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Summary 
This document describes efforts to best characterize seismogenic deformation in and near 

California. The rate of hazardous earthquakes in California is expected to be proportional to 
deformation rates; in particular, the rates at which faults slip. Fault slip rates are determined from 
offsets of geologic and geomorphic features of measured age and by modeling geodetically 
determined surface displacement rates. Extensive use of geodesy in the form of Global 
Positioning System (GPS) observations is a new feature brought into the Working Group on 
California Earthquake Probabilities (WGCEP) forecasts for the Uniform California Earthquake 
Rupture Forecast, version 3 (UCERF3) model. Geodetic measurements are potentially more 
spatially comprehensive than geologic offset observations, which can be clustered. Applying 
either type of data is subject to considerable uncertainty. Geologic observations have dating and 
other measurement errors, and they often must be extrapolated long distances on fault sections. 
However, geodetic observations require a modeling step to translate them into estimates of fault 
slip rate, and they have poor resolution on closely spaced, locked faults. Details about fault slip 
rates from geologic offsets are presented in appendix B (this report). In this appendix we look at 
three deformation models that use geologic and geodetic constraints and compare/contrast them 
with the UCERF3 geological model and the UCERF2 deformation model. We present models, 
results, and evaluation for their use in the UCERF3 forecast. 

We identify here two classes of geodetic models for fault slip rate and residual “off-fault” 
seismogenic deformation: (1) elastic block models and (2) what we call faulted continuum 
models. Both fit the observed data reasonably well, and are viable representations of California 
deformation. Generally, the geodetic models give high weight to geologic information and 
change it only enough to also fit GPS and stress-direction observations. In so doing, they modify 
the geologic model to be more consistent with the overall relative plate-motion vectors across the 
Pacific-North American Plate boundary region in California. The faulted continuum models 
tend, like the geologic model, to have uniform slip along strike for most faults. One block model, 
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called here the average block model because it has resulted from a separate inversion of results 
from five different techniques, is the model that shows more slip-rate gradients on major faults 
relative to the other models. We examine the proposed UCERF3 deformation models in the 
contexts of (1) overall moment rate, (2) fit to GPS observations, (3) fit to geological constraints, 
(4) fit to relative plate-motion rates and directions, and (5) magnitudes of residual moment rate 
not on defined faults. 

We developed weighting schemes based on the ranking presented in the summary table 
(table C1) and from expert opinion developed through the UCERF3 Deformation Model 
Evaluation Committee. There are data-driven differences for slip-rate estimates on important 
faults like the southern San Andreas such that a range of models based on the geologic and 
geodetic data can define the deformation rates for use in earthquake rate estimates. 

Table C1.  Overview of model performance ranking against a variety of tests and measures as described in 
sections on deformation model results and model weighting of this appendix. 

[ABM, averaged block model; NeoKinema, a finite-element model by Bird and Liu (2007); Zeng-Shen is a buried 
dislocation model by Yuehua Zeng and Zhen-Kang Shen; Geological, the UCERF3 geological deformation model 
(appendix B, this report)] 
 ABM NeoKinema Zeng-Shen Geological 
  Rank 

1. Total Moment Rate     
(a) Moment rate on faults 2 1 1 2 
(a) Total moment rate 3 2 1 3 

Averaged rank 3 2 1 3 
      

2. GPS Fit     
(a) Normalized χ2 3 1 2 4 
(b) Residuals - Urban regions 2 1 3 N/A 

Averaged rank 2 1 2 3 
      

3. Slip on faults w.r.t. geology     
(a) Rake reversals 3 2 1 1 
(b) Overall fit to geo rates 3 4 2 1 
(c1) Slip rate continuity 4 2 3 1 
(d) Subsections out of geo bounds 3 4 2 1 
(e) Subsections out of geo bounds with best constraints 4 3 2 1 
(f) Subsections out of geo bounds high slip rates 3 2 4 1 

Averaged rank 3 3 2 1 
      

4. Line integral paths 1 1 2 3 
      

5. Background, residual deformation 3 1 2 4 
      

Sum of ranks (lower is better) 12 8 9 14 
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Introduction 
Forecasting earthquakes in California depends on measurements, estimates, and models 

of fault slip rates. The rate at which faults slip, when combined with magnitude-area 
relationships and magnitude frequency distributions, controls the majority of calculated 
earthquake rates in the Uniform California Earthquake Rupture Forecast (UCERF). In addition to 
fault slip rates, identified crustal deformation not associated with known faults (termed “off-fault 
deformation” in the UCERF parlance) contributes to the earthquake hazard. Fault slip rates and 
off-fault deformation are assembled from geologic information, such as datable offset markers 
that can be tied across a fault, and from modeling-space geodetic measurements like Global 
Positioning System (GPS) observations. GPS can also be used to identify off-fault deformation, 
as can historical and current seismicity. 

The purpose of this appendix is to provide details about (1) the methods the UCERF3 
forecast has developed to estimate seismogenic deformation, (2) why these methods have been 
used, (3) results from and some implications of the different deformation models, and (4) factors 
and criteria applied in weighting deformation models. All input data applied for deformation 
modeling/estimates can be found at http://wgcep.org/data. 

Four quasi-independent approaches to estimating California seismogenic deformation are 
intended for use in UCERF3: all are weighted here and three are presented in detail: (1) a finite 
element method (NeoKinema), (2) an average of five elastic block modeling methods (ABM), 
and (3) a buried dislocation approach that has been used by the National Sesimic Hazard Map 
Program (NSHMP). A fourth model is called the geologic model, which has no geodetic 
constraints and is described in appendix B (this report). 

This appendix is organized into an initial discussion of the available data and justification 
of the rationale behind the UCERF3 deformation approach, followed by detailed descriptions of 
new methods that have not been previously used by the Working Group on California 
Earthquake Probabilities (WGCEP) or in past UCERF efforts. Finally, a general discussion of 
results is presented (complete results are appended in tabular form), and a model weighting 
strategy is presented. 

Data: Why Geologic and Geodetic Models? 
Earthquake forecasts are necessarily an underinformed process. We have not witnessed 

enough earthquakes anywhere in the world to make accurate forecasts based solely on historical 
catalogs. Previous models by the WGCEP, National Seismic Hazard Map Program (NSHMP), 
and UCERF have thus been assembled from all possible data that can inform earthquake rate 
calculations. A major dataset, geodetic observations of earth surface velocity, has yet to be 
employed in a systematic way. Comparison between figure C1 (GPS data spatial distribution) 
and figures C2 and C3 (geologic sites for fault slip rates) shows how much more completely 
sampled the state of California is geodetically. Therefore, an opportunity presents itself to add 

http://wgcep.org/data
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deformation observations where none existed previously. The challenge is to use the geodetic 
and geologic data in the best, most complementary way. 

UCERF2 slip rates were assigned on the basis of an expert-opinion evaluation of 
available data (mostly geologic and geodetic), together with summations across various transects 
to make sure the total plate-tectonic rate was matched (Field and others, 2009). Figure C4 shows 
residual velocities between observed GPS velocities and predicted velocities based on the 
UCERF2 deformation model. Those residuals are quite large, particularly in the Transverse 
Ranges, Mojave, the east California shear zone, and near Parkfield and the San Francisco Bay 
area. The question is whether more quantitative models based on inversion of geodetic and 
geologic observation with the total plate-rate constraints could be used to improve upon the 
UCERF2 models. 

In UCERF3, fault slip rates and off-fault strain rates estimated from inversions of GPS-
derived velocities and geologic slip rates with kinematic models compete conceptually with 
expert-opinion rates. UCERF3 deformation models do not have type C zones (areas of diffuse 
deformation, of which 50 percent was presumed to be seismogenic in UCERF2), and all faults 
are assigned slip rates. Deformation models provide the strain rate tensor on a 0.1 degree by  0.1 
degree grid covering all of California. This grid of strain rates account for all modeled 
deformation that is not accommodated on the faults. 

GPS Velocity Field 
All kinematic models were constrained by a UCERF3-consensus GPS velocity field 

constructed by Thomas Herring (T. Herring, written commun.,). This velocity field was 
generated by combining velocity fields submitted by 10 GPS analysis groups (see table C1). The 
Stable North America Reference Frame formed the basis for the combination. The methods and 
issues in the generation of the consensus field are associated with data quality, reconciliation of 
the error models used by different groups to generate the uncertainties of the velocity estimates, 
and the treatment of the nonsecular motions. The combination aligns each solution to a common 
reference frame, removing velocity estimates that are inconsistent with other solutions. Overall, 
276 velocity estimates were removed in the current analysis. Inconsistent sites mainly arise in 
areas of postseismic deformation and at sites that have substantial nonsecular motion 
components, due often to ground water and sometimes to antenna failures. Relative uncertainties 
in the solutions are approximately correct in most cases. Current improvement is to compare 
each solution to a combination of the other solutions (with discordant sites removed) and to fit a 
noise model of the form: 

 s2=s2
min + ks2

rep 

where s2
min and k are constants to be estimated and s2

rep is the reported velocity variance. The 
constants are determined from the c2 distribution of the residuals. Results from the combination 
show smin ~ 0.3 mm/yr, with variance scale factor, k, between 1 and 4, depending on analysis 
group. The latest velocity field sent to the UCERF3 working group is designated with time tag of 
GPS week 1638, June 2011. 
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Figure C1. Map showing distribution of UCERF3 GPS velocity vectors for California and its neighbors, 
referenced to the North American Plate. Error ellipses represent 50-percent confidence. 
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Table C2.  Fit of individual contributions (sources) to the combination of all other contributions to the 
UCERF3 consensus velocity model. For each contribution, the table gives the number of stations 
common to the other contributions, the Weighted Root-Mean-Square (WRMS) difference between the 
velocity estimates, and the  of the differences. Further iterations of the solution reweighting 

should bring the  values to unity. 
Source Common sites WRMS (mm/yr)  

NASA MEASURES  1,093 0.58 0.81 
NGS CORS  598 0.74 0.89 
PBO to June 2011  1,392 0.61 1.26 
McCaffrey PNW  301 0.76 0.95 
SCEC CMM4  583 0.8 1.08 
Canadian Base Network  43 0.46 0.97 
NA Reference Frame  341 0.58 1.1 
UCLA Western US  1,447 0.51 0.93 
U. Nevada Western US  1,096 0.43 1.02 
USGS Western US  1,275 0.97 1.21 

Geologic Slip Rates 
Geologic slip rates at points shown in figure C2 were used as data to constrain all of the 

kinematic inversions and, consequently, the UCERF3 geologic model. There are two fault 
models (FM3.1 and FM3.2), and all solutions are computed twice. Depending on how many 
deformation model classes are used in UCERF3, there will be twice that number of deformation 
models as a result. The geologic slip rates are taken from the UCERF3 compilation (appendix B, 
this report). That is a compilation of slip rate estimates from the published literature along with 
an evaluation of the quality of the estimate, which varies substantially from one site to the next. 
The quantity of rates reported for each geologic site also varies. Some studies report upper and 
lower bounds on slip rates, other studies provide only a minimum or maximum, and some studies 
report a preferred rate. Figure C2 summarizes the geologic slip rate observation sites. These data 
are implemented as constraints differently in the various kinematic models. Some kinematic 
models use the reported uncertainties as standard deviations in a Gaussian distribution, while 
others treat these data as strict upper and (or) lower bounds. 

In response to initial modeling efforts that used geologic slip rates as input constraints, a 
linear taper was applied to selected high-slip-rate faults where they overlap; this was done where 
significant departures from relative plate motions resulted, most notably on Salton Trough faults 
(Cerro Prieto, Imperial). In the following three sections, details about the methods used to model 
geodetic and geologic data are presented. 
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Figure C2. Geologic slip-rate data. Map view of the geologic sites (green dots) used for the block-like model. 
Red lines are UCERF3 fault traces. 
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Figure C3. Map showing the geologic bounds (appendix B, this report) used to constrain the Geologic Block 
Model. Estimated slip-rates are shown on these bounding faults. Distances are given from 120˚W and 
37˚N. 
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Figure C4. Map showing residual velocities between the observed Global Positioning System (GPS) 
velocities and model prediction from the UCERF2 deformation model. The residual vectors are plotted 
at the same scale as the observed GPS velocities in figure C1. 
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The NeoKinema Model 
Overview 

Geodetic studies over the past century have shown that velocities of benchmarks near the 
most active faults are not steady because of cycles of elastic strain accumulation and release in 
earthquakes and (or) creep events. Extrapolating this result to faults with mean slip rates of 1 
mm/yr or less, we expect that velocities adjacent to such faults might vary significantly if 
averaged over less than 104 years. At longer time scales, plate tectonic models based on marine 
magnetic anomalies show that large plates change their velocities on a scale of 107 years because 
of the birth and death of spreading ridges, subducting slabs, and other plate-boundary features. 
The smaller plates within complex orogens (Bird, 2003) might be expected to show important 
velocity variations on a scale of 106 years because less relative deformation of faults is needed to 
significantly change the shape of a small plate. However, it is reasonable to expect that, if 
surface velocities could be measured over scales of 104 to 106 years, they would be stable in most 
regions. This is the long-term average velocity field that we seek to estimate with program 
NeoKinema. 

NeoKinema applies geologic constraints at the points where they are measured, and 
attempts to maintain constant slip on faults as they cross model elements. However, it will adjust 
slip rates along strike if necessary to achieve better fit to other data constraints. 

The kinematic finite-element code NeoKinema.f90 has been tested in a number of 
previous modeling studies, including Bird and Liu (2007), Liu and Bird (2008), Bird (2009), and 
Howe and Bird (2010). The equations underlying the program were presented in Supplemental 
Material S1 (sm001.pdf) of Liu & Bird (2008). This algorithm merges geologic offset rates, 
geodetic velocities, and principal stress directions to estimate the long-term velocity field at the 
top of the crust. The model domain is the area within a closed curve on the Earth’s spherical 
surface. The degrees of freedom at each node of the finite-element mesh of triangles are the 
southward and eastward components of long-term-average velocity. Differentiation of velocity 
within each triangle yields the long-term-average 2-D (horizontal plane) strain-rate tensor, which 
is permanent (not elastic) by definition. The remaining components of the 3-D permanent strain-
rate tensor are derived from conservation of volume and verticality of one principal axis. 

The method of solving for nodal horizontal velocity components is to optimize a 
weighted-least-squares objective function by finding its stationary point in multidimensional 
velocity-component space with a system of linear equations. Nonlinearities are handled by 
iterating the solution 20 times in each run. 

