
possess preexisting faults which could accommodate flexure: 
the surface is smooth and largely undeformed on the plains to 
the southeast of the trench (Figure 1, inset). Therefore, we are 
unwilling to assume that Byerlee's rule provides a conserva- 
tive bound on lithospheric strength. We instead describe the 
brittle strength in the strong rheology model using a Mohr- 
Coulomb failure law, which has the form 

differential stress / MPa 
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Figure 3. Weak rheology (inner) and strong rheology (outer) 
yield strength envelopes at 4 K km -1. The stress profile at a 
bending curvature of +8 x 10 -7 m -1 is indicated by the shaded 
area. The base of the strong envelope is located at 153 km 
depth. The stress profile for a compressive in-plane force 
(-6 x 1013 N m -1) with no bending (A0.I) and following bend- 
ing to a curvature of +5 x 10 -7 m -1 (&0.II) are also shown (the 
kink in A0.II reflects elastic unloading). 

comparison of the Mohr-Coulomb failure strength to Byerlee's 
rule is depicted in Figure 3. 

r = r 0 + (tan½)o h (1) 

where r and 0.n are the shear and normal stresses, r0 represents 
the cohesion, and ½ is the angle of internal friction. We 
convert (1)into a form appropriate for constructing yield en- 
velopes by deriving the differential stress A0. = 0.1 - 0'3 [e.g., 
Jaeger and Cook, 1969, pp. 87-91 ] for compression and 
tension, where 0.3 and 0.1, respectively, equal the confining 
pressure (PrngZ). 

We assume that tamp in (1) is equal to the coefficient of slid- 
ing friction; following Byerlee [1978], we assign tan•p = 0.85 
for 0.n < 200 MPa and tamp = 0.60 for 0.n > 200 MPa. The com- 
pressive fracture strength has values of -150-400 MPa for 
common mafic rocks (basalt, diabase, gabbro, and dunite) 
[Shimada et al., 1983; Goodman, 1989, p. 61]. Equivalent 
cohesion values are-35-90 MPa. We let r0 = 50 MPa in the 
strong model. The Mohr-Coulomb model overestimates the 
strength of the upper lithosphere because experiments indicate 
brittle fracture strength increases nonlinearly with increasing 
confining pressure [e.g., Paterson, 1978, pp. 21-28]. A 

Table 2. Lithospheric Rheology Models 

Symbol Definition Weak Strong 

•:0 cohesion, MPa 0 50 
Q activation energy, kJ mol -• 535 560 
V* activation volume, cm 3 mol -• 0 17 

Ductile Regime 

Laboratory experiments show that rocks experience ductile 
creep at elevated temperatures. Empirically, stress is seen to be 
related to strain rate by a power law relationship: 

A0. = exp Q + V*Pi n•r • (2) 

where the coefficient A, stress exponent n, activation energy 
Q, and activation volume V* have values determined by labo- 
ratory measurements. In Figure 4 we have plotted (2) as a 
function of temperature for dry diabase [Mackwell et al., 1995] 
and four different anhydrous olivine and dunire flow laws. The 
strength of natural polycrystalline dunire [Chopra and Pater- 
son, 1984], synthetic olivine aggregates [Karato et al., 1986], 
and Goetze's [1978] high-temperature olivine are very similar. 
Clearly, diabase is weaker at all temperatures. An upper limit 
on the strength of olivine is provided by the strongest slip 
system, (010)[001]; the constitutive equation for this system, 
determined by Bai et al. [1991], is also plotted in Figure 4. 

How certain are we that these flow laws represent the maxi- 
mum yield stresses that can be sustained by the venusian 
lithosphere? Mackwell et al. [1995] demonstrated the dramatic 
increase in the strength of diabase produced by ensuring sam- 
ples were properly dehydrated. Chopra and Paterson [1984] 
were even more thorough in drying their samples, and they 
measured the water content using infrared spectroscopy, find- 
ing little change in strength below 0.01 weight percent H20. 
The agreement between the three anhydrous polycrystalline 
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Figure 4. Differential stress as a function of temperature for 
several anhydrous rock flow laws; a depth scale is also 
provided for 4 K km -1. MZKS95: Columbia diabase (Ni-NiO 
buffer) [Mackwell et al., 1995]. G78: Goetze [1978] olivine 
flow laws; the nearly linear segment is a low-temperature Dorn 
law. KPF86: Karato et al. [1986] synthetic olivine aggregate 
power law. CP84: Chopra and Paterson [ 1984] polycrystalline 
dunite power law, the weak ductile rheology used in this study. 
BMK91: (010)[001] slip system constitutive equation for oli- 
vine single crystals (opx buffer, IW oxygen fugacity [Myers 
and Eugster, 1983]) [Bai et al., 1991]. The strong ductile 
rheology used in this study is plotted with the bold, solid line. 

dunite flow laws (Figure 4) is reassuring, and we doubt that 
laboratory experiments will find dunite to be significantly 
stronger. 

Also of possible concern is the need to extrapolate from 
experimental temperatures of -1500-1800 K to mechanical 
lithosphere conditions of <1100 K. Experimental results sug- 
gest that, to a very good approximation, the activation energy 
for dislocation creep is independent of temperature over the 
tested range. At lower temperatures (and higher stresses) the 
power law behavior of crystal creep breaks down, and distinct, 
weaker processes dominate [Kirby, 1983; Tsenn and Carter, 
1987]. Evans and Goetze's [1979] olivine hardness tests over 
a broad temperature range (300-1800 K) revealed a sharp de- 
crease in strength at reduced temperatures. They suggested that 
a Dom law, in which creep rate depends exponentially on 
stress, applies at Act > 200 MPa [Goetze, 1978] (Figure 4). 
Therefore, power laws overestimate lithospheric strength. 

