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Abstract 16 
We present a method for interpolation of sparse two-dimensional vector data.  The method is 17 
based on the Green’s functions of an elastic body subjected to in-plane forces.  This 18 
approach ensures elastic coupling between the two components of the interpolation.  Users 19 
may adjust the coupling by varying Poisson’s ratio. Smoothing can be achieved by ignoring 20 
the smallest eigenvalues in the matrix solution for the strengths of the unknown body forces.  21 
We demonstrate the method using irregularly distributed GPS velocities from southern 22 
California.  Our technique has been implemented in both GMT and MATLAB®. 23 
 24 
Introduction 25 

Interpolation of randomly located scalar data onto a uniform grid is commonly performed 26 
using the finite-difference, multigrid, minimum curvature method [Briggs, 1974; Swain, 27 
1976; Smith and Wessel, 1990] or the direct biharmonic spline method [Sandwell, 1987; 28 
Wessel and Bercovici, 1998].  The multigrid minimum curvature approach is extremely 29 
efficient and can handle large data sets of perhaps a billion data points, but suffers from slow 30 
numerical convergence.  The direct biharmonic spline approach is more flexible and can 31 
interpolate data with differing uncertainties but is limited to only a few thousand points 32 
because an N-data by N-data matrix inversion is required.  Moreover, the inversion usually 33 
requires some numerical stabilization to achieve a smooth result.  The basic approach is to 34 
apply vertical point loads to a thin elastic sheet at the locations of the data constraints.  The 35 



2 

strengths of these forces are then adjusted through a least squares inversion such that the 36 
deformed sheet matches the data points within their uncertainties.  Then the deformation, or 37 
its derivatives, can be calculated anywhere within the boundaries of the data.  The Green’s 38 

function for the response of a thin elastic sheet to a point load at xo, yo( )  is simply 39 

 
φ
!r( ) = r2 ln r( )−1#$ %&  where  

!r = x − xo, y− yo( )  [Sandwell, 1987].  Wessel and Bercovici [1998] 40 

extended the method to include in-plane tension, which damps the undesirable overshoots of 41 
the elastic sheet.  In this case the Green’s function is slightly more complicated, i.e.,  42 

 φ
!r( ) = Ko pr( )+ ln pr( ) , where Ko  is the zero order, modified Bessel function of the second 43 

kind and p is related to the prescribed tension factor. 44 
Here we investigate a similar Green’s function approach for interpolation of 2-D vector 45 

data. This is not a new idea.  Haines et al., [1993, 2015] proposed using a 2-D elastic model 46 
to provide coupling between the two horizontal velocity components of GPS models.  The 47 
basic approach is similar to the biharmonic spline interpolation approach.  One imposes 48 
vector forces at the data locations.  These forces deform the elastic body, resulting in a vector 49 
deformation field.  The strengths of the force vectors are adjusted until velocities match the 50 
vector data.  Haines et al., [2015] used a finite element modeling approach where element 51 
nodes are placed at the data locations to compute the Green’s functions and then used a least-52 
squares approach to adjust the forces to match the data.  Here we replace the finite element 53 
computations with analytic Green’s functions for the in-plane response of a 2-D elastic body 54 
to in-plane forces.  This greatly simplifies the computations and allows for the analytic 55 
calculation of deformation gradients (i.e., the strain tensor).  Moreover, by adjusting 56 
Poisson’s ratio the strain field can be tuned to extremes such as incompressible (1.0), typical 57 
elastic (0.5) or even a value of -1 that basically removes the elastic coupling of vector 58 
interpolation.  59 

 60 
Green’s Functions 61 

We wish to calculate the 2-D displacement vector  
!u x, y( ) = u x, y( ) î + v x, y( ) ĵ  due to a 2-62 

D vector in-plane body force.  Haines et al., [2015] developed the quasi-static force balance 63 
equations in 2-D as 64 

 65 
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 67 

where ν  is Poisson’s ratio, µ is the shear modulus, and fx , fy( )  is the force vector.  The units 68 

are force per distance and forces are applied at a point using the 2-D delta function 69 

δ x( )δ y( ) .  This problem is most easily solved by taking the 2-D Fourier transform of (1).  70 

The transformed equations become 71 
 72 
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 74 
where kx  and ky are wavenumbers (1/wavelength). To determine the response from a point 75 

force we need to invert this set of equations and take the inverse 2-D Fourier transform of the 76 
result.  The matrix inverse is  77 
 78 
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 80 

where kr
2 = kx

2 + ky
2 .  Note that in the special case of a Poisson’s ratio of -1 the solution 81 

simplifies to  82 
 83 
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 85 
This corresponds to interpolation with no coupling between the two velocity components and 86 

the Green’s function is simply  φ
!r( ) = ln r .  Here, the two components of GPS velocities 87 

would be decoupled and interpolated separately. The general solution depends on three 88 
functions in equation 3: 89 
 90 