Geodetic benchmarks are treated as internal point constraints (with uncertainties) on the 
velocity field. However, geodetic velocities are first corrected to remove temporary velocity 
anomalies due to local elastic bending around temporarily locked seismogenic portions of (most) 
faults, using the current model estimates of the fault slip rates, locking depths assigned a priori, 
and analytic solutions for rectangular dislocations in a uniform elastic half-space. This requires 
iteration. 

To first order, the strain rates and fault slip rates obtained from derivatives of the long- 
term average velocity field should be free of elastic strain contributions and result instead from 
permanent strain mechanisms, such as frictional sliding in the upper crust and dislocation creep 
in the lower crust. Therefore, it is also reasonable to expect that long-term average strain rates in 
the upper lithosphere should be proportional to long-term average seismic moment production. 
The necessary conversion factors are the elastic shear modulus (which is well known) and the 



Appendix C of Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) 

 12 

coupled lithosphere thickness contributing to seismicity, which has been estimated by Bird and 
Kagan (2004) based on 20th-century seismicity. Thus, results from NeoKinema lead directly to 
stationary models of long-term average seismicity and seismic hazard. 

Objective Function 
In many inverse problems the data are discrete, because they come from measurements at 

distinct points. Assume that all data that constrain velocity or strain rate at particular points have 
been transformed to scalar rate estimates rk . (Subscript k = 1,..., K identifies the scalar datum, 
which is typically one horizontal component of long-term average velocity derived from a 
geodetic benchmark velocity.) Let the corresponding scalar rate predictions derived from the 
velocity field of the model be called pk . Assume that each scalar rate rk has an uncertainty that 
can be approximated by a Gaussian probability distribution with standard deviation σk, and 
assume temporarily that the errors in these rates are independent. Then the natural logarithm of 
the density of the joint probability that the model matches all the data is formed from the 
individual probability densities φ as: 

                            (1) 

and the part of this that is variable (with respect to changes in the model) is the familiar 
weighted-squares-of-prediction-errors criterion 

 
        (2) 

which is to be maximized.  
However, in the NeoKinema algorithm we also consider some constraints (geologic slip 

rates) to apply all along the trace of a fault and other constraints (minimization of strain rate, and 
isostropy) to apply all across the area of unfaulted continuum. There is no natural way of 
counting these constraints as discrete data (or pseudo-data), and no natural, correct weighting of 
these constraints against point data in the objective function. Instead, we leave this choice to the 
user of the program by introducing parameters called reference length L0 and reference area A0, 

which are used to maintain nondimensionality in a generalized objective function that includes 
both line and area integrals:  

        (3) 

where m = 1,..., M enumerates the target rates r associated with fault-slip degrees of freedom and 
n=1,2,3 enumerates the three target rates rn associated with the three components of strain rates at 
each continuum point. The first term of this objective function includes the target velocities 
derived from geodetic benchmark-velocity data, the second term includes the targets derived 
from geologic slip-rate data, and the third term includes the targets derived from stress-direction 
data (and the stiff microplate assumption). Therefore, L0 and A0 can be considered as dimensional 
tuning parameters to be adjusted, by trial-and-error or systematic search, to equalize the fit of 
NeoKinema models to all three classes of data. 
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Finite Element Approximation 
It is only necessary to estimate the horizontal components of the long-term average 

velocity, and it is only necessary to do this on the planet's surface. Therefore, we divide the area 
of the model into spherical-triangle finite elements (Kong and Bird, 1995) and solve for the 
horizontal components of velocity at each node. Long-term average velocities at other points are 
determined by interpolation, and long-term anelastic strain rates are determined by 
differentiation. (Where these elements are small, the surface of the sphere is locally almost flat, 
and the nodal functions of such elements are very close to those of plane-triangle constant- strain 
finite elements.) 

Boundary Conditions 
Only velocity boundary conditions are possible in NeoKinema. Stress is described only 

by orientation (but not magnitude) within the model domain, so stress (traction) boundary 
conditions are not available. However, if no velocity boundary condition is prescribed along a 
model edge, the effects will be similar to those of traction-free boundary conditions found in 
dynamic models. Such treatment would be appropriate if the model domain were limited to the 
overriding plate in a subduction zone for that part of the model boundary running along the 
trench. 

Continuum Stiffness: the Microplate Constraint 
An essential context for all the fault-related geologic data showing locally intense 

straining is that they should compete with an a priori assumption that in other places the strain-
rate is close to zero. An appropriate formalism is to assign a zero target strain-rate, with a 
statistical uncertainty. A larger standard deviation could be attached to this null target rate in 
complex or poorly studied regions, where unknown faults might be buried and overlooked. 

The particular scalar function of the strain-rate tensor that is used has the effect of 
causing unfaulted areas to behave as Newtonian viscous sheets of lithosphere in a state of plane 
stress. The NeoKinema algorithm will result in velocities that minimize the area integral of 
squared strain-rates for the unfaulted elements; this is exactly the result one would obtain by 
deriving a dynamic finite-element algorithm from the momentum equation (in the absence of 
horizontal boundary tractions or body forces), adopting a linear rheology, and solving for 
velocity with inhomogeneous boundary conditions. 

Use of Stress Directions: the Isotropy Constraint 
One principal stress direction must always be perpendicular to the free surface of a 

planet, or approximately vertical. Thus, the orientation of the stress tensor is well described by 
the azimuth of the most compressive horizontal principal stress. These directions are tabulated in 
data sets such as the World Stress Map. 

Unfortunately, these data are very noisy. Variance in stress direction does not approach 
zero as pairs of data points are selected closer and closer together. Another problem is that the 
uncertainties assigned to individual directions are mostly generic estimates, not the result of 
repeated measurements at one point. A third problem is that there are spatial gaps in the datasets, 
such that many finite elements in a fine grid won't contain any data. To handle all these 
problems, we first interpolate observed stress directions to the center of each finite element, 
using an algorithm by Bird and Li (1996). 
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To use this information about stress in NeoKinema models, we approximate the 
lithosphere as horizontally isotropic, so that the principal directions of the strain-rate tensor in 
unfaulted continuum elements should be the same as the principal directions of stress. There may 
be an error of as much as 35° associated with this assumption if and where the lithosphere 
contains unrecognized weak faults. Even so, the solutions will be more accurate and reasonable 
than ones that ignore stress data and leave the orientations of continuum strain rates completely 
unconstrained. (Unconstrained models often show sinistral simple-shear straining adjacent to 
dextral strike-slip faults and extensional continuum straining adjacent to thrust faults. Such local 
reversals of stress are implausible and should be suppressed for a realistic simulation.) 

Use of Fault Slip-Rate Data 
NeoKinema solves for only the horizontal components of velocity at the surface, so a 

fault is treated as a surface discontinuity in horizontal velocity. The offset-rate parameter of 
greatest interest is the heave rate, which is the horizontal component of the slip rate. For 
convenience, and to reduce errors, specific fault types have been predefined, so that all fault-
offset rates can be entered with positive numbers (and in conventional units of mm/yr). For the 
first four fault types, the heave rate is directly specified. Right-lateral and left-lateral faults have 
heave-rate vectors parallel to the fault trace. Divergent faults have heave rates at right angles to 
the trace, with an opening or spreading sense (examples include low-angle detachment faults, 
convex-upward rolling-hinge detachment faults, concave-upward listric normal faults, and 
rotating sets of planar bookshelf normal faults). For the two remaining fault types (planar thrusts 
and planar normal faults), the throw rate (vertical component of slip rate) is entered. For these 
last two types, a fault dip must be assumed so that NeoKinema can convert throw rates to heave 
rates. 

Fault slip rate is, in general, a two-component vector. If both the dip-slip and the strike- 
slip components of the slip rate are known, NeoKinema treats these as two distinct scalar 
constraints along the same fault trace. When only the dip-slip rate is known, NeoKinema 
provides an option to permit limited strike slip in proportion to the amount of dip slip. (This is 
useful because otherwise a thrust fault with a complex trace could not slip without deforming its 
hanging wall and (or) footwall, and such deformation would be strongly resisted by the 
continuum stiffness constraint discussed above.) There is no corresponding provision for limited 
dip slip on known strike-slip faults, because strike-slip faults are modeled as vertically dipping, 
and thus any dip-slip component would not affect the horizontal velocity components estimated 
by NeoKinema. 

When a fault is long enough to cross several finite elements, NeoKinema attempts to 
impose the same offset rate in all elements. In the case of rigid-microplate tectonics, where each 
fault connects to other faults at triple-junctions, this method is reasonably accurate. (The only 
difficulty occurs where there are rapid relative rotations of adjacent microplates, but this can be 
handled by segmenting the faults and varying the target rates along the strike of each fault.) The 
other end-member is the case where no faults connect, but all terminate within the domain. In 
that case, each fault might be expected (on the basis of crack theory for linear materials) to have 
an ellipsoidal profile of slip rate versus length. Such elliptical faults would have a mean offset 
rate that is only 79 percent (π/4) of their maximum offset rate. Thus, NeoKinema might 
overstate fault-related strain-rates by 27 percent in some cases where faults do not connect and 
where the geologic offset rates reported are all maxima along their respective traces. However, if 
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the geologic offset rates were determined at random points of convenience, then once again no 
systematic error is expected. 

For each finite element containing one or more fault traces, there are four steps: (a) Form 
the target strain-rate tensor for that element as the sum of the strain-rate tensors implied by all 
the active fault segments cutting that element. (b) Form the matrix of covariances of the strain- 
rate components in that element as the sum of the covariances added by all the active fault 
segments, plus the small covariance of the strain-rate in the continuum around them. (c) 
Diagonalize the covariance matrix to find its three principal axes (in strain-rate space) along 
which the uncertainties are independent, and rotate the target strain-rates into this new coordinate 
system. (d) Add these three independent targets as scalar data with known uncertainties in the 
global system of equations. 

Version 3 of NeoKinema (used in UCERF3.2 and later deformation models) includes a 
feature allowing for hard lower and upper limits on the offset rate of each modeled fault. This 
was used to set a lower limit of zero (or higher) for each offset component of each fault, so that 
none could slip with the wrong sense. (Correct senses were inferred from the generic rake angles 
specified in UCERF3 fault models FM3.1 and FM3.2.) In the cases of faults that have at least 
one dated offset feature, upper limits (and, usually, positive lower limits), an offset rate was also 
specified. These were based either on the limits given in the UCERF3 Geologic Model, or on the 
95-percent confidence bounds computed by Bird (2007, tables 1 & 2) or Bird (2009, table 4). 
Preference was given to the bounds from the UCERF3 Geologic Model whenever these limits 
were similar to, or broader than, the published limits. 

Use of Geodetic Data 
Equations 1 through 3 already provide for the incorporation of geodetic velocity 

components at benchmarks, but only in certain ideal cases. Three practical difficulties often 
arise: (a) The two velocity components at one benchmark and (or) the velocities at different 
benchmarks have correlated uncertainties. (b) The relation between the velocity reference frame 
for the geodetic velocities and that of the velocity boundary conditions may be uncertain. (This 
occurs when all, or almost all, of the benchmarks used in the geodetic velocity solution are 
located within an orogen and few or none are outside the orogen on rigid plates.) (c) Geodetic 
velocities at benchmarks near active faults do not represent long-term average velocities because 
the faults remain locked, or else suddenly slip by large amounts, during the period of 
observation. 

Correlated uncertainties in geodetic velocity components (problem a) violate the 
assumption of independence used to obtain the simple objective function in equation 2. 
Therefore, coordinates must be rotated to new variable space of the same dimensionality, in 
which the uncertainties are independent, and prediction errors should be evaluated in those new 
coordinates. It is well known that equation 2 should be replaced by: 

 
 (4) 

where the normal matrix is the inverse of the covariance matrix of the observed velocity 
components . 

If any fault is creeping steadily (such as the central segment of the San Andreas Fault in 
California), this fault is flagged with a logical switch on input, and corrections to geodetic 
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velocities at benchmarks will not include any coseismic contribution from that fault. We do not 
currently have any algorithm to handle intermediate cases of combined fault creep and coseismic 
offset on the same fault. 

Iterative Improvement 
At four points in the algorithm described above, we referred to the use of model estimates 

from a previous iteration to improve the solution. All of these iterations are combined and 
performed simultaneously, with forty-five iterations per run. 

Manual Edits 
NeoKinema (v. 3) models were computed in January 2013 at the University of California, 

Los Angeles (UCLA), for use as candidate deformation models in both UCERF3, and the 2014 
release of the National Seismic Hazard Map by the U.S. Geological Survey (USGS) 
(NSHM2014). The predictions of these models concerning fault slip rates received a lot of 
scrutiny, both through individual efforts and through four days of “fault-by-fault” review 
meetings in January-February 2013 at Menlo Park and Pasadena, California. 

In most cases where the geologic-model slip rates were based on dated offset features, the 
associated upper and lower limits on fault-offset rates were enforced in NeoKinema calculations. 
As a result, there were some differences in preferred value, but no glaring discrepancies. The 
biggest discrepancies in this group occurred where there was only a geologic constraint on the 
dip-slip component of faulting, and the geologic model made a simplifying assumption of zero 
strike-slip. Since NeoKinema does not share this assumption, it sometimes predicts a slip rate 
higher than the upper geologic bound, while honoring the actual geologic datum or data 
concerning rates of dip-slip. 

However, a large fraction of the geologic slip rates (and slip rate bounds) were not based 
on any dated offset features (or did not appear to be based on dated offset features). These cases 
are more troublesome. In these cases, the geologic model typically assigns slip-rate bounds based 
on the date of the most recent ground-breaking rupture, expressed as a geologic epoch (for 
example, Holocene or Latest Pleistocene or Middle Quaternary), which itself is typically a 
subjective estimate based on scarp morphology, soil color, and other nonquantitative measures. 
If there is no evidence for Holocene surface ruptures, the geologic model typically assumes that 
there has been no surface rupture in the Holocene (which does not necessarily follow by strict 
logic) and therefore assigns a maximum slip rate of 0.2 mm/yr (for example, 2 m in 10,000 
years). The preference is to leave these slip rates free to be assigned by the NeoKinema modeling 
process, based on GPS velocities, kinematic compatibility, and regional stress directions. This 
pair of contrasting strategies is potentially appropriate for representation in a logic-tree, with the 
NeoKinema models representing the geodetic branch for these faults with no dated offset 
features. 

However, during the extensive review there were several cases noted in which either (a) 
there was a dated offset feature or dated overlap assemblage that was not included in the 
NeoKinema models or (b) that the NeoKinema prediction of slip rate had been biased upward by 
use of UCERF3 Fault Model FM3.1 and FM3.2 fault traces that are probably incomplete and 
therefore too short or (c) that NeoKinema had partitioned slip badly between two closely spaced 
parallel faults with no intervening GPS benchmarks. 