In the weak rheology model we let the ductile strength of 
the mantle be described by Chopra and Paterson's [1984] flow 
law (Figure 4). For the strong rheology model we assume that 
Bai et al.'s [1991 ] (010)[001] slip system constitutive equa- 
tion places an upper bound on the strength of the venusian 
mantle. For convenience, we retain Chopra and Paterson's 
[1984] values of A and n, and simply raise the activation 
energy to 560 kJ mo1-1 (Figure 4). We also include an 
activation volume [Kirby, 1983]. In both rheology models, 
ductile stresses are calculated at a strain rate of 10 -14 s -1, a 
reasonable upper bound for a convergent setting, and the base 
of the mechanical lithosphere (z = hm) is defined by a ductile 
strength of 50 MPa. 

In our flexure modeling we ignore the role of the crust in the 
lithospheric strength. The crust of the venusian plains is -20- 
50 km thick [Grimm and Hess, 1996], and the lower crust 
might experience ductile flow. However, at Artemis the crust 
has not become decoupled from the upper mantle lithosphere 
despite the intense underthrusting, implying that the crust and 
mantle are mechanically welded [Brown and Grimm, 1995]. By 
neglecting the crust we adhere to our principle of maximizing 
the inferred thermal gradients. 

Elastic Plate Bending Analysis 

To allow us to compare our results to those of Sandwell and 
Schubert [1992a], and to form a basis of comparison for our 
inelastic flexure models which follow, we fit an analytic 
elastic plate bending equation to the Artemis Chasma topo- 
graphy. We consider a very general elastic solution for the 
vertical displacement (w) as a function of distance (x) [Parsons 
and Molnar, 1976]: 

[ 2P(t+ Swo .t x 
x exp - +mx + zo (3) 

N / -1/2 a=(1 -rcr) (4a) 
P= + crJ 

Note that w is defined positive down. Ncr -' -4D• 2 is the com- 
pressive buckling in-plane force, where the flexural wave- 
length is defined as 

[ 4D /1/4 g=kApg] (5) 
and the flexural rigidity is a function of the elastic plate 
thickness (he) 

D= 12(1- v2•-• (6) 
The mantle-surface density contrast is Ap = Pm. We initially let 
the in-plane force per unit length (N) be zero, and perform a 
nonlinear least squares fit [Press et al., 1992, pp. 683-688] of 
(3) to a -1500-km length of the average profile with five free 
parameters: the bending moment per unit length (M) applied at 
the trench, the trench depth (w0), the topographic slope (m), 
the vertical offset (z0), and the flexural wavelength (J,). Other 
parameters and their values are specified in Table 1. The plate 
curvature is defined as K = d2w/dx 2, and the elastic bending 
moment is given by M =-DK. 

The application of the elastic analysis to the average pro- 
file yields h e = 56 km, over 20% greater than Sandwell and 
Schubert's [1992a] result for the southern chasma; the fit is 
shown in Figure 5. We have not directly estimated the uncer- 
tainty of h e, but it realistically is at least 10 km [McQueen and 
Lambeck, 1989]. The maximum curvature and bending moment 
(which are probably even more poorly determined) are 
7.8 x 10 -7 m -1 and-7.9 x 1017 N, respectively. 
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Figure 5. Average topographic profile, vertically exagger- 
ated by a factor of 145. Elastic plate bending model fit (dashed) 
and inelastic flexure model fit (dotted) are plotted. The 
inelastic profile was created at the 4 K km -1 geotherm calcu- 
lated by matching the first zero crossing moment-curvature 
pair of the elastic solution to identical values for an inelastic 
rheology; the applied bending moment is -6.8 x 1017 N, and 
the trench depth boundary condition is 1.1 km. No in-plane 
force is included. 

To estimate the mechanical plate thickness (hm) and linear 
temperature gradient (dT/dz) that relate to the elastic model, we 
apply the moment-curvature matching technique of McNutt 
and Menard [1982]. We assume the moment and curvature of 
the elastic model at the first zero crossing equal the M-K pair 
for an inelastic lithosphere in which stresses are limited by the 
yield envelope. We iteratively calculate the inelastic moment 
at the elastic curvature as a function of thermal gradient (with 
the weak rheology), and find agreement with the elastic 
moment at dT/dz = 4.0 K km -], which corresponds to h m = 99 
km. This geotherm is similar to that determined by Sandwell 
and Schubert [1992a]. 

Inelastic Flexure Modeling 

Model Theory and Solution 

The solution to the inelastic bending of the lithosphere 
must satisfy the force balance for the large deflection and finite 
deformation of a plate [Fung, 1965, pp. 463-470; Liu, 1980; 
Mueller and Phillips, 1995]: 

d2M(x) [ dN(x) ]d (;) + Apgw(x) (7) • =- [ dx + rrxz(x'hm) •(;) - N(x) d2w dx 

where rrxz(x,hm) is a basal shear traction. Equation (3) is an 
analytic solution to (7) for a purely elastic plate (with •xz equal 
to zero), but for our inelastic modeling we require numerical 
solutions. A condition of (7) is that the horizontal strain and 
bending slope (dw/dx)are small compared to unity. Both 
parameters are <5% at Artemis based on the slopes and 
curvatures in the elastic fit. 

