• Four styles of surfing
• Waves
 – Big swell coming? (storms)
 – What makes “sets”? (dispersion)
 – Why is Blacks Beach good for surfing? (refraction)
• Riding waves
 – “catching” the wave (speed)
 – “dropping-in” (energy conservation)
 – “tube riding” (tapping wave energy)
 – “need more speed” (surfboard drag)

Which ball is going faster when it reaches the bottom?

(a) 2 kg (b) 1 kg
Which ball is going faster when it reaches the bottom?

(a) (b) (c)

conservation of energy
(assume no friction)

kinetic energy + potential energy = constant

\[mgH = \frac{1}{2} mv^2 \]
optimal skateboard ramp
(The brachistochrone problem)

What is the best ramp shape for the minimum time down?

longboard wave

SIO Pier, La Jolla,
height = 1.5 m
fun wave

Blacks, La Jolla,
height = 5 m

Pipeline, Hawaii
height = 8 m
Mavericks, California
height = 23 m

ocean depth and breaker height - empirical

\[d_b = 1.28 H_b \]

- \(H_b \) - height of breaker
- \(d_b \) - depth where wave breaks

breaking shallow water waves

- longboard
 - 4.5 ft
 - 10 mph
- fun wave
 - 15 ft
 - 18 mph
- tube wave
 - 24 ft
 - 22 mph
- tow-in wave
 - 60 ft
 - 35 mph
shallow water waves

$$c_s = \sqrt{gd}$$
breaking waves

empirical relation

\[d_b = 1.28H_b \]

- \(H_b \) - height of breaker
- \(d_b \) - depth where wave breaks
“catching the wave”

\[c_b = \sqrt{1.28gH_b} \]

- \(H_b \) - height of breaker
- \(d_b \) - depth where wave breaks

paddle speed \(\leq \) wave speed

Breaking shallow water waves

<table>
<thead>
<tr>
<th>Wave Type</th>
<th>Height (ft)</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longboard</td>
<td>4.5</td>
<td>10</td>
</tr>
<tr>
<td>Fun wave</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Tube wave</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Tow-in wave</td>
<td>60</td>
<td>35</td>
</tr>
</tbody>
</table>

wave height (m) vs. speed (m/s)
“dropping in”

\[
\begin{align*}
KE_{\text{bottom}} &= KE_{\text{top}} + PE \\
\frac{1}{2} mv_d^2 &= \frac{1}{2} mc_b^2 + mgH_b \\
v_d^2 &= c_b^2 + 2gH_b = 3.28gH_b
\end{align*}
\]

- \(g \) - acc. Gravity
- \(c_b \) - wave speed
- \(v_d \) - surfer speed after drop

“dropping in”

<table>
<thead>
<tr>
<th>style</th>
<th>(H_b) (m)</th>
<th>(c_b) (m/s)</th>
<th>(v_d) (m/s)</th>
<th>(v_d) (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>longboard</td>
<td>1.5</td>
<td>4.3</td>
<td>6.9</td>
<td>15.2</td>
</tr>
<tr>
<td>fun</td>
<td>5</td>
<td>7.9</td>
<td>12.7</td>
<td>27.9</td>
</tr>
<tr>
<td>tube</td>
<td>8</td>
<td>10.0</td>
<td>16.0</td>
<td>35.2</td>
</tr>
<tr>
<td>tow-in</td>
<td>23</td>
<td>17.0</td>
<td>27.2</td>
<td>59.8</td>
</tr>
</tbody>
</table>
correction for surfer height

- overhead waves are good
- waist high waves are bad
- short surfers and heavy boards have an advantage in small waves

\[H' = H_b - \frac{1}{2} H_s \]

effective height = breaker height - 1/2 surfer height
"dropping in"

\[KE_{\text{bottom}} = KE_{\text{top}} + PE \]

\[\frac{1}{2} m v_d^2 = \frac{1}{2} m c_b^2 + mg H_b \]

\[v_d^2 = c_b^2 + 2g H_b = 3.28g H_b \]

- \(g \) - acc. Gravity
- \(c_b \) - wave speed
- \(v_d \) - surfer speed after drop

<table>
<thead>
<tr>
<th>style</th>
<th>(H_b) (m)</th>
<th>(c_b) (m/s)</th>
<th>(v_d) (m/s)</th>
<th>(v_d) (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>longboard</td>
<td>1.5</td>
<td>4.3</td>
<td>6.9</td>
<td>15.2</td>
</tr>
<tr>
<td>fun</td>
<td>5</td>
<td>7.9</td>
<td>12.7</td>
<td>27.9</td>
</tr>
<tr>
<td>tube</td>
<td>8</td>
<td>10.0</td>
<td>16.0</td>
<td>35.2</td>
</tr>
<tr>
<td>tow-in</td>
<td>23</td>
<td>17.0</td>
<td>27.2</td>
<td>59.8</td>
</tr>
</tbody>
</table>
“cutting across”

\[
\frac{c_b^2}{v_d^2} = \frac{1.28}{3.28} = \cos^2 \theta
\]

\[\theta = \sim 50^\circ\]

This angle is independent of wave height or wave speed!
“riding the wave”

Suppose the surfer remains on the steepest part of the wave having a slope s. What is the rate of potential energy increase supplied to the surfer?

$$P\dot{E} = sgc_b$$

How does speed increase with time?

$$v(t)^2 = v_d^2 + \int_{0}^{t} sgc_b \, dt$$

$$v(t)^2 = 3.28gH_b + tsg\sqrt{1.28gH_b}$$
Future Research

- Are the best surf spots in areas of narrow continental margin?

- Are “sets” real? What are the statistical properties of sets? Do “sets” become amplified when they reach shallow water?

- How does the shape of the bottom translate into the “perfect wave”?

- What is the terminal velocity for a given breaker height? (Can we establish the magnitude of the drag term?)

- Need to instrument surfers with intertial sensors.