We agreed at the fault-by-fault review meetings that it would be appropriate to manually 
adjust certain NeoKinema slip-rate predictions for use in UCERF3 hazard calculations. These 
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corrections just impose geologic rates or bounds, which would have been imposed before the 
computation if these data were available. Although a change in NeoKinema input data followed 
by a full recomputation would be more rigorously correct, there were two practical 
considerations: (1) There is no time to re-review secondary fallout changes in slip rates of 
neighboring faults that would be likely to occur in a recomputation and (2) maintaining perfect 
consistency between the fault-slip-rate and continuum-deformation fields of the NeoKinema 
models was not critical, because there were no current plans to use the latter in UCERF3. 
Similarly, there is no need to worry about locally incorrect continuum-deformation rates in a few 
small areas inside California when the model is used to estimate hazard of other western states in 
NSHM2014. 

Adjustments 
All of the following adjustments concern faults in California. They are referred to by 

their official names in UCERF3 Fault Model FM3.1 and/or FM3.2: 
 

• Bennett Valley: This dextral fault is parallel to, and ~2–4 km northeast of, the dextral 
Rodgers Creek section of the longer Rodgers Creek-Healdsburg Fault. GPS indicates a 
total dextral slip of ~12 mm/yr on these two faults. However, it does not clearly dictate 
the allocation, because there are no benchmarks between the faults, and the regional GPS 
velocity field (in a 30×30 km square about them) shows only a smooth gradient, with 
increasing northwestward velocities to the southwest. NeoKinema put ~9 mm/yr on the 
Bennett Valley Fault because it is well aligned with the fast-slipping Maacama Fault to 
the northwest. However, putting only ~3 mm/yr on the Rodgers Creek did not honor the 
geologic constraint of 8.4±2 mm/yr (Schwartz and others, 1992). In this manual edit of 
the two models for UCERF3.3, ~5.7 mm/yr of dextral slip was transferred from the 
Bennett Valley Fault to the Rodgers Creek segment (minisection ID’s 651.01~651.05) of 
the Rodgers Creek-Healdsburg Fault. This sets the Rodgers Creek rate to equal the 
geologic constraint and leaves ~4 mm/yr dextral slip on the Bennett Valley Fault, which 
has only qualitative (and somewhat ambiguous) geologic constraints. 

• Cady: NeoKinema slip rates are reduced from 2.09 mm/yr (FM3.1) and 1.892 mm/yr 
(FM.32) to the geologic upper bound of 1.0 mm/yr. This bound is based on the report by 
Schmidt and others (2010): total sinistral offsets measured in outcrops and by 
aeromagnetic-anomaly correlation, plus a model age of ~10–6 Ma for the initiation of 
slip. 

• Calaveras (So)-Paicines extension 2011 CFM: NeoKinema slip rates increased from 
6.14 mm/yr (FM3.1) and 5.782 mm/yr (FM3.2) to 9 mm/yr, which is based on the 
Perkins and Sims (1988) and Bryant and Cluett (1999) reports that a terrace rise of age 
13.9 ka is offset dextrally by 125 m. 

• Cleghorn: NeoKinema slip rates decreased from 1.13 mm/yr (FM3.1) and 1.136 mm/yr 
(FM3.2) to the geologic upper bound of 0.6 mm/yr. R.J. Weldon, II (written commun., 
2012) now interprets that terraces were miscorrelated in an earlier publication (Meisling, 
1984), and assigns corrected ages. 

• Collayami: NeoKinema slip rates decreased from 3.43 mm/yr (FM3.1) and 3.393 mm/yr 
(FM3.2) to the geologic upper bound of 1.0 mm/yr, based on Clark and others (1984), 
and Bryant (2000) reports that “a poorly constrained dextral displacement of 0-0.5 km for 
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the 0.5-0.6 Ma Thurston Creek rhyolite ... yields a minimum late and middle Quaternary 
dextral slip rate of 0 mm/yr and a maximum slip rate of about 1.0 mm/yr.” 

• Hector Mine: NeoKinema slip rates reduced from 5.43 mm/yr (FM3.1) and 5.528 mm/yr 
(FM3.2) to 2.533 mm/yr (FM3.1) and 2.671 mm/yr (FM3.2), which are the rates from the 
previous (UCERF3.1) NeoKinema models. Inferred slip rates on this fault are very 
sensitive to how post-earthquake (and perhaps pre-earthquake) transients are removed 
from the GPS velocity dataset. The UCERF3.1 GPS dataset was edited by Tom Herring, 
and the UCERF3.2/NSHM2014 GPS dataset was edited by Rob McCaffrey. Without 
implying any overall preference or judgment about these alternative versions, it seems 
prudent to take the lesser slip-rate estimate in this case where both “geodetic” 
(NeoKinema) rates are substantially higher than geologic estimates. 

• Lions Head 2011 CFM: NeoKinema slip rates reduced from 0.930 mm/yr (FM3.1) and 
1.143 mm/yr (FM3.2) to the geologic upper bound of 0.05 mm/yr, based on Clark and 
Slemmons (1990) reported rates constrained by the vertical throw of the crustal block 
between the Lions Head and Casmalia Faults. 

• Silver Creek: NeoKinema slip rate reduced from 1.76 mm/yr in the FM3.1 model to the 
geologic upper bound of 0.2 mm/yr. This is based on seismic-reflection and well data 
(Wentworth and others, 2010) showing that several hundred meters of late Quaternary 
sediment overlie the fault trace and are only warped but not faulted. There is no need to 
adjust the NeoKinema slip rate of 0.057 mm/yr predicted in the FM3.2 version of the 
model, which is already below this bound. 

• Zayante-Vergeles 2011 CFM: NeoKinema slip rate reduced from 2.86 mm/yr (FM3.1) 
and 1.366 mm/yr (FM3.2) to the geologic upper bound of 0.2 mm/yr, based on the Clark 
and others (1984) report of a late Quaternary net slip rate of between 0.03 and 1.4 mm/yr 
using data in Coppersmith (1979). The throw rate was correctly imposed, but a measured 
fault rake was overlooked in calculating those higher slip rates. 

• Dextral faults in western Joshua Tree National Park: Eureka Peak, Burnt Mountain, 
and Joshua Tree: These three faults form a bundle of closely spaced, subparallel dextral 
faults in the Little San Bernardino Mountains in western Joshua Tree National Park. 
Their traces (which are the same in FM3.1 and FM3.2) are probably incomplete because 
they do not extend north to the Pinto Mountain Fault, or south to the San Andreas Fault. 
Strong geodetic constraints cause this region to shear at 8 mm/yr in both NeoKinema 
models of the long-term crustal velocity field. However, because of the incomplete fault 
traces, predicted slip rates were artificially increased to sums of ~17 mm/yr in both 
models. These slip rates have been scaled down by a factor of 0.464 in FM3.1 and 0.458 
in FM3.2, so that they sum to the geodetic rate of 8 mm/yr. For this correction only, the 
continuum strain rates were also manually adjusted. 

• Contra Costa shear zone: This zone was described by Brossy and others (2010) as 
follows: “The youthful East Bay hills structural domain contains a series of left-stepping, 
en echelon dextral faults and lineaments, collectively termed the ‘Contra Costa Shear 
Zone’ (CCSZ), that extend about 50 km from the Northern Calaveras fault to the West 
Napa fault …”. There is considerable complexity and uncertainty in this zone with regard 
to how slip is transferred amongst the North Calaveras, West Napa, and Concord Faults 
(see, for example, Unruh and Kelson, 2002a,b; Kelson and others, 2004, 2005). During 
the February 13–14, 2013, fault-by-fault review of earthquake rate results and subsequent 
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review, it was determined that a maximum acceptable slip rate for the Contra Costa shear 
zone is 1.0 mm/yr (David Schwartz, oral commun., 2013). 
 
It is recognized that the UCERF3 fault models oversimplify the Contra Costa shear zone, 

which allows geodetic deformation models to assign too much slip. We have therefore manually 
adjusted some fault sections (table C1) to reduce slip in the NeoKinema and Averaged Block 
models the least amount that will still allow their weighted average to sum up to no more than 
1.0 mm/yr on the Contra Costa shear zone. 

Block Models 
Elastic Block Models 

There were initially two different elastic block models among the UCERF3 deformation 
models. The “average block model” is a kinematically consistent average of five different block 
kinematic models. The “geologic block model” was an elastic block model with block-boundary 
slip rates bounded by the geologic slip rates. The geologic block model was dropped because the 
slip-rate constraints caused unacceptable rake variations, such as left-lateral slip on the San 
Andreras Fault, as a result of large off-fault strains that were required to satisfy the slip rate 
bounds. All of the block models used for the average block model are constrained by the same 
GPS and geologic data (figs. C1 and C2) and use the same block-boundary geometry (fig. C5). 
The methodologies, however, are different for each of the block models. Elastic block modeling 
has been used for years to infer fault slip rates from geodetic data (for example, Bennett and 
others, 1996; Prawirodirdjo and others, 1997; Souter, 1998; McClusky and others, 2001; Murray 
and Segall, 2001; McCaffrey, 2002, 2005; Meade and Hager, 2005). 

Briefly, a block model is constructed by dividing the crust into numerous closed, fault-
bounded blocks. The block geometry adopted for UCERF3 is shown in figure C5. It is not 
possible to incorporate all UCERF3 fault traces as block boundaries. The block boundaries were 
constructed with the help of Tim Dawson and Ray Weldon to follow the high-slip-rate, through-
going faults in the UCERF3 fault database.The velocity field in all the block models is 
constructed as the sum of a long-term velocity field and a transient, interseismic perturbation to 
the velocity field due to backslip on fault boundaries. The contribution to the velocity field from 
backslip on faults is constructed using dislocations in a homogeneous elastic halfspace for all of 
the kinematic models. This deformation accounts for the elastic strain across faults due to 
interseismic locking. The long-term velocity field is constructed differently in the various 
kinematic models, which are described briefly below. 
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Figure C5. Map view of the UCERF3 fault traces (grey) and the block boundaries (red) used for the block-
like model. 

DefNode 
DefNode is well documented in the literature. It was first described in McCaffrey (2002), 

with a few elaborations described in McCaffrey (2005). The Pacific–North American Plate 
boundary is represented as a series of rotating blocks separated by faults. The description of the 
motions of the blocks is mathematically identical to methods of estimating rotations of the large 
tectonic plates on the Earth's surface. A complexity in applying plate tectonic concepts directly 
to small regions, particularly when using short-term geodetic data, is that, in addition to 
rotations, increases in stress through time on the block-bounding faults result in elastic strain 
rates within the blocks. The strain rates cause surface velocities derived from GPS measurements 
to deviate from those expected from rotations alone and therefore do not comply with the “rigid 
plate” requirements of plate tectonics. In DefNode, the strain rates arising from such fault-stress 
changes are estimated simultaneously with the block motions using the “backslip” approach of 
Savage and Burford (1973) and the elastic half-space dislocation formulas of Okada (1985). 
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In addition to solving for block rotations and fault coupling, DefNode uses two additional 
types of parameters in the inversion: one to represent nonrecoverable, inelastic horizontal strain 
rates within the blocks and another to rotate published GPS-derived velocity fields into a 
common reference frame. The short-term strain rate within a block can comprise a recoverable 
(elastic) part due to stress changes on its bounding faults and a nonrecoverable (permanent) part 
that likely occurs by slip or localized strain on internal faults. In the long run, the elastic strain 
does not result in changes to the block's shape, whereas the permanent strain does; such behavior 
is often, but not uniquely, represented by an elastic-plastic rheology (for example, Turcotte and 
Schubert, 1982; Peltzer and Tapponnier, 1988). The inclusion of permanent strain rates within 
blocks is intended to represent more distributed deformation on faults at scales smaller than can 
be reasonably represented by blocks. 

The long-term velocity field is described by a rigid-body motion of blocks plus a uniform 
strain-rate field (linear velocity field). The fault-normal and fault-parallel slip rates across 
boundaries are given by the velocity discontinuities at boundaries introduced by this long-term 
velocity field. As in all the kinematic models used for UCERF3, interseismic deformation due to 
locking of faults is introduced with backslip using dislocations in an elastic halfspace. Spatially 
variable backslip (coupling) on faults is estimated in the inversion. 

Hammond Block Model 
It is assumed that the surface motion can be approximated as piecewise continuous block 

rotations on a sphere and that at the boundaries of the blocks are in contact, locked at the surface 
but slipping continuously at depth (for example, Savage and Burford, 1973). This strategy 
(Hammond and others, 2011) for extending the concept to many blocks bounded by finite fault 
segments is similar to those of other recently introduced block modeling schemes (for example, 
Bennett and others, 1996; Prawirodirdjo and others, 1997; Souter, 1998; McClusky and others, 
2001; Murray and Segall, 2001; McCaffrey, 2002, 2005; Meade and Hager, 2005). GPS 
velocities are assumed to represent the interseismic velocity field, that is, they have been 
measured between large earthquakes, and the effects of nonsecular processes are either 
nonexistent or have been estimated and removed. Thus the long-term velocity (averaged over 
many seismic cycles) is equal to the sum of the interseismic and coseismic velocities, taking 
account of the predefined block geometries and fault dips. Thus, effectively, the only parameters 
that need to be free are the block rotations. To enforce this, an additional constraint that the 
relative motion of the blocks should be related to the slip rate at the fault is included. This 
constraint is equivalent to assuming that the horizontal long-term rate of relative motion across 
block boundaries is equal to the horizontal projection of the slip rate on the fault. The distinction 
is important because it is the basis for forcing the slip rate on the fault to be determined by all 
data on the block, not just data near the fault. Adding these constraints results in 2N + 2P 
equations that constrain 3M + 2P unknowns, where N is the number of GPS velocities, P the 
number of fault segments and M the number of blocks. This implements the backslip approach 
introduced by Savage and Burford (1973). In this context ‘‘coseismic velocity’’ is defined as the 
rate of movement of a point near the fault associated with coseismic offsets averaged over many 
seismic cycles. The slip rates are unknowns that scale the Greens functions representing the 
pattern of strike slip and normal slip for each fault segment. These Green’s functions are 
calculated for each fault segment using the functions of Okada (1985, 1992), because the dip, 
length, width, and depth of the fault are predefined. 
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Johnson Elastic Quasi-Block Model 
This quasi-block model is described in Johnson and Fukuda (2010). It is described as a 

“quasi-block” model because it is not a block model in the same sense as other block models. 
The long-term velocity field is constructed in an elastic plate overlying a substrate providing 
buoyant gravitational restoring forces. The long-term velocity field far from block boundaries is 
described with a rigid-body motion plus a spatially variable strain-rate field parameterized with 
cubic polynomial basis functions. At fault boundaries, the fault-normal velocity discontinuities 
across faults are canceled with opening-mode dislocations in the elastic plate. The interseismic 
velocity field is constructed by adding the contribution from locking on faults using dislocations 
in an elastic halfspace, as in all other elastic block models. Creep below the locking depth is 
assumed to occur at zero stressing rate (approximately). Locking depths are fixed at 15 km for all 
inversions. Faults with known surface creep are assumed to creep at the long-term slip rate from 
the surface to a depth of 5 km. For fixed locking depths, the inversion for slip rates and off-fault 
strain rates is linear and uses least squares formulas. 