To reduce (7) to a single independent variable (w), we must 
construct a relationship between curvature and bending 
moment [Mueller and Phillips, 1995]. For each curvature we 
determine a stress profile subject to the plastic strength limits 
of the yield envelope, assuming a Tresca yield criterion. 
Elastic core stresses are related to the curvature by 

zXorz) = lZ-Zn) - (8) 

where z n is the neutral surface depth, which is iteratively de- 
termined by the requirement that the horizontal stress resultant 
equal the in-plane force: 

N-- •:m AO(z)dz (9) 

Having determined the full stress profile, we can proceed to 
calculate the bending moment: 

M--f: m Ao'ii(z)zdZ- fohm A•i(z)zdz (10) 
Here the bending moment is represented by the difference in 
moment of the net stress distribution of the in-plane force and 
bending (Arrii(z) Ao'(z) of (9)) and the in-plane stress 
distribution at zero curvature (Arri(z)) (Figure 3). Our model 
assumes that the in-plane force is applied prior to bending, and 
it accounts for the effects of elastic unloading following 
plastic failure [McAdoo et al., 1978; Mueller et al., 1996]. 

By reducing (7) to four first-order differential equations and 
employing the moment-curvature relationship, we solve the 
flexure equation as a two-point boundary value problem using a 
finite difference routine [Phillips, 1990; Mueller and Phillips, 
1995]. We specify the displacement and applied moment on 
the left (trench) end of the profile; the boundary conditions on 
the right end are zero displacement and curvature. We initially 
neglect rrxz and assume N is constant with distance. 

Evaluation of Elastic Model Results 

Figure 5 includes an inelastic flexure curve for the same 
temperature gradient implied by the elastic modeling: 4 K 
km -] (weak rheology). Clearly, this solution fails, as the outer 
rise amplitude is just half the observed height. Perhaps this 
shortcoming can be explained by a failure of the first zero 
crossing moment-curvature matching technique [McNutt and 
Menard, 1982]. Mueller and Phillips [1995] showed that this 
method systematically underestimates h m but using the maxi- 
mum moment-curvature values instead results in a far more 

accurate determination. In this case, the latter method yields 
dT/dz = 3.6 K km -1 (h m = 111 km), only a minor change, and 
yet there is no improvement to the modeled fit. 

From the inelastic modeling perspective a given geotherm 
and strength envelope will limit the maximum bending 
moment (and outer rise height) allowed. For instance, the 
saturation moment at 3.6 K km -1 is-8.8 x 10 •7 N, so very 
little additional amplitude can be attained in the inelastic 
model by increasing the applied moment. A higher geotherm 
would further limit the maximum attainable flexural amplitude, 
whereas a lower geotherm would produce an inappropriately 
long flexural wavelength. Therefore, unlike elastic plates, an 
arbitrarily large outer rise height cannot be generated by an 
inelastic lithosphere for all flexural wavelengths. Recogniz- 
ing this additional constraint, is it possible to explain the 
Artemis outer rise in the context of an inelastic, finite- 

strength lithosphere? 
The inclusion of an in-plane force introduces an additional 

modeling parameter. It, too, is limited by the net strength of 
the lithosphere (i.e., (9) with Ao'(z) equal to the compressional 
or tensional yield strength), but it modulates both the flexural 
amplitude and wavelength. The latter property can be seen in 
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(3) and (4) for the elastic plate: the sinusoidal wavelength (fl•) 
is decreased by a compressive in-plane force, and the damping 
wavelength (ot•)is increased. Similar behavior occurs with 
inelastic plate flexure. This insight suggests that an in-plane 
force may play a crucial role in the Artemis Chasma topo- 
graphy, and it might explain the failure of the inelastic model 
depicted in Figure 5. 

We have attempted to obtain least squares fits of equation 
(3) to the Artemis trench-outer rise with N as a sixth free 
parameter. However, the in-plane force is completely undeter- 
mined: varying N by up to 10 TM N m -1 in both compression 
and tension fails to improve the rms error at any value. This 
finding verifies the more complete analysis of Mueller and 
Phillips [1995]. In all fits the values of h e are similar to the N 
- 0 results. We therefore proceed with our fully inelastic 
modeling. 

Inelastic Model Results 

Our approach is to explore the three-dimensional parameter 
space of temperature gradient, in-plane force, and applied 
bending moment (with an additional degree of freedom pro- 
vided by the rheological models) by forward modeling with 
inelastic flexure solutions. Our goal is to match the observed 
outer rise height and F'WHM of Artemis. The results are not 
sensitive to the trench depth boundary condition, which we set 
to 1 km (Figure 2d). An example of the output of our model is 
depicted in Figure 6. This interaction diagram delineates the 
saturation moment (for positive curvatures) as a function of in- 
plane force for a thermal gradient of 5 K km -1 and the strong 
rheology. The saturation moment is the maximum bending 
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Figure 6. In-plane force-bending moment interaction 
diagram for the strong rheology at 5 K km -1. The sinuous 
envelope corresponds to the saturation moment as a function 
of in-plane force. Outer rise width from inelastic model solu- 
tions is contoured in kilometers. The diagonal shaded band 
marks agreement with both the observed outer rise amplitude 
and width to within two standard deviations. The stippled area 
at right indicates conditions at which no surface failure 
occurred. Circle corresponds to Figure 7a. 

moment that an elastic-plastic lithosphere can sustain, and it 
is reached as curvature increases. Bending on the outer trench 
walls of convergent zones is characterized by positive curva- 
tures, and we do not pursue solutions with negative curvatures 
at this boundary. Large positive applied moments would result 
in an upturn in the deflection profile at the intended trench. 