 

Q
!
k( ) = 2kr

2 − 1+ν( )kx2

kr
4 , P

!
k( ) = 2kr

2 − 1+ν( )ky2

kr
4 , W

!
k( ) = − 1+ν( )kxky

kr
4 .  (5) 91 

 92 
To obtain the space domain solution we will need to evaluate the 2-D inverse Fourier 93 
transform of the following four component functions: 94 
 95 

ℑ2
−1 1
kx
2 + ky

2

#

$
%
%

&

'
(
(
, ℑ2

−1 kx
2

kx
2 + ky

2( )2
#

$

%
%

&

'

(
(
, ℑ2

−1 ky
2

kx
2 + ky

2( )2
#

$

%
%

&

'

(
(
, ℑ2

−1 kxky
kx
2 + ky

2( )2
#

$

%
%

&

'

(
(
.  (6) 96 

 97 
The inverse transforms of these four functions are straightforward and yield 98 
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 101 
In the space domain the three Green’s functions given by (5) can be written as 102 
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 (8) 103 

We checked the Green’s functions by showing they solve the original differential equation 104 
(1). This was accomplished using the computer algebra capabilities in MATLAB. 105 
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A description of the numerical approach follows.  We wish to compute a smooth vector 106 

velocity field that matches a finite set of N  measured vectors  u
!ri( ),v !ri( ) , where  

!ri = xi , yi( )  107 

are the locations of the vectors.  This is accomplished by solving for a set of N  vector body 108 

forces fx
j , fy

j  that are applied at the locations of the velocity measurements. To determine the 109 

strength of the body forces we invert the following 2N  by 2N  linear system of equations: 110 
 111 

 

u !ri( )

v !ri( )

!

"

#
#
#

$

%

&
&
&
=

q !ri −
!rj( ) w !ri −

!rj( )

w !ri −
!rj( ) p !ri −

!rj( )

!

"

#
#
#
#

$

%

&
&
&
&

fx
j

fy
j

!

"

#
#
#

$

%

&
&
&

 (9) 112 

 113 
Finally, the vector velocity field can be computed at any location using 114 
 115 

 

u !r( ) = q !r − !rj( ) fxj +w
!r − !rj( ) fyj"# $%

j=1

N

∑

v !r( ) = w !r − !rj( ) fxj + p
!r − !rj( ) fyj"# $%

j=1

N

∑
. (10) 116 

 117 
We have implemented this approach as a new module gpsgridder to the Generic Mapping 118 
Tools (GMT) [Wessel et al., 2013].  The 2N  by 2N  matrix in equation 9 can be solved in a 119 
variety of ways.  For the gpsgridder implementation we use the singular value 120 
decomposition algorithm implemented in LAPACK.  The user can decide to keep all the 121 
singular values (solved by LU decomposition) or a subset which results in some smoothing 122 
of the solution.  Starting at GMT release 5.3.0, the new module can be found in the 123 
supplemental “potential” package. 124 
 125 
Application to GPS data 126 

The 2-D velocity field derived from surface geodetic measurements is an important 127 
quantity used to measure strain localization above locked faults as well as strain 128 
accumulation in the interiors of crustal blocks.  Faults that have a shallow locking will 129 
require spatial resolution of 2-3 km [Smith and Sandwell, 2003]. However, the typical 130 
spacing of GPS points in California is ~9 km [Wei et al., 2010] so the strain-rate field is not 131 
completely resolved by the GPS data. Currently there are several approaches to mapping 132 
strain rate from vector GPS data.  The most accurate approaches make assumptions about the 133 
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locations, slip rates, and locking depths of the major faults [Hearn et al., 2010].  These are 134 
typically based on block models.  The models sometimes have a uniform strain in the block 135 
interiors to absorb the residual velocity not captured by the locked dislocations [McCaffrey et 136 
al., 2013].  Another approach is to make no assumptions about the fault structure and simply 137 
do a biharmonic interpolation of each velocity component independently [Hackl et al., 138 
2009].  However this leads to suboptimal results.  A distance-weighted, least-squares 139 
approach, recently developed by Shen et al., [2015], provides an improved strain-rate map 140 
without using a priori information about fault locations and orientations.  The interpolation 141 
approach developed in Haines et al., [1993, 2015] provides coupling between the two 142 
horizontal velocity components, resulting in a more accurate interpolation of the velocity and 143 
strain field. 144 