Average Block Model 
The “average block model”  (ABM) is a kinematically consistent average of five different 

block kinematic models. All five of these block models adopted the same GPS and geologic data 
(figs. C1 and C2) and the same block-boundary geometry (fig. C5). The five block models 
include the three traditional elastic block models (Hammond, DefNode, and Johnson) and 
implementations of the Zeng-Shen model and NeoKinema using the block geometry (note that 
these two models are not the same as the faulted continuum, non-block models that are under 
consideration as alternative UCERF3 deformation models). 

We combine the results of these five block models into a single average model, called the 
“average block model.” This averaging is done in a kinematically consistent way by using the 
model slip-rate estimates from all five inversions as “data” in a unified block model inversion. 
The GPS data are also used as constraints to stabilize the inversion for the block strain rates, but 
the GPS data are down-weighted relative to the slip-rate constraints by a factor of 10. 

The block model used for this averaging inversion is a modified version of the Johnson 
quasi-block model formulation. For this calculation we do not compute the long-term velocity 
field in an elastic plate as in the published version of the Johnson block model, but rather we 
adopt an approach that is similar to traditional block models. The general method is illustrated in 
figure C6. As in traditional block models, the long-term velocity field is represented as the sum 
of a rigid body motion (fig. C6b) and spatially variable strain rates (fig. C6c) parameterized in 
this case with cubic polynomials. Because these two contributions to the velocity field introduce 
fault-normal velocity discontinuities across vertical faults, and because UCERF3 does not allow 
this component of motion on faults, we distribute this discontinuity into long-term distributed 
off-fault strain by cancelling the velocity discontinuity above the locking depth with opening 
mode dislocations (note that this is entirely consistent with the traditional block model approach, 
but although this fault-normal slip component of strain is traditionally interpreted as elastic, 
recoverable strain, we have mapped this into the long-term off-fault strain for UCERF3). This 
cancellation step is illustrated in figure C6e. Also, because some of the block boundaries do not 
have corresponding UCERF3 fault traces (there are places where discontinuous UCERF3 fault 
traces were connected to form contiguous block boundaries), we distribute the modeled slip on 
these phantom fault segments into permanent off-fault block strain by canceling the fault-parallel 
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slip rate above the locking depth using elastic dislocations (fig. C6f). This is similar to the 
approach for removing fault-normal velocity discontinuities. 

 

 

Figure C6. Diagrams illustrating the block model formulation used to construct the average block model and 
the geologic block model. a. Typical block boundary construction (not same as UCERF3 geometry). b. 
Backslip is imposed above locking depth. c-f. Components of long-term velocity field. See text for 
details. 

The interseismic velocity field is computed, as in all block models, by adding the 
contribution from backslip on locked faults using dislocations in an elastic halfspace. For this 
work we have assumed a uniform 15-km locking depth for all of the faults. For fault segments 
that display significant shallow creep, we assume creep at the long-term slip rate down to a depth 
of 5 km (or 15 km, that is, no coupling, for the central San Andreas creeping section). 

The final step in the block modeling is to compute slip rates on faults that are not on 
block boundaries (the gray traces in fig. C5). Here we describe two different approaches that we 
examined for UCERF3 (methods A and B). Method B was chosen for the final average block 
model submitted for UCERF3. 
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Method A. In this approach slip rates on off-block boundary faults are calculated by 
integrating the long-term block strain rates across faults. We do this by integrating half of the 
strain within a 10-km swath (5 km on each side) along lines perpendicular to the fault sections. 
From this we compute the fault-parallel and fault-normal velocity difference across the fault, 
which we interpret as fault slip rate. Half of the strain remains as off-fault strain. 

Method B. In this alternative approach we do not solve for parameterized block strain 
rates (the cubic polynomial terms illustrate in fig. C6d). The only contribution to off-fault strain 
rates comes from the “cancelation” of fault-normal velocity discontinuities and gaps, as 
illustrated in figure C6e,f. Off-block-boundary fault segments are represented with dislocations 
buried at 12-km depth (steady creep imposed on dislocations extending from 12 km to infinite 
depth). This is the approach adopted in the Zeng-Shen model for all fault sections. We 
simultaneously solve for the block rotation rates (giving block boundary slip rates) and the 
buried dislocation rates. An initial value is placed on the rate and rake for each off-block-
boundary fault. The initial values originate from a truncated Gaussian distribution with mean 
equal to the geologic model rate, standard deviation equal to a quarter of the width of the 
geologic bounds (from the upper and lower limits in the geologic model) and truncated at the 
geologic bounds (zero probability of slip rate outside of geologic bounds). This is formulated as 
a constrained least-squares inversion with strict upper and lower bounds (inequality constraints) 
on the off-block-boundary faults. 

Method B was chosen for the final average block model (ABM). Method A produced slip 
on off-block-boundary faults that varied wildly in rate and rake along strike. The style of slip 
was inconsistent with the expected style from geology in numerous locations. Furthermore, the 
internal block strain rates in Method A lead to some sizable along-strike gradients in slip rate on 
block boundaries, most notably the creeping section and the north coast sections of the San 
Andreas Fault. Method B removed these problems noted in Method A. 

Figure C7 illustrates the results of using Methods A and B in the Transverse Ranges 
region of southern California. Method A is referred to as “Integtrated block strain rate” and 
Method B is labeled “Buried dislocation.” The strain rates from Method A are shown, along with 
the slip rates and rakes for both methods. The figure illustrates how much of the along-strike 
gradients in rake and slip rate that are clear in Method A disappear in Method B. By design, the 
rakes and rates in Method B are consistent with the geologic model, whereas there are a number 
of faults in Method A that have rakes that are inconsistent with geology. 
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Figure C7. Maps comparing estimated slip rates and rakes in the Transverse Ranges region of California 
using Method A (integrated block strain rate) and Method B (buried dislocation). The maximum shear 
strain rate is shown for Method A. These strain rates are integrated to obtain the slip rates and rakes in 
Method A. Note large along-strike gradients in slip rate and rake in Method A, but not in Method B. 
Some of the rakes in Method A are inconsistent with the geologic model, especially north of the 
Transverse Ranges in the Santa Maria and surrounding basins. 

Manual Edits to the Average Block Model 
 An unacceptably high change in hazard was noted in trial runs of the UCERF3 
methodology in northwest California (fig. C8), which was traced back to a high slip rate on the 
Big Lagoon Fault in one of the four deformation models, the ABM. During the February 13–14, 
2013, fault-by-fault review of earthquake rate results, a consensus conclusion was reached that 
the modeled slip rate on the Big Lagoon by ABM was too far out of range on the basis of 
geological evidence. The ABM has slip rates on this fault as high as 9.6 mm/yr, whereas the 
maximum rate from geology is 1.2 mm/yr. The other three models have mean slip rates very 
close to 1 mm/yr. 
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Figure C8. Map showing ratio of calculated hazard from UCERF3.2 to that from the National Seismic Hazard 
Map Program version of 2008 (NSHMP08); red shaded areas thus show hazard increases relative to 
NSHMP08, and blue areas indicate reductions. The increase in hazard in northwest California was 
caused by excessive slip rate placed on the Big Lagoon Fault on a block boundary in the average block 
model. 

Because of the nature of their construction, we note a general tendency of block-style 
models to have high slip rates along block boundaries. The success of this approach depends on 
the actual degree of block-like behavior observed in the earth, which can vary spatially. The Big 
Lagoon Fault is part of the northernmost block boundary of the ABM, and therefore has more a 
role as a boundary condition than as a fully defined block with a complete inventory of faults 
internal to the block. We therefore propose to reduce the ABM slip rate on the Big Lagoon Fault 
to 1 mm/yr. This change does not produce a covariant affect on other faults in the ABM because 
it lies on the northernmost boundary of the model. None of the UCERF3 deformation models 
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fully describe relative plate motions at this latitude, which is superseded by the NSHMP 
Cascadia model. 

A Fault-Based Model for Crustal Deformation in California (Zeng and Shen 
Model) 
Overview 

In this model formulation (Zeng and Shen, submitted), block boundaries are represented 
as buried dislocations in a homogeneous elastic half-space. Each fault segment slips at a solved-
for slip rate beneath a locking depth, except at a few fault segments where shallow creep is 
allowed. Slip-vector continuity at fault nodes or intersections is imposed to regulate slip 
variability and to simulate block-like motion. In addition, fault-normal slip rates are minimized 
because fault systems in California are dominated by strike slip faults. The slip distribution is 
estimated using a least-squares inversion. An increase in the weighting of the continuity 
constraint will result in a more block-like deformation model. A very loose conservation 
constraint results in a fault-patch-only deformation model. The degree of weighting on the 
conservation constraint is optimally selected from a trade-off curve between the data postfit 
residual chi-squares and the parameter resolution of the model, so that certain nonblock-like 
deformation features are allowed, such as permanent or transient strain build up within bounding 
blocks. The locking depth is fixed to the values specified by the UCERF3 fault model. 

This model formulation assumes zero slip rate on all faults as an initial condition and 
applies geologic constraints at the points where they were measured. The exception to this is on 
some minor faults where significant departures from faults with well-constrained geologic data 
were encountered. In these instances constraints are imposed on all the fault subsections.  

Two separate models are developed for UCERF3: a block-like model and a fault-based 
model for California.  Slip-rate parameters from our block-like model, one of the five block-like 
models, will be used to develop the average block model (discussed in a previous section), which 
finds a kinematic consistent average from all five model inputs. Our fault-based model provides 
slip-rate estimates on UCERF3 faults based on GPS observations and geologic slip-rate estimates 
at more than 100 points. The fault-based model also provides gridded off-fault strain rates to 
compare with other seismic hazard inputs—that is, the Gutenberg-Richter a-value distribution 
based on seismicity, regional strain mechanisms as determined from earthquake moment tensors 
and focal mechanisms, and earthquake moment budget from other studies. 

Method 
Zeng and Shen (2012) developed a kinematic fault network model that simulates geodetic 

surface deformation rates from a given distribution of slip rates across all the faults in the region. 
For a given slip-rate and creep rate distribution on faults, the ground velocity vector at any point 
is obtained by taking a spatial convolution of the static point source Green's function with the 
slip rate functions over the faults: 

 
             (5) 
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where  is the predicted surface velocities, and n is the component of the velocity. Here we 

only consider the two horizontal components:  is the location of the i-th station,  and  

are the fault-parallel and fault-normal slip rates along the j-th fault segment, respectively.  

and  are the Green’s function relating those fault slip rates to velocities at the i-th station; 

 and  are the fault-parallel and fault-normal creep rates along the k-th fault segment, 

respectively; and  and  are the Green’s function relating the fault creep rates at 
shallow depth to velocities at the i-th station. N is the total number of fault segments, and M is 
the total number of creeping fault segments. 

Our kinematic fault model assumes that each fault segment slips at a certain rate beneath 
a locking depth, except at a few fault segments where shallow creep is allowed. We also impose 
slip-vector continuity at fault nodes or intersections to regulate slip variability and to simulate 
block-like motion. In addition, we minimize slip rates along the fault-normal direction because 
fault systems in the region are dominated by strike slip faults. Together with equation 5, they 
form the basis for solving for the slip distribution using a least-squares inversion. We use 
Okada’s formulation and code (1992) to calculate the surface deformation in a elastic half-space. 

GPS Data 
We use the GPS data discussed in the section on data above. There are reported 

uncertainties in the velocity field that are as small as 0.03 mm/yr. Our test inversions find that 
these extremely small uncertainties can overweight these observations, so a lower cutoff of 0.2 
mm/yr was used to avoid excessively overweighting during the inversions. In addition, the 
velocity field has also been carefully edited by Rob McCaffrey using visual inspection of the 
velocities for their consistency with neighbors and for residuals relative to the model. To avoid 
these edits being model dependent, data are only removed where their residuals are not 
consistent with neighbors, at the 3–4 mm/yr level, and also if they are not near faults. Some 
USGS campaign GPS data from near the Yucca Mountain region have rates that are different 
from the azimuth of the rates from the continuous stations in the area. They are also different 
from what are reported on the USGS GPS website. The difference might be introduced during 
the rotation combination of those velocity fields into the rest of the other GPS velocities. Those 
data were removed on the basis of Bill Hammond’s and Peter Bird’s recommendations. Peter 
Bird also contributed to removing some additional outliers in the velocity field. We also removed 
data with sigma larger than 1.0 mm/yr. 

Geologic Data 
The geologic slip-rate file is a compilation of Quaternary geologic slip rates for faults in 

the UCERF3 fault model (appendix B, this report). Instead of the expert opinion or consensus 
slip rates adopted by UCERF2, this compilation is intended to be a purely geologic estimate of 
late Quaternary slip rates at locations along faults within the UCERF3 fault model. This 
compilation does not include slip rates that rely on assumptions of characteristic slip, are heavily 
model dependent (such as using assumptions of horizontal to vertical slip to derive horizontal 
slip rates from amounts of vertical offset), or that are in need of revision because of revised 
dating at a site. Rates that are somewhat suspect, because they may be derived from features 
offset by a limited number of earthquakes that may not represent a longer term average are also 
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excluded. A single representative slip rate or averaged slip rate is reported for any location. The 
compilation also includes selected entries from an extensive database of slip rates (including 
long-term rates) that Peter Bird (UCLA) has compiled using the same criteria described above. 
We use either the preferred rates or averages of the minimum and maximum values as our 
geologic constraints with their corresponding uncertainties. For some sites, uncertainties are not 
available. We compute a linear regression between slip rates and their standard errors (fig. C9) 
and assign the predicted uncertainties from this regression to the rates at those sites. We only 
consider sites that are located along the block boundaries for the block-like model, or along the 
UCERF3 fault traces for the fault-based model. Figure C2 shows the geologic sites used for the 
fault-based model. 

 

 

Figure C9. Graph of geologic slip rates versus their standard errors determined from the table provided by 
Tim Dawson. Red line is the linear fit to the data and is used to predict standard errors for sites with 
only slip-rate information available. 