Within the diagram (Figure 6) we have contoured the F'WHM 
of the modeled outer rise as a function of in-plane force and 
bending moment at the trench. The outer rise width is a maxi- 
mum at N = 0, and it decreases with both tensional and com- 

pressional in-plane forces. This behavior parallels that of the 
elastic plate (equation (3)), but it can also be viewed as a 
consequence of the thinning elastic core when an in-plane 
force is applied (Figure 3). Figure 6 and corresponding 
diagrams for other geotherms demonstrate that the FWHM is 
primarily a function of the in-plane force and the mechanical 
plate thickness; therefore, the observed outer rise width alone 
should provide constraints on the allowed combinations of N 
and dT/dz. 

The oblique shaded band in Figure 6 marks the inelastic 
flexure model solutions that satisfy both the mean amplitude 
and FWHM of the Artemis outer rise to within two standard de- 

viations. The amplitude is dependent on both the in-plane 
force and applied moment, as we would expect from the elastic 
solution (equation (3)). These results imply that the in-plane 
force must be compressional and quite large--no zero in-plane 
force solutions are capable of reproducing the ~l.3-km outer 
rise height. Inferred applied bending moments, too, are very 
large. The results shown in Figure 6 are not unique, and they do 
not explain the entire observed range of the FWHM (Figure 
2c). We must invoke higher and lower thermal gradients to 
produce narrower and wider outer rises, respectively, for this 
rheology. However, the along-strike variation in the FWHM 
could also be explained by a constant geotherm but a nonuni- 
form rheology (e.g., a changing crustal thickness). Similar 
diagrams built at other geotherms and using the weak rheology 
mirror the patterns seen in Figure 6; in particular, a compres- 
sional in-plane force is always required. 

Figure 6 illustrates our ability to satisfy the amplitude and 
width of the Artemis outer rise with the inelastic flexure model, 

but convincing solutions must also match the slopes of the 
outer rise flanks. In Figure 7 we demonstrate that complete 
inelastic model solutions provide good fits to typical 
topographic profiles of the southeast chasma for the parameter 
values indicated by plots such as Figure 6. In some cases there 
are disparities on the outer trench wall, but we emphasize that 
these solutions are not unique; other combinations of dT/dz, N, 
and M can provide equivalent or better fits. Typical rms misfits 
are ~ 100-150 m. 

To determine if a basal shear traction might affect the mag- 
nitude of the loads, we have also solved (7) for nonzero, con- 
stant Crxz (in which the in-plane force is a linear function of x). 
Because of the x dependence of N, we must create a moment- 
curvature-in-plane force surface to solve (7); we bilinearly in- 
terpolate over this surface to determine the curvature at a given 
N and M. We find that these inelastic profiles are essentially 
indistinguishable from those with constant N and zero Crxz 
when the distance over which N varies is long (~1000 km). 
The outer rise shape is slightly altered by the decrease in N 
with distance from the trench, but the basal shear stress appar- 
ently does not modify the flexural signature because it is of the 
order of 10 times less than the bending stresses. 
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Figure 7. Inelastic model fits to three topographic profiles 
indicated in Figure 1, vertically exaggerated by a factor of 7 3. 
(a) Strong rheology, dT/dz = 5 K km -1, N = -8.5 x 1013 N 
m -1, M =-7.2 x 1017 N. (b) This profile is similar in shape 
to the average profile (Figure 5). Weak rheology, dT/dz = 3.6 K 
km -1, N = -1.0 x 10 TM N m -1, M = -3.5 x 1017 N. The 
arrows mark a ridge that may be unrelated to the flexural 
topography, and which therefore exaggerates the outer rise 
width. (c) Strong rheology, dT/dz = 7.3 K km -1, N = 
-4.1 x 1013 N m -1, M =-3.6 x 1017 N. 

Figure 8. Comparison of lithospheric stress distributions 
with (solid) and without (dashed) elastic unloading; brittle 
strength envelope is marked by bold lines. In the former case, 
the in-plane force was completely applied prior to any bend- 
ing; depths initially in compressive plastic failure yield in 
tension at even moderate bending curvatures. If the application 
of the in-plane force and the occurrence of bending are 
synchronous, near-surface failure is precluded because the 
lithosphere never fails in compression ("no unloading"). 

Absence of Surface Faulting 

Another feature of Figure 6 is the domain in which no sur- 
face failure occurs, marked by the stippled area. Surface normal 
faulting is induced when bending curvatures are large enough 
for the stress profile to intersect the Mohr-Coulomb envelope 
in tension (Figure 3); thus, the zone of no failure is confined to 
relatively small moments. The surface is always at failure in 
the weak rheology model because the surface strength is as- 
sumed to be zero. There is an enormous discrepancy between 
the inferred in-plane force and applied moment (constrained by 
the outer rise amplitude and FWHM) and the conditions of no 
surface failure (Figure 6). The bending curvatures at Artemis are 
so large (-7-10 x 107 m -1) that it appears to be impossible 
to avoid surface failure, a situation that persists at other 
thermal gradients. 