Fault Model 
For the fault-based model, we use the UCERF3 dip angles and locking depths. We also 

added a few Nevada faults near the Reno-Carson City area. Figure C2 shows fault traces of our 
fault-based model. We impose a slip-vector continuity condition for the major faults in the 
region so that the zones enclosed by those faults will behave more block-like. We also added a 
southern branch to extend the San Andreas Fault system into Mexico and northern branches to 
extend the northern San Andreas and Cascadia Faults farther east and north of the triple junction, 
respectively. Again, these additions allow us to better model the far-field relative motions 
between the North American Plate and the Pacific Plate. 
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We have introduced shallow creep in some of the fault segments—for example, along the 
central California creeping segment of the San Andreas Fault, Calaveras Fault, Hayward Fault, 
Imperial Valley Fault, Brawley seismic zone, and others. We also allow partial locking for the 
northern Parkfield and southern Santa Cruz Mountains segments of the San Andreas. The depths 
of the creeping segments are set at 10 km for most creeping faults, except for the central 
California creeping segment and the Brawley seismic zone. In the central California creeping 
zone, we have set the creep rates as a function of depth. The creeping depth along the Brawley 
seismic zone is set to be equal to its locking depth because of its shallow seismogenic zone. The 
amount of creep along those segments is determined from inversion of the GPS observations. 

Zeng-Shen Model Results and Discussion 
We compute inverse solutions for both block-like and fault-based deformation models 

and use the same weighting parameters for the slip-rate vector continuity constraints across fault 
node points and for minimizing slip rate along fault normal component as in Zeng and Shen 
(2012). In additional to the geologic constraints on slip rates at locations where geologic 
estimates are available, we also imposed a 50-mm/yr rate at the southern and northern ends of 
the San Andreas Fault, and a 10-mm/yr subduction rate for Cascadia. For the fault-based slip-rate 
estimates, we imposed a partial fault-style constraint on some selected faults to avoid rake 
reversals. Figure C10 compares observed GPS velocities with the residual GPS velocities based 
on the fault-based deformation modeling. Those residuals are given by the differences between 
the observed velocities and model predictions, with a mean value of 1.6 mm/yr. The relatively 
large misfits in the Landers/Hector Mines area likely are artifacts of the long-term postseismic 
modeling conducted during data processing. Large misfits near the Long Valley Caldera area are 
partly caused by the Long Valley volcanism, which is not included in our model. Overall, we do 
not observe any systematic trend in the residuals that might suggest model bias. The model 
accommodates all of the major features observed in the GPS velocity field. In comparison with 
figure C4, the current model based on inversion of geodetic and geologic data constitutes a 
significant improvement over the UCERF2 models based on expert opinions. Residual GPS 
velocity distribution for the block-like model is very similar to that of the fault-based model 
shown in figure C10b.  
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A B 

Figure C10. Maps showing observed and residual GPS velocities. (A) Distribution of GPS velocity vectors for 
California and its neighbors, referenced to the North American Plate. (B) Residual velocities for 
inversion using fault-based model with geologic constraints. The green lines are the modeled fault 
traces. The residual vectors are plotted at the same scale as the GPS velocities in (A). 

In comparison with the UCERF3 geologic slip-rate data and the geologic bound data, slip 
rates from Santa Cruz all the way to the north coast and offshore segments of the San Andreas 
Fault agree well with the geologic estimates. Slip rates also agree well with the geologic 
observations along the Calaveras-Hayward-Maacama Fault segments and the Greenville-Great 
Valley Fault segments in the north, and along the Central Garlock and San Jacinto segments in 
the south. In contrast to previous studies (for example, Meade and Hager, 2005; McCaffrey, 
2005), slip rates found along the Garlock Fault agree closely with the geologic rates. Slip rates 
along the Coachella Valley and Brawley segment of the San Andreas Fault are nearly twice the 
rates along the San Jacinto Fault branch. For offshore faults, slip rates are within the geologic 
limits but near the lower bounds for fault segments along San Gregorio, Hosgri, Catalina, and 
San Clemente Faults. Although the slip rates along the Bartlett Springs Fault are 2–3 mm/yr 
above the geologic bound, the total slip rates across various transects of the northern San 
Andreas Fault, Calaveras-Hayward-Maacama system, and Bartlett Springs-Greenville-Great 
Valley Faults are around 40 mm/yr, matching the regional tectonic rates. 

Discrepancies between geologic and geodetic estimates on fault slip rates will provide us 
insight into the complex interactions in the system, or the extent of incompleteness of our 
deformation model. Figure C11 plots GPS-based slip rates against the geologic slip rates. The 
GPS-based slip rates are obtained from inversions with the fault-based model and geologic 
constraints. The geologic slip rates are obtained from the UCERF3 slip-rate data file. 



Appendix C of Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) 

 32 

 

Figure C11. Graph of GPS slip rates versus geologic slip rates for California faults. The GPS slip rates are 
calculated by inversion with the fault-based model and geologic slip-rate constraints. The geologic slip 
rates are from Tim Dawson’s slip-rate data based on pure geologic observations. Outlier values are 
circled from the Mojave and San Bernardino segments of the San Andreas Fault. 

GPS rates are higher than geologic slip rates mostly on faults in the Eastern California 
Shear Zone and Walker Lane. GPS rates are lower than geologic slip rates mostly along the 
central and southern San Andreas, particularly along the Mojave, San Bernardino Mountain and 
San Gorgonio Pass segments. Despite the discrepancy, correlation between the geologic 
estimates and the GPS solutions are high, with a correlation coefficient of 0.9. Statistically this 
indicates a strong linear dependence between the GPS estimates and the geologic estimates, 
suggesting that the geodetic and geologic data are highly compatible for the region. 

Zeng-Shen Model Updates 
An exploration of tradeoffs between fitting geodetic and geologic data was carried out 

using the Zeng-Shen model. The questions addressed were: how large do the GPS data residual 
misfits get if all faults, or just all type B faults, are constrained to have slip rates within 
geologically defined bounds? For background, type A faults are defined in the National Seismic 
Hazard Map parlance as those that have high slip-rates and sufficient data on timing of past 
events and slip-per-event that detailed models of fault-zone behavior can be constructed. Type B 
faults are major faults with measurable slip rates but inadequate information on segmentation, 
displacement, or date of last earthquake 
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For both fault models (FM3.1, FM3.2) with all slip rates held within the geologic bounds, 
their normalized χ2 errors are 18.40 and 18.44, respectively. When only B-fault slip rates are 
held within the geologic bounds, their normalized χ2 errors are 15.10 and 15.16, respectively. 
For all tests, slip rates are not constrained within the provided geologic bounds for the Cerro 
Prieto and Imperial Faults because the best-fit GPS rates for those two faults are in better 
agreement with the overall plate rate budget. A variable rate was retained for all mini sections in 
the central California creeping section. The average rate for the creeping section is within the 
provided geologic bounds. The bounds on the San Jacinto (Stepovers Combined) Fault for 
FM3.1 were set between 11.0 and 18.0 mm/yr to maintain consistency with the FM3.2 geologic 
bounds model. 

We give weight to the Zeng-Shen B-faults model, which provides comparable GPS fits to 
other geodetic models. The Zeng-Shen all-faults constrained model is a useful exercise in 
understanding data tradeoffs, but not substantially different enough from the geologic model to 
warrant a new logic-tree branch. 

Deformation Model Results 
We compare and evaluate results from five deformation models. These models are the 

UCERF2 deformation model (Field and others, 2009) and four new models for UCERF3 
(presented in detail in previous sections of this appendix). The UCERF2 deformation model was 
constructed primarily using geologically observed slip rates, but those rates were modified to be 
more consistent with geodetic data when necessary. An example of this is the Mojave section of 
the San Andreas Fault, where geologic interpretations favor a slip rate of 35 mm/yr, but geodetic 
models favor values closer to 20 mm/yr. UCERF2 adopted values of 27 and 29 mm/yr in its two 
deformation models to be within the error bounds of both geologic and geodetic data. Geodetic 
models of critical areas, such as the Meade and Hagar (2005) block model of the area around the 
San Gorgonio Pass, also strongly influenced slip rates of faults in those areas. The resulting 
model was checked against geodetically determined plate boundary motion, and zones of 
distributed deformation (“C-zones,” areas of diffuse deformation of which 50 percent is 
presumed seismogenic) were added where geodetically measured deformation could not be 
accommodated on known faults. 

The four new UCERF3 models are formally constrained by GPS observations and an 
updated database of geologically observed fault slip rates (figs. C1 and C2). All models thus 
match the primary observed data; the models are more heavily weighted toward the geologic 
observations at the points where high-quality measurements exist and near those locations (fig. 
C2), and they are not as tightly fit to the GPS field. The geologic model is constrained by slip-
rate determinations from figure C2 and constraints described in appendix B (this report). 
Geodetic data were deliberately excluded from the geologic model to avoid the problem of the 
current geodetic models being constrained by previous rates that were influenced by geodetic 
data (like UCERF2 rates). Geodetic models all use the geologic slip-rate data shown in figure C2 
as constraints. All fit the GPS data as described below, and the Zeng-Shen model as 
implemented for UCERF3 also includes the ranges of slip rates from the geologic model as 
constraints. NeoKinema and the Zeng model have faults as boundaries within a deforming region 
(faulted continuum models), in contrast to the average block model, which is composed of 
translating blocks and the internal strain within those blocks. All models are sensitive to the 
geometry of the faults included, and block models are particularly sensitive to the faults that are 
incorporated into block boundaries. 
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Our task then is to compare, contrast, and assess the seismogenic deformation solutions 
with a goal of deciding which models should be used for earthquake forecasting. Because all 
models are already fit to primary observations, we are left with examining them from secondary 
criteria and (or) expert opinion. We are thus looking for outliers to the general solutions that 
might influence hazard or that are violations of other data. If no deformation models are rejected, 
then they can be viewed as establishing a range of possible solutions. In that event, our task is to 
give the different solutions weighting factors for the UCERF3 logic tree if there is reason not to 
treat them equally. In this section we present and discuss the model outputs in as many different 
forms as we can. In a later section on model weighting we present initial weighting schemes for 
comment/revision/discussion purposes. 

Notes on Relative Data Weights, Resolution, and Parameter Sensitivity 
Details about data handling and parameters are given in the individual model description 

sections (and in appendix B, Dawson and Weldon, 2013). However some universal points about 
how different data are handled, and the implications of UCERF3 assumptions are important to 
keep in mind as the model results are presented and compared in the subsequent sections of this 
report. 

Philosophy and Implications of Relative Data Constraints 
As will be discussed in detail in subsequent sections, most of the geologic slip-rate 

estimates agree with those modeled using GPS data. This agreement between two very different 
estimation methods is encouraging, because in the UCERF3 GPS-model-based inversions, the 
geology is a loose constraint in most parts of California. This result is seen in other worldwide 
GPS-geologic comparisons that were made truly independently (for example see fig. C9; 
Thatcher, 2009). Because past WGCEP/UCERF efforts have always relied primarily on geologic 
slip-rate information to drive earthquake rate models, for UCERF3 we chose to include geologic 
rates as constraints; however, at least for the major faults, results would not differ significantly if 
this constraint were removed. 

The disagreements between geology and geodesy, of which there are several notable ones 
in California (see section on slip-rate characterizations, below), are perhaps equally important. 
First they show, for example, that there is independent content in the GPS estimates. GPS rates 
are also important because geologic rates, although rightly the standard for comparison, are also 
estimates with their own individual strengths and limitations, not immutable constants of nature. 
So the two different datasets complement each other, providing what we would not otherwise 
have, an (albeit imperfect) estimate of the true range of possible slip rates on individual faults. 
Furthermore, the differences likely capture instances in which one or the other estimate has a 
systematic bias, either from unknown data error or temporal rate difference. 

As discussed in the following section, UCERF3 deformation models fit GPS data to 
normalized χ2 values ranging between ~5 and ~15, whereas inversions less weighted toward 
geologic constraints would want to try to fit data at the level between 3 and 4 (in an ideal world). 
It has been necessary in UCERF3 to seriously compromise the fit to GPS (and to misfit it 
systematically in some regions like the Mojave Desert) in order to honor the best geologic 
constraints. As discussed in detail in appendix B (this report) by Dawson and Weldon, slip rates 
off the major faults, either geologic or geodetic, are individually quite uncertain. Only about half 
of the geologic model rates are based on dated offset features, and ~4 dated offset features are 
required (Bird, 2007) to have a 50-percent chance of obtaining a well-constrained rate on each 
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fault. Conversely, many of these faults slip at <1 mm/yr and are individually blind to geodesy. 
Integrated displacement rates across several of these faults may locally be within the range of 
geodetic detection (for example, in the Ventura Basin or Eastern Mojave). Geologic slip-rate 
estimates for many of these faults are approximate, based on the time of the most recent major 
slip event. Dawson and others (appendix B, this report) suggest that, on average, these geologic 
estimates are likely correct within a factor of two or so, but individually they could be farther off. 

There may eventually be better ways of estimating values for most of these low-slip-rate 
faults, but neither geologic nor geodetic approaches yield perfect estimates. The results are 
extremely sensitive to model assumptions (like a priori geologic constraints) and the difficulty of 
measuring rates on closely spaced faults and ones with low slip rates. Where available, the 
highest quality geologic estimates are likely superior because they do not suffer from these 
limitations. 

Parameters and Uncertainty 
The Savage and Burford (1973) model of elastic strain accumulation, which assumes a 

locked upper crustal fault underlain by a freely sliding fault at long-term slip rate, is a central 
assumption of all the UCERF3 geodetic models. Evidence in favor of this idea comes from major 
faults, where the GPS (or InSAR-derived) velocity profile perpendicular to vertical strike-slip 
faults in California, Turkey, New Zealand, and elsewhere looks like the expected arctangent 
function, and the slip rate predicted from this model agrees acceptably with geologic estimates 
(Thatcher, 2009, and references contained therein). In addition, mapping of tremor events on the 
Parkfield and Carrizo sections of the San Andreas Fault show unambiguously that a narrow shear 
zone extends beneath the surface trace down to the Moho or deeper (for example, Shelly and 
Hardebeck, 2010; Ryberg and others, 2010; Shelly and Johnson, 2011). Repeated shallow 
seismogenic slip on such faults creates a stress concentration beneath, and strain weakening and 
consequent localized deformation of a semibrittle or ductile material will eventually occur. This 
is supported both by laboratory deformation studies at appropriate temperature, pressure, and 
state conditions and stress or displacement-driven models of long-term steady-state slip or 
ductile flow. However, the Savage and Burford (1973) model was not necessarily intended for 
some dipping, low-slip-rate, and (or) low-cumulative-offset faults that may exist solely as 
accommodating structures adjacent to bends or other irregularities on major fault lines. Fault 
interaction may in part explain activity on these faults. Therefore a worthy goal for future 
forecasts would be to introduce more physics-based faulting models that are constrained by 
geology and GPS and that can model stress transfer between interacting fault structures. 

Another free parameter involved in deformation modeling is the locking depth of faults. 
Because this is rarely well constrained by geodesy alone, it follows that the model results are not 
sensitive to modest changes in assumed locking depth. The UCERF3 geodetic models follow the 
earthquake-rate model assumptions of assigning locking depth to the maximum depth of 
seismicity, which is a proxy for the local brittle-ductile transition and hence the locking depth. 

Ideally, uncertainties and covariance between model outputs could be reported for each 
geodetic model. Unfortunately these are difficult to provide because the computations are 
iterated and nonlinear. We could theoretically provide uncertainties and covariance from 
extensive Monte-Carlo testing of variations in the modeling parameters and input values, but this 
would require new programming, supercomputer resources, and 6–12 months of researcher time. 
The UCERF3 project plan recognized the scale of this problem from its outset, and the intended 
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approximation for this exercise was designed by securing multiple approaches to slip-rate 
determination as represented by the different deformation models discussed in this report. 

Model Fits to GPS Observations 
We present two measures of model fits to GPS observations: (1) normalized χ2 values 

and (2) maps of residual velocities. A χ2 test is the weighted sum of the residuals as 

  
where σ2 is the variance on observations (taken to be ≥0.2 mm/yr. Reduced χ2 is just divided by 
the number of degrees of freedom. Enforcing a close fit (χ2 ~1) to the dense GPS field would 
result in slip-rate models with strong spatially varying values that might be overly influenced by 
localized variations in GPS measurements. A more relaxed fit captures the smoother, more 
regional nature of the geodetic observations. We provide normalized rather than reduced χ2 here 
because values are divided by the number of observations rather than the degrees of freedom. 
Normalized χ2 values for the three geodetic models range around 5.3 for NeoKinema, 15.1 for 
the Zeng-Shen model, and 15.9 for the average block model. These are on the higher side of 
typical levels of fitting for tectonic-scale models with a large number of observations (for 
example, Hsu and others, 2012), and result from giving geologic observations high weight in the 
inversions for slip rate. Mismatches between geology and geodesy are discussed for individual 
fault zones in a later section. 

We show maps of the spatial distribution of mismatch between models and observed GPS 
in figure C12 and note a few features. The average block model does not seem to be capturing all 
of the right-lateral plate motion across the north coast region, because it has large southeast-
directed residuals in that region. The NeoKinema model residuals point to excess right-lateral 
motion across the Mojave segment of the San Andreas Fault. The Zeng-Shen model does not 
seem to be capturing all of the Pacific-North American Plate motion, showing a systematic ~5 
mm/yr southeast residual motion (meaning a right-lateral sense across California) in the Great 
Basin region of Nevada. There may also be insufficient contraction across the Transverse 
Ranges. Residuals in populated regions of southern California and the San Francisco Bay area 
are smallest in the NeoKinema model and next smallest in the average block model, with the 
largest being in the Zeng-Shen model (fig. C12). 

Implied Seismic Moment Rates 
UCERF deformation model classes can be viewed as converging from conceptual end 

members. The geologic models are source-based, in that they depend on the identification of all 
California faults and an assignment of slip rates on each of them. It is likely impossible that 
every fault can be identified, particularly since many are blind (buried faults with no surface 
traces), and some areas have been studied more intently than others. Completeness of the fault 
model is regionally dependent; compare, for example, the mapped fault density between northern 
and southern California in figure C2. Hazard-assessment results from these models might then be 
viewed as a minimum solution, unless correcting factors are made (that is, geodetically observed 
deformation zones; “C-zones”), which are also subject to uncertainty. Geodetically based 
deformation models represent the other end member; GPS observations record all crustal 
movements whether they are interseismic loading, aseismic creep, or postseismic deformation. 
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Much of the signal not believed to be seismogenic loading can be corrected for, but it is subject 
to uncertainty. 

 
 

 

 

Figure C12. Vector maps of residuals to GPS observations for the three geodetic models. 
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Figure C12-continued. Vector maps of residuals to GPS observations for the three geodetic 
models. 

For comparison, the moment rate can be inferred directly from the GPS data, independent 
of assumptions used to create UCERF3 deformation models. The strain-rate tensor for all of 
California is computed using the GPS data and then converted to scalar moment rate using the 
same formula that was used for the off-fault moment rate in the deformation models (Savage and 
Simpson, 1997). In other words, all model assumptions about how GPS data are mapped into 
fault slip rate and other computations are stripped out, and GPS data are used to directly compute 
moment rate in the crustal volume. The result is shown in figure C13. The summed moment rate 
for the entire region is 3.03×1019 Nm/yr. This estimate is slightly on the high end because creep 
on the central San Andreas Fault and the Hayward Fault is not being accounted for correctly, and 
it is evident that high moment rates are bleeding off into the region outside of data constraints. 
However, this simple moment-rate calculation agrees quite well with the deformation model 
results (table C3). This confirms that the GPS data themselves are primarily the cause of 
relatively higher values of modeled moment rate and not the modeling methods used to make the 
UCERF3 deformation models. 
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Figure C13. Map of the spatial distribution of total moment rate based on direct conversion from surface strain 
measured by GPS data using the method of Savage and Simpson (1997). Cumulative moment release 
from this exercise is consistent with UCERF3 deformation model results. Axes are scaled in km. 

The end-member nature of the deformation modeling strategies is not necessarily 
reflected when the total seismic moment is calculated on faults for different models. Table C3 
shows the cumulative annual moment rates for the five models being discussed. The UCERF2 
solution, which is recognized as having an incomplete fault and slip-rate description, has the 
lowest moment rate on faults. The next higher are the Zeng-Shen and NeoKinema models, which 
have essentially the same on-fault moment rates. The UCERF3 geological and average block 
models are also about equal, but ~10 percent higher than the other two models (table C3). Thus, 
although an important implication of using the new UCERF3 deformation models is that they 
imply an overall moment-rate increase of as much as 24 percent, this is driven entirely by 
inclusion of new faults, rather than by use of geodetic models. Table C4 lists the most important 
new faults (slip rate >1 mm/yr). 

From examination of table C3, there is a distinction that can be made between the elastic 
block model solution and the faulted continuum models. The overall moment release implied by 
the average block model is higher at 24 percent increase over UCERF2 compared with 8–12 
percent increases implied by the faulted continuum solutions. This is caused by a greater 
percentage of moment rate on faults and an accompanying higher off-fault moment rate.



Table C3.  Moment rates  ( , given in units of 1019 Nm/yr) for the UCERF3 deformation models, plus implied values of maximum magnitude 
(Mmax) and mean recurrence interval (MRI) of M ≥8 events6. 

[Value includes fault-specific downdip widths and creep-based moment-rate reductions; default is 0.1 where no creep data exist. For reference, the average lower 
seismogenic depth is ~12 km in the UCERF3 Fault Models; with surface creep the average seismogenic thickness is ~11 km. The values in parenthesis are the 
moment-rate contributions from the more than 150 new fault sections added in UCERF3 (not included in UCERF2). For the Geologic model with Fault Model 
3.1, 57 percent of the increase in parentheses is from the following three new faults: Cerro Prieto (0.077 × 1019 Nm/yr); Mendocino (0.054 × 1019 Nm/yr); and 
Brawley (Seismic Zone) alt 1 (0.049 × 1019 Nm/yr). Note that UCERF3 does not include most of the UCERF2 “Non-CA Faults”; contributions from these are 
“off fault” here. The value of 1.73 listed for UCERF2 has a 10-percent reduction for small earthquakes and aftershocks, but this is compensated by UCERF3 
applying a default aseismicity of 0.1] 

Fault 
Model Deformation Model Fault 1 

(new faults) 
Off 

Faults2  
% Off 
Faults 

Total  
(seismic and 

off-fault 
aseismic) 

Total  
Increase over 

UCERF23 

Change  
on UCERF2 faults 

4 
Mmax5 MRI 

M ≥ 85 

3.1 

Average Block 
Model 2.02/(0.39) 0.93 31% 2.95 24% -6% 8.36 205 

Geologic 2.00/(0.31) 4 0.95 32% 2.95 24% -3% 8.36 205 

NeoKinema 1.86/(0.42) 0.80 30% 2.66 12% -16% 8.27 249 

Zeng-Shen 1.86/(0.30) 0.71 28% 2.57 8% -10% 8.24 272 

3.2 

Average Block 
Model 2.02/(0.42) 0.92 31% 2.94 24% -7% 8.36 205 

Geologic 2.00/(0.33) 4 0.94 32% 2.94 24% -3% 8.36 205 
NeoKinema 1.84/(0.42) 0.80 30% 2.64 11% -18% 8.26 254 
Zeng-Shen 1.85/(0.31) 0.71 28% 2.56 8% -11% 8.23 275 

2.1 UCERF2 1.73/(0.0) 0.64 24% 2.37 0% 0% 8.15 385 
1Values from K. Johnson’s analysis of off-fault strain rates, which assume a seismogenic thickness of 11 km. The exception is the Geologic model, for which 
there is no off-fault strain rate map; its value was computed assuming the total moment rate for the Ave Block Model is correct (0.95 = 2.95-2.00 for UCERF3 
FM 3.1). The UCERF2 value includes contributions from both “C-Zones (aseismic)” and “Non-CA Faults”, the latter because most of the “Non-CA Faults” have 
been excluded in UCERF3. 
 2Relative to the UCERF2 total value of 2.37× 1019 Nm/yr, which includes contributions from “C-Zones (aseismic)”. The UCERF3 on-fault values have aseismic 
contributions removed, but there may be aseismic contributions in the UCERF3 off-fault values. 
3Comparison of on-fault moment rate for the same faults as used in the UCERF2 model. 
4Implied values computed assuming a truncated GR distribution constrained to have the observed rate of 8.7 M ≥ 5 events per year and a b-value of 1.0. 
5Values in this table compiled by running the following OpenSHA method on 10/12/12:  
UCERF3.analysis.DeformationModelsCalc.calcMoRateAndMmaxDataForDefModels().



Table C4.  Listing of the highest slip-rate (>1 mm/yr) faults added to the UCERF3 model and their slip rates 
(in mm/yr) under the four different model formulations. All added faults and further details are listed in 
table C10. 

Fault Section Geo Rate ABM rate NeoKinema rate Zeng-Shen 
rate 

Cerro Prieto 35.00 34.62 9.42 14.37 
Mendocino 35.00 48.13 48.81 35.60 
Brawley (Seismic Zone) alt 1 23.00 22.50 27.08 23.67 
Calaveras (So) Paicines extension 10.00 14.87 9.00 8.60 
Hayward (So) extension 2011 CFM 8.00 8.22 5.90 10.17 
Santa Susana alt 2 6.00 5.99 3.61 5.12 
Santa Susana East (connector) 6.00 5.87 0.57 4.13 
Mad River - Trinidad (alt2) 4.50 1.44 0.89 4.80 
Hunting Creek - Bartlett Springs 3.00 7.16 4.71 8.30 
Oak Ridge (Offshore) west extension 3.00 3.03 0.87 2.42 
Owens Valley (Keough Hot Springs) 3.00 3.01 0.40 2.66 
Sargent 2011 CFM 3.00 3.10 0.26 2.78 
Garberville - Briceland 2011 CFM 2.60 11.96 2.62 2.25 
San Jacinto (Lytle Creek connector) 2.50 2.50 0.37 2.31 
Almanor 2011 CFM 2.20 2.14 0.85 2.07 
Carson Range (Genoa) 2.00 2.14 1.64 1.54 
Earthquake Valley (N extension) 2.00 1.94 0.11 1.72 
Earthquake Valley (S extension) 2.00 1.99 0.33 1.75 
Mt Diablo Thrust North  2.00 2.10 1.61 1.69 
Mt Diablo Thrust South 2.00 2.25 1.36 1.63 
San Andreas (North Branch Mill Creek) 2.00 2.00 1.92 1.71 
San Diego Trough north alt1 2.00 1.93 1.38 3.19 
San Diego Trough north alt2 2.00 1.93 1.89 2.43 
San Diego Trough south 2.00 1.88 2.80 2.85 
Great Valley 05 Pittsburg-Kirby Hills 1.80 1.78 0.25 1.48 
Mission (connected) 2011 CFM 1.80 1.93 0.99 1.32 
San Clemente 1.80 2.84 0.36 3.74 
San Gorgonio Pass 1.80 1.75 0.71 2.23 
Northridge Hills 1.30 0.25 0.90 1.49 
Mission Hills 2011 1.25 1.14 0.65 1.05 
Mission Creek 1.09 1.00 0.71 0.83 
Antelope Valley 2011 1.00 1.03 1.89 0.97 
North Channel 1.00 1.58 0.23 1.27 
Oceanside alt1 1.00 0.77 0.42 0.88 
Oceanside alt2 1.00 3.49 0.05 0.72 
San Pedro Basin 1.00 1.05 1.49 1.47 
Santa Cruz Catalina Ridge alt1 1.00 0.64 0.80 1.44 
Santa Cruz Catalina Ridge alt2 1.00 0.64 0.70 1.34 
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The spatial distributions of off-fault moment release rates implied by the three 
geodetically based deformation models have features in common, but are also distinct from one 
another (figs. C14,15). All three models have more off-fault moment rate in southern California. 
The Zeng-Shen model has the smoothest distribution, whereas NeoKinema has the roughest (a 
function of the finite element grid used). The implications of applying UCERF3 geodetically 
derived background deformation rates with respect to UCERF2 would likely be higher hazards in 
the Great Valley, the Transverse Ranges, and southeast California (fig. C14). 

 

 

Figure C14. Maps comparing the average total UCERF3 moment rate, as well as the rates on and off defined 
fault zones, to the UCERF2 values. 
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Figure C15. Maps comparing the individual UCERF3 deformation model moment rates and ratios to the 
average UCERF3 rates. The Geologic Model does not produce off fault deformation estimates, hence 
those fields are blank. 
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Because mapping moment rate may not be very intuitive in terms of comparing with slip 
rates, we calculated the implied fault slip from the residual off-fault moment rate grids for the 
three geodetic models. We show this component as cumulative slip rate against latitude in figure 
C16. The amount of slip assumed to occur on unknown faults is significant, reaching as much as 
30 mm/yr at some latitudes in some models. This off-fault deformation is of course covariant 
with the calculated on-fault slip rates. It is also subject to considerable maximum magnitude 
uncertainty, as well as uncertainty in terms of the proportion that is aseismic. 
 