A very simple way in which to prevent surface faulting is to 
assume a higher brittle strength; however, for most parameter 
combinations a cohesion of at least 200 MPa is necessary. The 
widespread deformation on Venus indicates that the strength of 
surface materials is probably not this large; such a cohesion is 
also contrary to most laboratory measurements of the fracture 
strength of rocks [Schultz, 1993]. 

So far we have assumed a very simple loading sequence: an 
in-plane force is applied first, perhaps associated with a re- 
gional stress in the downgoing lithosphere, and bending fol- 
lows as the lithosphere is distorted at the outer rise. Therefore, 
at shallow depths, the lithosphere first fails in compression 
because of the in-plane force; with bending, elastic unloading 
occurs until the tensional yield strength is reached [Mueller et 
al., 1996] (Figure 8). This is the cause of the dominant surface 
failure in the flexure models: elastic unloading does not 
progress far before tensional failure is reached despite the 
compressional in-plane force. 

A possible means to avert unloading is for the in-plane 
force magnitude to track the bending curvature such that the 
surface stress never intersects the yield envelope on the outer 
rise. With time, a given point on the surface could experience 
both a gradually increasing compressional in-plane force and 
bending such that the surface stress remains approximately 
zero. Because the curvature increases almost linearly from the 
back flank of the outer rise to the trench, surface faulting would 
be precluded if the in-plane force increases in a similar manner 
toward the trench. 

The spatial arrangement of wrinkle ridges on the plains 
southeast of Artemis is suggestive of the variation in surface 
stress (Figure 1). The wrinkle ridges, which reflect shortening, 
trend roughly parallel to the chasma, and they extend for thou- 
sands of kilometers across the plains. However, the wrinkle 
ridges are conspicuously absent on the outer trench wall and 
outer rise peak--thus, there is neither extensional nor contrac- 
tional deformation in this zone. The position where the 
wrinkle ridges end on the back side of the outer rise is near 
where the flexural models predict a change in sign of the curva- 
ture. Therefore, the wrinkle ridges are another manifestation of 
the compressive in-plane force, and their formation has been 
inhibited on the outer rise because bending stresses canceled 
the in-plane stresses. 

We can simulate the proposed relationship between in- 
plane force and bending in our models by leaving out elastic 
unloading when constructing the stress profiles (Figure 8); we 
thereby assume no initial compressional failure has occurred. 
With this modification we discover that we can now find con- 

ditions that satisfy all three key observables at Artemis: the 
outer rise width and height and the lack of surface deformation 
(Figure 9). This model is an approximation because we have 
not included the postulated lateral in-plane force variation in 
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Figure 9. Interaction diagram for inelastic flexure in which 
the in-plane force and bending are applied concurrently. 
Strong rheology is illustrated at 4 K km -1. Notice that surface 
failure can be averted at the large bending moments required to 
reproduce the Artemis Chasma outer rise amplitude and width 
(compare Figure 6). 

the flexural solutions. For a typical profile (Figure 7a) the 
constant in-plane force model indicates a need for a factor of 2 
or 3 change in N across the outer rise to avoid surface failure 
with the implied change in curvature. Our model that allows a 
laterally variable in-plane force indicates that such a change 
over only 100-200 km will appreciably decrease the outer rise 
height, implying that still larger forces and moments are 
required. 

Discussion 

Our inelastic flexural modeling indicates that the elastic 
solution coupled with the moment-curvature matching tech- 
nique succeeds in estimating the approximate geotherm at 
Artemis, but it fails to distinguish the presence of a large, 
compressive in-plane force. To understand the seeming con- 
tradiction between these two results, we have run accuracy tests 
for the elastic flexure methods using an approach similar to 
that of Mueller and Phillips [ 1995]. The elastic plate equation 
is fit to a series of synthetic inelastic flexure profiles which 
are generated for different values of in-plane force (N is 
assumed to be zero in the elastic fits). For each fit we perform 
the moment-curvature matching calculation for both the first 
zero crossing and maximum curvatures. We find that the 
mechanical lithosphere thickness estimated via the elastic fit 
can be in error by up to ~30% for compressional in-plane 
forces, depending on such factors as the thermal gradient, 
trench depth, and applied moment. The errors can be even 
larger for in-plane tension. 

These findings intimate that flexure modeling of terrestrial 
subduction zones, where stresses ranging from tension to 
compression can arise from interplate coupling and the trans- 
mittal of slab-pull forces [e.g., Spence, 1987], might be inac- 
curate because of the neglect of in-plane forces [Mueller and 

Phillips, 1995]. For Artemis the agreement between the 
temperature gradient estimates of the elastic and inelastic solu- 
tions is attributed to the range of permissible geotherms with 
the in-plane force as a free parameter in the inelastic model. 
For instance, the moment-matching technique predicts a 
geotherm of 3.3 K km -l for the maximum curvature of an 
elastic fit to profile 1 (Figure 7a). Inelastic model solutions 
from 3 to 4 K km -l, a range of 25% in thermal gradient, 
provide good fits under the weak rheology with variable in- 
plane force and applied moment. 

To place an upper bound on the temperature gradient, we 
consider the highest geotherm that includes the maximum 
FWHM within the range of acceptable solutions. However, 
forward-modeled fits (Figure 7)indicate that the widest outer 
rise can be satisfactorily fit by somewhat narrower synthetic 
profiles. In addition, some of the topography on the 
southeast-facing outer rise slope may not be flexural (arrows, 
Figure 7b), exaggerating the measured FWHM. We have cali- 
brated this uncertainty by comparing synthetic profiles to the 
widest portions of the outer rise, and accept 210 km as the 
maximum FWHM for limiting the geotherm. Taking this 
adjustment into account, the upper bounds implied by the weak 
and strong rheology models are 3.4 and 5.1 K km -1, respec- 
tively. When the condition of no surface faulting is incorpo- 
rated into the strong model, the upper bound is 3.8 K kin-l; 
this value is somewhat less precise because our solutions do 
not include the spatially variable in-plane force. Narrower 
segments of the outer rise can be explained by higher thermal 
gradients or by locally weaker rheology. 

A broad range of geotherms, in-plane forces, and applied 
moments is allowed because of the nonuniqueness of the solu- 
tions (Table 3), but these three parameters are strongly inter- 
dependent when constrained by the outer rise width and height 
(Figures 6 and 9). Our inelastic model is relatively sensitive to 
the ~90-m variations in the amplitude (Figure 2b), which are 
explained by small changes in the applied loads. The ~35-km 
variations in the width (Figure 2c) imply changes in some 
combination of temperature gradient, lithospheric rheology, 
and in-plane force. Such changes must occur over the trench 
length of ~300 km covered by our profiles (Figure 1). 

Sources of Loads 

In-plane force. A typical compressive in-plane force 
required by the flexural fits to Artemis is -1 x 1014 N m -1, 
although it may be locally lower (Table 3). The observation of 
a lack of surface faulting near the chasma implies that this 

Table 3. Inelastic Flexure Model Results 

Parameter Weak Rheology* Strong Rheology'• 

Full Outer Rise Width Ranges 

dT/dz, K km -1 3.4-5.4 3.8-6.4 
Mean Outer Rise Width 

dT/dz, K krn -1 2.8-4.0 3.8-4.4 
N, N m -1 -(3.0-15) x 1013 -(9.3-14) x 1013 
M, N -(3.5-15) x 1017 -(4.9-10) x 1017 

* Two constraints: outer rise height and width. 
? Three constraints: outer rise height and width and no surface failure. 
• Upper bounds to geotherm over range of outer rise widths. 
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force decreases from the trench across the outer rise, but it 

persists for thousands of kilometers into Nsomeka Planitia. 
The region south of Artemis lacks any candidate features that 
might provide the requisite driving stresses or the strains 
accommodating the convergence at Artemis [Brown and 
Grimm, 1995]. The chasmata and highlands to the north are 
more plausible source regions. We infer that the in-plane force 
is transmitted from the overriding plate to the downgoing 
lithosphere by congested motion at Artemis. The absence of 
pore fluids on Venus, hence large frictional stresses, is a likely 
explanation for highly coupled underthrusting compared to 
terrestrial subduction zones. 

A possible cause of the in-plane driving force is mantle 
flow tractions applied to the base of the lithosphere, aided by 
the probable lack of a low-viscosity zone on Venus [Phillips, 
1986, 1990]. Phillips [1990] derived relationships between 
in-plane stress and long-wavelength gravity for a thin elastic 
lithosphere overlying an isoviscous mantle. We have exam- 
ined the long-wavelength geoid in the Artemis region up to 
degree 10 (wavelengths -4000 km and greater) using the 
spherical harmonic gravity model (MGNP90LSAAP [Sjogren 
et al., 1996]). The theory should be valid at these wavelengths 
assuming the depth of the density anomaly driving the flow is 
shallower than -400 km [Phillips, 1990]. The maximum geoid 
height is -70 m over southeast Thetis Regio, corresponding to 
a predicted in-plane force of-1 x 1013 N m -1, considerably 
less than the flexurally derived values. However, partial crustal 
compensation of Thetis [Grimm, 1994] might obscure the 
presence of a stronger mantle anomaly. 

Differential topography is a related mechanism for generat- 
ing stresses in the lithosphere (e.g., ridge push in oceanic 
lithosphere). The in-plane force produced by topography is 
given by the moment of the anomalous density [Dahlen, 
1981]. For a very simple configuration of thermally thinned 
lithosphere the in-plane force is approximately N =-pmghL, 
where h is the topographic relief and L is the ambient thick- 
ness of the thermal lithosphere. For a 4 K km -1 geotherm, L -- 
500 km for a half-space cooling model. There is roughly 3 km 
of relief between southeast Artemis and the rifts south of 

Thetis; thus, N---4 x 1013 N m -1. Phillips [1990] pointed 
out that the geoid expression of topographic stresses [Dahlen, 
1981] is identical to his result for flow coupling. 

The required driving force per unit length might be less if 
the area over which it is applied is larger than the -800-kin- 
long southeast chasma where stresses are presumably focused. 
The maximum length over which the force could be applied is 
the diameter of Artemis (2000 km). Therefore, the driving 
force could be, at most, a factor of 2.5 smaller than the flexu- 

rally derived force; that is, it must be at least -4 x 1023 N 
m -1, and it is probably substantially larger. Such enhancement 
of the driving force makes the mechanisms suggested above 
marginally acceptable. 