 
 

Figure C16. Plot of residual, off-fault moment rates converted to idealized slip rate on N34˚W trending vertical 
faults as a function of latitude. The purpose of this figure is to give a rough idea how much slip might be 
implied by the off-fault component in the geodetic deformation models. 

As of this writing it remains undecided how the background moment release rates from geodetic 
solutions should be used or weighted. One option would be to only use their relative spatial 
distribution, but not the overall moment values because of uncertainty about aseismic 
deformation. The cumulative moment rate value in that scenario would be drawn from smoothed 
seismicity. Alternatively, some weight could be given to the geodetic solutions for off-fault 
deformation, which take into account the mechanical implications of the California fault system 
geometry in perhaps a more complete way than smoothed seismicity can. The overall moment 
rate is tied to assignment of regional maximum magnitude values, a topic outside the scope of 
this document. However, the tradeoffs between the assignment of moment release to major fault 
lines or to off-fault deformation can be potentially considered when weighing models. The 
average UCERF3 deformation model is compared with UCERF2 and UCERF3 smoothed 
seismicity in figure C17. 
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Figure C17. Maps comparing UCERF2 and UCERF3 smoothed seismicity approaches. Maps showing ratios 
to the average UCERF3 model highlight spatial differences between the geodetically derived off-fault 
deformation and that from seismicity. 

The short period we have had to observe moment release in California causes significant 
uncertainty. We do not know how representative the ~150 year-instrumental and historical 
catalog is compared to the long term. The fact that deformation modeling is the preferred method 
to calculate earthquake rates over the empirical catalog is telling. Earthquake simulators may 
offer a glimpse in to the expected moment rate variability in California (Tullis and others, 2012). 
All models show moment rate variability by as much as a factor of three for 200-yr periods (fig. 
C18). Therefore reliance on fitting the instrumental moment-rate record could skew the long-
term signal in the geologic and geodetic data. 
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Figure C18. Graphs showing moment and event rates for a representative 2,000-year time span from 30,000-
year simulations (Tullis and others, 2012); 100-year moving averages are plotted. Red bars show the 
observed 95-percent confidence intervals for M6+ and M7+ rates (Field and others, 2009). Note that 
simulated moment rates can differ by a factor of ~3 for periods of ~200 years, illustrating that the 
instrumental and historical records are too short to be representative samples of earthquake history. 
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Slip Rate Characterizations 
Deformation models that are quantitatively constrained by geodetic observations are new 

to WGCEP and UCERF. We compared the UCERF3 geodetic solutions with the geologic model 
because geologically observed fault slip rates have been the primary input data to all past 
models. It should be noted that this is not equivalent to comparing with the UCERF2 
deformation model, which combined geologic and geodetic data using expert opinion. These 
comparisons between UCERF3 models serve to highlight the differences between different 
models with different input and assumptions, rather than comparisons to a “correct” or even a 
“consensus” model. 

Geologic observations of fault slip rates are clustered in California, with some faults 
having many nearby observations, and others few or none (fig. C2). The geologic models have 
fixed, extrapolated values along strike. The geodetic models are generally fixed within quoted 
uncertainties at locations where there are slip-rate observations, but are free to vary in between if 
the geodetic signal is a better fit. All modeling techniques attempt to conserve slip rate in the 
absence of changes necessary to fit GPS observations. However, slip-rate changes and gradients 
along strike are one of the phenomena typically not captured by point measurements from 
geology, and are thus one of the features we want to capture from geodesy. 
There are differences in the smoothness in slip-rate solutions that depend on methods applied. In 
table C5, the highest slip rate (>5 mm/yr) faults are compared. The standard deviations in slip 
rate along same-named faults are calculated for FM3.1. The standard deviations in this instance 
are not implying errors, but are used to demonstrate model solution smoothness. The NeoKinema 
and Zeng-Shen models tend to have constant slip rates on the fastest faults, most with standard 
deviations of 0.0. The average block model solutions have  more variability, with standard 
deviations ranging from zero to ~50 percent of geologic slip-rate values, though most are less 
than 10 percent (table C5). These variations occur between observed slip-rate values and are fit 
to GPS constraints. Thus there is no way to know whether a more constant slip rate or a variable-
rate solution is correct. However, if a more constant slip rate solution is desired, then the faulted 
continuum solutions (NeoKinema, Zeng-Shen) appear to provide it, though the differences are 
small. Revisions to the average block model methods for calculating slip rates on off-block 
boundary faults has resulted in a much smoother solution than earlier versions. 

Similar information is plotted in figure C19, where slip rate (mm/yr) is plotted against 
fault subsections for major California faults. In most, but not all, cases the geologic model has 
the highest slip rates of the four deformation models. A range of behaviors is displayed, from all 
four models lying within estimated geologic bounds, to along-strike slip-rate gradients, to all 
geodetic models falling below the geologic bounds. The Zeng-Shen model appears to be the 
geodetic solution that is nearest the geologic model, though not by much. In table C6, the mean 
misfit of the three geodetically constrained deformation models is given at the subsection level. 
The mean and 1σ values are well within the observation uncertainties for all three models. 

 
 
 
 
 
 
 

 



Appendix C of Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) 

 48 

Table C5.  Comparison of along-strike slip rates for the highest slip rate faults in the UCERF3 fault model 
(FM3.1 used here). The standard deviation is calculated for the variation in slip rates amongst 
subsections on faults. Generally, the NeoKinema and Zeng-Shen models have smoother slip rates than 
the average block model. 

 Standard deviation modeled slip rate (mm/yr)  
Fault Name ABM NeoKinema Zeng-Shen  Geological Geological slip rate 

Mendocino 16.0 19.7 0.0 0.0 35.0 
Imperial 3.3 0.0 0.0 0.0 35.0 
Cerro Prieto 3.7 0.0 8.4 0.0 35.0 
San Andreas (Cholame) rev 0.0 0.0 0.0 0.0 34.0 
San Andreas (Big Bend) 1.9 0.0 0.0 0.0 34.0 
San Andreas (Carrizo) rev 0.3 0.0 0.0 0.0 34.0 
San Andreas (Creeping Section) 7.0 0.0 4.7 0.0 34.0 
San Andreas (Mojave N) 6.8 0.0 0.0 0.0 32.5 
San Andreas (Mojave S) 0.0 0.0 0.0 0.0 32.5 
San Andreas (Offshore) 2011 CF 0.4 0.0 0.0 0.0 24.0 
San Andreas (North Coast) 2011 0.1 0.0 0.0 0.0 24.0 
San Andreas (San Bernardino N) 2.8 0.0 0.0 4.6 17.3 
San Andreas (Peninsula) 2011 C 0.1 0.0 0.0 0.0 17.0 
San Andreas (Santa Cruz Mts) 2 0.1 0.0 0.0 0.0 17.0 
Calaveras (Central) 2011 CFM 4.3 0.0 0.0 0.0 15.0 
Calaveras (So) 2011 CFM 0.1 0.0 0.0 0.0 15.0 
San Jacinto (San Jacinto Valle 0.1 0.0 0.0 0.0 14.0 
San Jacinto (Anza) rev 0.1 0.0 0.0 0.0 14.0 
San Andreas (San Bernardino S) 0.7 0.0 0.0 0.0 13.0 
San Jacinto (San Bernardino) 0.7 0.0 0.0 1.6 10.0 
San Andreas (San Gorgonio Pass 5.5 0.0 0.0 0.0 10.0 
Calaveras (So) - Paicines exte 2.3 0.0 0.0 0.0 10.0 
Hayward (So) 2011 CFM 0.1 0.0 0.0 0.0 9.0 
Hayward (No) 2011 CFM 0.2 0.0 0.0 0.0 9.0 
Maacama 2011 CFM 0.9 0.0 0.0 0.0 9.0 
Rodgers Creek - Healdsburg 201 0.3 0.0 0.0 0.0 9.0 
Hayward (So) extension 2011 CF 0.3 0.0 0.0 0.0 8.0 
Garlock (Central) 1.8 0.0 0.0 0.0 7.0 
San Gregorio (North) 2011 CFM 0.3 0.0 0.0 0.0 7.0 
San Jacinto (Coyote Creek) 0.1 0.0 0.0 0.5 6.7 
Garlock (West) 0.6 0.0 0.0 0.8 6.6 
San Jacinto (Clark) rev 1.4 0.0 0.0 1.8 6.3 
San Jacinto (Superstition Mtn) 0.0 0.0 0.0 0.0 6.0 
San Cayetano 0.1 0.0 0.0 0.0 6.0 
Santa Susana alt 1 0.0 0.0 0.0 0.0 6.0 
Calaveras (No) 2011 CFM 0.0 0.0 0.0 0.0 6.0 
Santa Susana East (connector) 0.1 0.0 0.0 0.0 6.0 
San Jacinto (Borrego) 0.2 0.0 0.0 0.0 5.0 
Elsinore (Glen Ivy) rev 0.5 0.0 0.0 0.0 5.0 
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Figure C19. Plots of modeled slip rate (mm/yr) versus subsection on major California faults for four 
deformation models. Faults are plotted from north to south along strike beginning with northern 
California faults and moving to the south. The gray bands show the estimated geologic slip-rate 
bounds. 
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Figure C19. -continued. Plots of modeled slip rate (mm/yr) versus subsection on major California faults 
 for four deformation models. Faults are plotted from north to south along strike beginning  with 
 northern California faults and moving to the south. The gray bands show the estimated 
 geologic slip-rate bounds. 
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A potentially more robust geological observation might be the rake values in the grossest 
sense. For example, in most cases it should be fairly evident whether a dip-slip fault lies in an 
extensional or convergent terrane, or whether a strike-slip fault is right lateral or left lateral. We 
thus tallied the number of fault model subsections that had 180˚ differences from the 
geologically assigned rakes, which implies a complete reversal. As can be seen in table C6, the 
Zeng-Shen model is most closely associated with the geological rakes, followed closely by the 
average block model solutions. The average block model has the vast majority of subsections 
that are the same as the geological model, but it does have more reversals (12 subsections, 
depending on the fault model; table C6). Most of these reversals occur on relatively minor faults 
(fig. C20). 

Table C6.  Comparison of geodetically driven deformation model solutions with the UCERF3 geologic model. 
The Zeng-Shen model most closely matches the geologic model, both in terms of slip rates and rake 
directions. The average block model marks the largest departure from the geologic model. “FM3.1” and 
“FM3.2” refer to the two UCERF3 fault models. 

FM3.1 ABM NeoKinema Zeng-Shen 
Mean ∆ slip rate from geological (mm/yr) 1.29 1.49 0.77 
1σ 2.58 2.61 1.99 
Maximum ∆ from geological (mm/yr) 28.52 26.46 20.63 
    
Mean rake ∆ from geological (˚) 13.11 12.13 11.87 
1σ 30.11 23.38 9.98 
Number subsects. with 180˚ rake variation 12 3 0 

FM3.2 ABM NeoKinema Zeng-Shen 
Mean ∆ slip rate from geological (mm/yr) 1.35 1.54 0.76 
1σ 2.60 2.66 2.02 
Maximum ∆ from geological (mm/yr) 21.39 26.66 20.83 
    
Mean rake variation from geological (˚) 14.22 13.11 11.65 
1σ 31.04 25.39 9.99 
Number subsects. With 180˚ rake variation 12 3 0 
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Figure C20. Maps showing geographic locations of average block model matches and mismatches to 
geologically observed or inferred rakes. Red faults are matched and blue are mismatched.  

Covariance amid Parallel Strike-Slip Faults 
Relatively closely spaced faults of similar rake that are locked can pose resolution 

problems in slip-rate modeling. The distribution of slip amongst the faults could vary 
significantly while producing similar geodetic signal. Long-term slip rates as determined from 
offset geologic features may not capture temporal changes in slip rates from interactions (see, for 
example, Marzocchi and Lombardi, 2008) and (or) mode switching (for example, Zöller and 
others, 2007; Hillers and others, 2009). The UCERF2 model had three realizations of 
deformation as a result of this issue, wherein the subparallel southern San Andreas and San 
Jacinto Faults were given covarying amounts of slip because published geologic and geodetic 
models (for example, Kendrick and others, 2002; Meade and Hager, 2005) have suggested 
approximately equal amounts of slip on the two faults, whereas past results showed more slip on 
the San Andreas Fault (Field and others, 2009). 

We plot in figure C21 the slip rates from four UCERF3 deformation models on the 
covariant San Andreas and San Jacinto Faults. Slip-rate tradeoffs are more complex than those in 
the UCERF2 approach, with some models (like the average block model) placing more slip in 
the residual, off-fault areas at these latitudes. The range of UCERF3 deformation models 
therefore covers µ<5 mm/yr to µ >20 mm/yr of slip rate on each fault, compatible with the 
branches given in UCERF2 deformation models and other geologic and geodetic solutions (for 
example, Bennett and others, 2004; Fay and Humphreys, 2005; Meade and Hagar, 2005; Fialko, 
2006). 
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Figure C21. Plots of slip rate along strike on the subparallel southern San Andreas (a) and San Jacinto (b) 
Faults as determined by the different deformation models. These two faults represented the sole 
deformation model variation in UCERF2 because of a lack of consensus about whether the San 
Andreas is dominant, or whether the two faults have about equal slip. The range of models depicted 
here does allow for tradeoffs between these two faults, but the solutions are generally held within 
geologic bounds. This result suggests that the geologic and geodetic data are compatible in this area. 

Line Integral Transects Through the Deformation Models 
The geodetically constrained deformation models are expected to be cumulatively 

consistent with the relative motion between the Pacific and North American Plates, because they 
are constrained to fit the broad features of the GPS velocities that are calculated relative to stable 
North America (fig. C1). This is not the case for the UCERF3 geologic model. In similar fashion 
to the prior analyses, we examine the detailed, submodel-level solutions to examine local 
variability by summing slip rates on line integral paths directed orthogonally to the NUVEL-1 
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relative plate motion directions (DeMets and others, 1990, 2010) at 0.1˚ intervals in latitude 
through all the proposed UCERF3 deformation models as well as the UCERF2 model. We 
assume that the plate boundary deforms with a degree of uniformity over time. Thus a flawed 
model might show strong variability from section to section. 

Deformation model transects are calculated by finding the east and north components of 
slip on each model fault, using the input geometry (strike, dip, dip-direction) and output slip rates 
and rakes. East and north components are summed along transects, and the implied motion 
vectors (magnitude and direction) are calculated. The off-fault deformation is not included in the 
transects to enable comparison with the UCERF3 geologic model and the UCERF2 deformation 
model. Creep and other aseismic slip on faults are included. We recognize that faults in the 
California region cannot fully represent the complete relative Pacific-North American Plate 
motion because, although much of this motion is accommodated in the San Andreas Fault 
system, a significant proportion is also taken up through Basin and Range Province oblique 
extension (see, for example, Parsons and Thatcher, 2011). Further complications result from the 
fact that a larger fraction of the southern part of California lies within the Basin and Range 
province, meaning more plate boundary motion is seen on integrals drawn at lower latitudes. 
Ultimately nearly all the relative plate motion is contained within the Salton Trough. 

Results of model line-integral transects are shown in figures C22 and C23. The calculated 
values should be less than the whole relative plate motion (48±2 mm/yr) for the reasons stated 
above and because background moment accumulation is not included. However, because the San 
Andreas system is traversed by all the line integral paths, they ought to add up to most of the 
relative plate-motion vector associated with the given latitude (the actual value varies with 
position because plates rotate on a spherical Earth (see, for example, Argus and Gordon, 1990), 
and we assume that it would be smoothly varying. The wiggle plots of figures C22 and C23 
show that none of our deformation models behave this way, a consequence of solutions that are 
dominated by discrete slip on discontinuous faults that bound elastic or less deformable regions 
or blocks. 

Results of note from the summary of transects presented in figures C22 and C23 include 
that the UCERF2 solution falls in the middle of the range of UCERF3 models with the exception 
of southernmost California (south of 34˚N)—there new, high-slip-rate faults were added to the 
UCERF3 geologic model, whereas the UCERF2 model had an aseismic C-zone. Thus the 
geodetic solutions are not very different from UCERF2 in most of the state. The Zeng-Shen 
model is the most smoothly varying with latitude of all models (table C7). Other than in the 
Mendocino and Salton Sea regions, all the UCERF3 geodetic solutions actually produce less slip 
on faults than the UCERF2 and UCERF3 geologic models (fig. C24). A potential concern is that 
all models appear to have excessive amounts of slip rate where the Mendocino and north San 
Andreas Faults overlap, as well as where the Imperial and Cerro Prieto Faults overlap in the 
Salton Trough (figs. C24 and C25). 

We have examined cumulative slip, but so far not direction. We thus made scatter plots 
of the angle from north of the net slip of each transect (made at 0.1˚ latitude intervals) across the 
deformation models. From table C7 it is apparent that all of our vectors trend a little more 
westerly (~4˚) than NUVEL-1. From the scatter plots shown in figure C24, it is apparent that 
nearly all mismatches from NUVEL-1 directions occur south of 33˚N for all deformation 
models. Perhaps not surprisingly, the more geological models (UCERF2, UCERF3 geologic, 
Zeng-Shen) tend to have the greatest proportion (46 percent) of misalignment from NUVEL-1. 
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Figure C22. Separate plots of results from slip-rate transects using five different deformation models (the four 
under consideration for UCERF3 as well as UCERF2) overlaid on California map. Transects were 
computed at 0.1˚ intervals on lines oriented perpendicular to the NUVEL-1 relative plate motion 
directions (changes with latitude; Argus and Gordon, 2001). Red lines in upper left show integral paths. 
The heavy, dashed, black vertical lines show a 40-mm/yr reference slip rate. Hanging wall 
displacements were broken into north and east components and summed along the transects. 
Cumulative displacement rates (mm/yr) are plotted for each deformation model, and the UCERF2 rates 
are shown for comparison. The off-fault, background strain is not included in these calculations so that 
all the models can be directly compared. 
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Figure C23. Plots of results of slip-rate transects as in figure C22, except here all UCERF3 model summed 
displacement rates are differenced from the UCERF2 rates. The heavy, dashed, black vertical line 
shows zero difference with UCERF2. 
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Table C7.  Averages and standard deviations of directions and rates of displacement from transects across 
deformation models as shown in figures C22 and C23. The fractions of direction outliers from the 
NUVEL-1 model are given also. 

  ABM NeoKinema 
Zeng-
Shen UCERF3 Geo. UCERF2 NUVEL-1 

Mean N41.3˚W N41.3˚W N40.7˚W N41.6˚W N43.8˚W N40.9˚W 
1σ 10.0˚ 11.8˚ 11.2˚ 12.2˚ 13.0˚  
Fraction of transects  41% 41% 43% 46% 46%  
out of NUVEL-1 range       
Mean rate (mm/yr) 34.9 30.1 34.8 34.4 38.4 48 
1σ (mm/yr) 7.7 7.0 8.9 12.7 6.0  

 



Appendix C of Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) 

 58 

 
 

Figure C24. Map plots of slip direction (on defined faults only) from transects versus latitude. Shaded gray 
area shows North American-Pacific relative motion versus latitude from NUVEL-1 (Argus and Gordon, 
1990). 
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Summary of Deformation Model Results 
Here we summarize behaviors of different deformation models and rank them according 

to their performance against defined criteria that might be helpful in developing branch weights 
for the UCERF3 logic tree. 

Total Moment Rate 
All UCERF3 deformation models imply an increased moment release (8–24 percent 

increase) as compared with UCERF2. This results from a combination of additional fault sources 
that have been added and the use of geodetic data that record all current displacements, whereas 
primarily fault-based models are likely incomplete. If the moment discussion is limited to that on 
defined faults, then the UCERF3 geologic model represents a 17 percent increase over UCERF2, 
and the geodetic models represent a range of increase from 8 to 17 percent over the UCERF2 
defined fault rate. If the discussion is limited to faults that were defined for both UCERF2 and 
UCERF3, then the new models all reduce the moment rate by 3–16 percent. Use of geodesy thus 
does not necessarily imply higher moment rates on defined faults (table C2). The UCERF2 
model balanced the observed 150-yr seismic moment release rate. Thus adopting any of the 
UCERF3 deformation models without any aseismic deformation correction is an implicit 
statement that the 150-yr earthquake catalog is not completely representative of the longer term. 

If one wishes to use the historical catalog fit as a ranking criterion, then the lowest 
moment-release rate models would be at the highest ranks as follows: (rank 1, tie) Zeng-Shen 
model and  NeoKinema (both 1.86×1019  Nm/yr); (rank 2, tie) UCERF3 geological model 
(2.00×1019  Nm/yr), and average block model (2.02×1019  Nm/yr). 

Fit to GPS Data 
Ranking models by fit to GPS observations shows (rank 1) NeoKinema with reduced χ2 

value of 5.3; (rank 2) 15.1 for the Zeng-Shen model; (rank 3) average block model with reduced 
χ2 value of 15.9; and (rank 4) no fit attempted for the UCERF3 geologic model. Ranking by 
spatial distribution of residuals can be performed on the basis of potential importance to loss 
calculations, in that the (rank 1) NeoKinema has the smallest residuals in Southern California 
and the San Francisco Bay region, (rank 2) the average block model is intermediate, and (rank 3) 
the Zeng-Shen model has the largest. 

Slip on Faults 
Examining the models in detail with regards to slip distributions and behavior on 

individual faults reveals the following characteristics. The average block model has more 
variable slip along faults, whereas the faulted continuum models have almost uniform slip on 
faults. In this sense the faulted continuum models behave most like the geology-only models of 
UCERF2 and the UCERF3 geologic model. The Zeng-Shen model in particular is most like the 
UCERF3 geologic model and is more weakly constrained by GPS. 

A number of potential ranking factors apply. Ranking geodetic models by their overall fit 
to geology yields (rank 1) Zeng-Shen model with no rake reversals; (rank 2) NeoKinema with 3 
rake reversals; and (rank 3) the average block model with 12. Similarly, ranking by overall fit to 
geologic slip rates yields (rank 1) Zeng-Shen model with smallest mean difference, followed by 
(rank 2) average block model and (rank 3) NeoKinema. Ranking models by 
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smoothness/continuity of slip rate on faster slipping (≥5 mm/yr) faults yields (rank 1) 
NeoKinema (smoothest); (rank 2) Zeng-Shen (intermediate); and (rank 3) average block model 
(roughest). 

Line Integrals 
Transects across the deformation models were drawn on paths orthogonal to the NUVEL-

1 Pacific-North American relative plate-motion vectors at 0.1˚ latitude intervals. Hanging wall 
displacement vectors were found using calculated fault rates, rakes, and input fault geometry. 
Summing displacement shows variable net displacement direction and rate relative to the overall 
plate-motion vectors (NUVEL-1). The NeoKinema and average block model show the best fit to 
the plate-motion vectors because they are more influenced by geodesy. 

Ranking can be described as (rank 1, tie) NeoKinema and the average block model each 
have 41 percent of relative plate-motion vectors from line integral paths outside of NUVEL-1 
range; (rank 2) the Zeng-Shen model has 43 percent; and (rank 3) the UCERF geologic model 
has almost half outside at 46 percent. 

Background Deformation 
One measure of model performance is the amount of moment rate that it is necessary to 

put into background deformation off of defined faults. This can be viewed as the residuals of the 
modeling process. From table C3, we can rank the models on this measure as (rank 1) the 
NeoKinema model (0.79×1019 Nm/yr); (rank 2) the Zeng-Shen model (0.80×1019 Nm/yr); (rank 
3) the average block model (0.93×1019  Nm/yr); and (rank 4) the UCERF3 geologic model, 
which does not attempt to balance this quantity. 

Model Weighting  
The UCERF process relies on a logic tree approach when confronted with multiple 

solutions or interpretations of the same data. The starting point has been to give equal weight to 
different models in the absence of information that defines a clear preference (Field and others, 
2009). For UCERF3 we have three deformation models that use geology and geodesy and a 
fourth that is based solely on offset geological features. The purpose of this section is to 
determine if there was anything that emerged from the results that would cause us to not give 
equal weight to the four models. 

As noted in previous sections, all the UCERF3 deformation models fit their intended 
input datasets at a reasonable degree of confidence. Therefore, additional criteria are identified 
here for consideration. These include (1) total moment release rate (directly impacts hazard); (2) 
fit to the GPS velocity field; (3) quantity of defined rake reversals on important faults, slip-rate 
solutions outside of well-constrained geologic bounds, and so forth; (4) consistency with relative 
plate-motion vectors; and (5) background moment rate off of defined faults. 

The assortment of available models fall into two broad categories: (1) those tilting more 
to geologic constraints (UCERF3 geologic model, Zeng-Shen model) and (2) those tilting more 
toward geodetic constraints (average block model, NeoKinema). In the interest of capturing the 
aleatory uncertainty that is apparent on some of the most important, high-slip-rate faults like the 
San Andreas, one approach might be that combinations of the UCERF3 geology and Zeng-Shen 
models on the one hand and the average block model and NeoKinema on the other each add up 
to about 50 percent weighting. 
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If weighting is based on the model rankings given in the previous section of this report, 
then it can be broken into five categories: (1) total moment rate, (2) fit to GPS data, (3) 
characterization of slip rates on faults, (4) line integrals and consistency with the relative plate 
motions, and (5) moment rate distribution off defined faults. We can find the mean rank of each 
model from 1 to 4 in each category, with 1 being best, and assign points accordingly such that 
the best possible score would be 5, and the lowest, 20. If we do this, we find that the NeoKinema 
model has the best cumulative score of 8, followed by the Zeng-Shen model at 9, the average 
block model at 11, and the UCERF3 geologic model at 14. If these scores are normalized into 
weights, then it comes out that NeoKinema is weighted at 30 percent, Zeng-Shen 30 percent, the 
average block model at 20 percent, and the UCERF3 geologic model at 20 percent. This scheme 
gives roughly 50 percent weight to models that are more geodetic in nature (average block 
model, NeoKinema), and about 50 percent to geologic models (UCERF3 geologic, Zeng-Shen). 

The UCERF3 Deformation Model Evaluation Committee’s weights are summarized in 
table C8. For UCERF3.1 and UCERF3.2, the mean values of the committee’s weighting were 
used, with average block model=0.2, NeoKinema=0.2, Zeng-Shen=0.3, and the UCERF3 
geological model=0.3. 

Table C8.  Summary of relative model weighting as provided by the Deformation Model Review Committee 
members (listed here under “Reviewer” category). 

 
Model weights 

Reviewer ABM NeoKinema Zeng-Shen UCERF3 Geology 
Dawson 0.25 0.25 0.30 0.20 
Dieterich 0.10 0.20 0.10 0.60 
Frankel Lowest Lowest Medium Highest 
Parsons 0.20 0.30 0.30 0.20 
Thatcher 0.40 0.20 0.20 0.25 
Weldon 0.30 0.20 0.20 0.30 
Wills 0.10 0.10 0.80 0.00 
Mean 0.23 0.21 0.32 0.26 
1σ 0.12 0.07 0.25 0.20 

Interpretation for UCERF3.1 
Mean 0.2 0.2 0.3 0.3 
Low 0.1 0.1 0.1 0.0 
High 0.4 0.3 0.8 0.6 
A result of the February 13–14, 2013, fault-by-fault review meetings was that the average 

block model (ABM), because it calculates deformation rates based on block-like behavior, has a 
tendency to exhibit higher slip rates along defined block boundaries than was deemed acceptable 
in many instances. The result of this is reduced ABM weight from 0.2 to 0.1. We do not support 
giving the ABM zero weight because there are data-driven reasons to conclude that block-like 
behavior occurs in the Earth (for example, Bennett and others, 1996; Prawirodirdjo and others, 
1997; Souter, 1998; McClusky and others, 2001; Murray and Segall, 2001; McCaffrey, 2002, 
2005; Meade and Hager, 2005; Simpson and others, 2012). 

We therefore arrive at a final weight of ABM (0.10), NeoKinema (0.30), Zeng-Shen 
(0.30), Geology (0.30). We do this because the NeoKinema model represents a significantly 
better fit to GPS observations, with a normalized χ2 misfit of 5.3, which is roughly a threefold 
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decrease compared with the ABM and Zeng-Shen models (15.9 and 15.1, respectively). All 
models were reviewed by expert panels for geologic consistency, and the NeoKinema model in 
particular was brought into consensus. The Zeng-Shen and geologic models combine to get 0.6 
weighting, which tilts the solution toward geologic data constraints. However, we recognize that 
the geologic constraints on a significant fraction of California faults (~30 percent) are very weak 
to nonexistent, which was the primary reason to commission geodetic models. 

Finally, the decision to doubly weight the paleo-rate constraint in the earthquake rate 
inversions adds additional geologic weighting on the type A faults. This has the effect of 
reducing geodetic influence on the major faults, particularly (and appropriately) where the 
geologic data are strongest. Therefore adding weight to NeoKinema has the primary effect of 
informing the earthquake rate model where geologic information is scarce. 
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