The postulated decrease in the in-plane force from the trench 
to the outer rise connotes that a regional stress has not been 
continuously applied to the downgoing lithosphere. A 
regional in-plane force would have produced contractional 
deformation on the trench slope, either before flexure com- 
menced or before that section of the crust passed through the 
outer rise. Therefore, the in-plane force and flexure may have 
grown with time, maintaining the surface stresses near zero. 

Bending moment. The large applied bending moments 
(typically -7 x 1027 N)that we have inferred also present a 
dilemma: what is their source if the slab beneath Artemis is no 

more than -250 km long [Brown and Grimm, 1995]? Terres- 
trial subduction zones, with much longer slabs, rarely exhibit 
bending moments greater than -3 x 1017 N [e.g., Levitt and 
Sandwell, 1995]. The large gravity anomaly at Artemis 
[Schubert et al., 1994] implies a negatively buoyant slab, and 
it must contribute to the moment applied at the trench. 
However, it is unclear how the buoyancy of a slab on Venus 
would compare to one of similar dimensions on Earth: while 
the venusian lithosphere may be older than that subducting on 
Earth, the crust could also be thicker. We might ask whether 
there is any correlation between such slab characteristics as 
age, length, and dip and the flexurally derived bending 
moments for terrestrial subduction zones. 

To answer this question, we have calculated the moments 
(torques) induced at the trench by the negative buoyancy of 
subducted slabs, using the thermal model of McKenzie [1969] 
and the parameters of Jarrard [ 1986], and we compared them to 
the flexural first zero crossing bending moments reported for 
15 subduction zones [McNutt and Menard, 1982; McNutt, 
1984; Levitt and Sandwell, 1995]. We find no meaningful 
correlation between the slab-pull moment and the flexural 
moment, a result that might be explained by the scatter in 
reported flexural moments, which can exceed an order of mag- 
nitude for a given trench. However, there is also no correlation 
between the slab moment and maximum flexural moment. This 

finding can be interpreted as evidence that other factors domi- 
nate the relationship between slab thermal buoyancy and 
flexure at the trench, such as phase changes within the slab, 
interplate friction, stress transmittal through the mantle 
wedge, viscous resistance of the mantle, and inhibited penetra- 
tion of the lower mantle [Davies, 1980, 1981]. It is notable, 
though, that Jarrard [1986] (using the same thermal model) 
found a correlation between the predicted slab-pull force and 
trench depth, another flexural property. 

A force not acting at terrestrial subduction zones may 
contribute to the loading at Artemis. Sandwell and Schubert 
[1992b] suggested that perhaps topography northwest of the 
trench loads the underthrust plate. This inner ridge (Figure 1) 
might be a consequence of the convergence at Artemis, as 
uplift of the overriding plate has been measured for terrestrial 
subduction zones. On Earth such topography is rapidly eroded, 
and it may not play a significant role in the slab force balance. 
Because our models do not include this region, any vertical 
loading northwest of the trench is implicitly accounted for in 
the applied bending moments. 

Summary. The fact that the requisite in-plane driving 
forces are not evident in the gravity field means that the 
proposed mechanisms are incorrect, the force is not fully 
expressed in the geoid, or the flexural rise is a relict feature, 
frozen in by the cooling lithosphere. The dominant source of 
the applied bending moment is the negatively buoyant slab. 
The lack of correlation between slab properties and flexural 
moments at subduction zones affirms that the short Artemis 

slab is not discrepant with the large moment, as long as the 
slab-pull torque exceeds the flexural moment. For Artemis the 
slab must have a shallow dip and a large density anomaly to 
supply the inferred moment. Paradoxically, given the 
"missing" in-plane driving force, Artemis should be active or 
very young, as the slab has not yet thermally assimilated. 

Implications for Venus Thermal Evolution 

Artemis Chasma, and possibly Latona Corona [Sandwell 
and Schubert, 1992a], stand alone with exceptionally low heat 
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flow estimates compared to other features on Venus [Phillips et 
al., 1996]. Our results imply a thermal gradient no greater than 
4 K km -1 to explain the maximum outer rise width under the 
strong rheology with the adjunct condition of no surface 
faulting. Studies of several coronae indicate geotherms of 
approximately 6 to 24 K km -1 [Sandwell and Schubert, 1992a; 
Johnson and Sandwell, 1994]. The gravity anomalies over 
large volcanoes imply thermal gradients of 5-7 K km -1 
[McGovern et al., 1995]; Phillips [1994] estimated a 7-10 K 
km -1 geotherm at Atla Regio. 

Comparison of the deformation styles and geodynamically 
inferred heat flows of features pn Venus provides insight on 
the thermal evolution of the planet. Coronae and volcanoes 
may exhibit higher heat flows because the lithosphere in 
which they formed was younger at the time of loading than the 
lithosphere at Artemis, and/or these structures were responsi- 
ble for thermal rejuvenation of the lithosphere. Coronae are 
inferred to be relatively older than large volcanoes; both 
feature types are about one-fourth to one-half the mean surface 
age on average [Price and Suppe, 1994; Namiki and Solomon, 
1994]. The unique style of the Artemis underthrusting com- 
pared to other, older contractional structures on the planet 
[Brown and Grimm, 1995] and the possible age-heat flux 
correlation suggested here are concordant signs that, on 
average, the venusian lithosphere has monotonically cooled 
in the last several hundred million years [Turcotte, 1993; 
Arkani-Hamed et al., 1993]. 

If we pose the surface temperature gradient as a function of 
age (t) for a semi-infinite half-space cooling model, we obtain 
[Turcotte and Schubert, 1982, pp. 158-167] 

(11) 

where Tm is the zero-age, or mantle, temperature. If the age of 
the lithosphere at the time of loading was 400 Ma (the mean 
surface age), (11) predicts dT/dz = 5.1 K km -1 for a nominal Tm 
of 1750 K. Because local geotherms below 4 K km -1 are 
inferred even for the strong rheology (Table 3), we must 
modify our assumptions. 

We consider three end-member options. (1) The last global 
resurfacing event completely reassimilated the preexisting 
lithosphere, after which the present lithosphere began to 
form; thus, t should correspond to the age of this event. We 
would then infer that t > 400 Ma to satisfy the lowest 
geotherm. The upper bound on the surface age derived from 
crater statistics is -800 Ma [Phillips et al., 1992], for which 
we calculate dT/dz = 3.6 K km -1. (2) The resurfacing event may 
have reduced, but not completely reset, the lithospheric 
thermal age. For example, limited extensional processes could 
have induced sufficient magmatism without forming entirely 
new lithosphere [Grimm and Hess, 1996]. In this case, the 
observed surface age only furnishes a lower limit on the effec- 
tive thermal age. (3) The mantle may have become abnormally 
cool by the time the lithosphere began to form [Arkani-Hamed 
et al., 1993]. To achieve a 4 K km -1 geotherm at 400 Ma, we 
would require T m = 1550 K. In summary, any of these three, 
simple, end-member scenarios taken alone can explain a 4 K 
km -1 temperature gradient in the context of the half-space 
cooling model. Our flexural results admit, but do not require, 
lower heat flows; some combination of the above schemes 
would be required if the geotherm was as low as 3 K km -1. 

Conclusions 

This study of flexure at Artemis Chasma provides insights 
into the fallibility of elastic flexure models, the rheology of 
the lithosphere, the forces responsible for Artemis, and the 
recent thermal state of Venus. 

1. The elastic plate bending model, coupled with the 
moment-curvature matching technique, is generally not accu- 
rate when an in-plane force is present. Because in-plane 
stresses might play an important role in tectonics and flexure 
both elsewhere on Venus and in subduction settings on Earth, 
their omission from flexure models may introduce significant 
errors into estimates of lithospheric thermal structure [Mueller 
and Phillips, 1995]. A simple, though incomplete, test of the 
validity of the moment-curvature matching technique is to 
compare an inelastic synthetic flexural profile (generated at 
the geotherm inferred via the elastic fit) to the observed 
topography (Figure 5). The agreement between the temperature 
gradients found from the elastic and fully inelastic models is 
attributed to the range of in-plane force-geotherm combina- 
tions capable of reproducing a given flexural profile. If the in- 
plane force was somehow independently known, the "true" 
inelastic geotherm could be quite different from the one derived 
from the moment-curvature matching technique. 

2. For a lithospheric rheology based on standard extrapola- 
tions of rock mechanics experiments, the inelastic flexure 
model indicates that thermal gradients for at least some parts 
of southeast Artemis must be less than 3.4 K km -1 (Table 3). 
Applying the strongest rheology we judge plausible, the 
geotherm must be less than 4 K km -1 for the widest outer rise 
cross sections. Narrower portions of the outer rise could be 
consistent with either higher geotherms (<6.4 K km -•) or 
locally weaker lithosphere. 

3. The flexural bending moment is of the order of 
-7 x 1017 N. Bending moments are not directly convertible 
from the slab density anomaly, which is also compensated by 
other mechanisms. The negatively buoyant underthrust slab at 
Artemis is the primary source of the flexural moment. 

4. A sizable, compressive in-plane force of the order of 
-1 x 10 TM N m -1 is required by both the flexural modeling and 
the lack of outer trench slope faulting; it is also expressed by 
the pervasive wrinkle ridges on the southeast plains. Mantle 
flow coupling and lithospheric thinning might supply 
adequate driving forces. Surface faulting on the outer trench 
wall is precluded only if the in-plane force increases across 
this zone and if near-surface strength is at least a few tens of 
megapascals. 

5. As a zone of underthrusting, Artemis should enforce 
upper bounds on heat flow at the time of loading. The low 
temperature gradients--comparable to those of the Moon-- 
attest to the exceptional cooling that has occurred in the last 
few hundred million years of venusian thermal evolution. Our 
results favor a thick (>300-km) thermal lithosphere 
[Kucinskas and Turcotte, 1994]. The low heat flux complies 
with the half-space cooling model if the thermal age of the 
lithosphere is over 600 Ma and/or the mantle temperature is as 
low as 1550 K. 

6. The uniform, "plate-like" motions observed at Artemis 
Chasma reflect a spatially coherent tectonic style that is 
unusual on Venus [Brown and Grimm, 1995]. Deformation 
involves throughgoing failure and modest translation (<250 
km) of a rigid lithosphere, distinct from the distributed, crust- 
dominated tectonics seen elsewhere on the planet. The thermal 
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maturity of the lithosphere documented in this study corrobo- 
rates the strong-lithosphere behavior inferred from the tecton- 
ics of Artemis. 
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