To illustrate the benefits of the coupled interpolation in relation to the biharmonic spline 145 
approach we begin with a realistic model for the vector velocity field for a large region 146 
surrounding the San Andreas Fault system [Tong et al., 2013; 2014].  The velocity model is 147 
based on 1981 GPS velocity vectors as well as higher spatial resolution line-of-sight velocity 148 
measurements from ALOS-1 radar interferometry.  The slip rates and locking depths along 149 
41 fault segments are adjusted to match all the velocity data (Figure 1).  This model results in 150 
north and east grids of velocity at 1 km spacing. A prominent feature of the model is a 151 
creeping section of the San Andreas Fault system where there is an abrupt change in velocity 152 
across the fault (Figure 1 – green box).  We sample the two components of velocity at 1768 153 
unique locations (Figure 1 – red dots) resulting in 3536 observations.  We then use the 154 
biharmonic and coupled methods to interpolate over the areas of adequate data coverage and 155 
compare the interpolated velocity and strain rate grids with the “known” velocity and strain 156 
rates.  The biharmonic and coupled approaches are implemented in GMT as greenspline and 157 
gpsgridder, respectively.  Each program has a number of parameters that can be adjusted to 158 
achieve an optimal fit.  The greenspline approach achieves the best fit for zero tension factor, 159 
which corresponds to biharmonic spline interpolation [Sandwell, 1984].  The gpsgridder 160 
approach has two main parameter adjustments.  The first is a minimum radius factor that 161 
needs to be added to all radial differences in equations (9) and (10) to keep the Green’s 162 
functions from becoming singular.  After some trial and error, we found that a minimum 163 
radius of 8 km provides the best overall fit to the data; this also roughly corresponds to the 164 
mean spacing of the GPS points of ~9 km [Wei et al., 2010].  The second parameter is the 165 
value of Poisson’s ratio used for the interpolation. We tested a range from -1 (fully 166 
decoupled) to 0.5 (elastic) to 1.0 (incompressible). The results, provided in Table 1, show the 167 
rms misfit of the interpolated velocity and strain rate grids with respect to the starting model. 168 
We also performed the statistics for the interpolation over just the creeping section (bold in 169 
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Table 1). The rms misfits for this creeping area are larger than the rms misfits for the entire 170 
area although the optimal minimum radius is also 8 km.   171 

122˚W 121˚W 120˚W 119˚W 118˚W 117˚W 116˚W 115˚W

33˚N

34˚N

35˚N

36˚N

37˚N

38˚N

50 mm/yr

 172 
Figure 1. Velocity vectors over a large area surrounding the San Andreas Fault system based 173 
on an earthquake cycle model [Tong et al., 2013; 2014].  The total change in velocity across 174 
the fault system is 45 mm/yr. The red dots show locations of the GPS velocity measurements 175 
used to construct this model.  We sample the model at these locations and then use various 176 
interpolation methods to re-estimate the model.  The green box shows the sharp velocity 177 
change across the creeping section.  These results are highlighted in Figure 2. 178 

 179 
180 
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Table 1. 181 
model Poisson’s 

ratio 
minimum 

radius 
(km) 

rms misfit 
u  

mm/yr 
v  

mm/yr 
exx  

10-8/yr 
exy  

10-8/yr 
eyy  

10-8/yr 
biharmonic - - 0.229 0.279 3.89 1.99 4.16 

(un)coupled -1.0 8 0.186 0.223 3.48 1.99 3.83 

coupled .0 8 0.165 0.190 2.90 1.82 3.12 

“ .5 8 0.162 0.171 2.66 1.82 2.81 

“ 1.0 8 0.863 0.894 4.91 4.29 4.89 

“ .5 0 - - - - - 

“ .5 2 0.281/0.710 0.306/0.903 3.77 2.38 3.87 

“ .5 4 0.215/0.509 0.232/0.637 3.11 2.08 3.22 

“ .5 8 0.162/0.432 0.171/0.450 2.66 1.82 2.81 

“ .5 12 0.182/0.583 0.188/0.577 3.05 2.16 3.21 

Optimal model parameters are highlighted in blue.  Bold are rms misfit for just the creeping 182 
section shown in Figure 2. 183 
 184 

The results for three of the most interesting cases are shown in Figure 2 where we have 185 
zoomed in on the creeping section of the fault where the interpolation is most challenging.  186 
Figure 2a shows velocity vectors from the Tong et al., [2014] model.  The vectors are 187 
parallel to the fault and have relatively uniform length along the fault, although the direction 188 
of the vectors reverses abruptly at the fault.  The first example (Figure 2b) corresponds to the 189 
biharmonic interpolation method where the east and north components of the vector velocity 190 
are interpolated independently. The residual velocity field shows large spatial scale 191 
variations in strength that results from the overshoot of the biharmonic spline. This 192 
scalloping results in a relatively large misfit for both the velocity and strain rate components.  193 
The second interpolation example (Figure 2c) corresponds to interpolation where the 194 
Poisson’s ratio is -1.0.  This parameter selection results in no coupling between the east and 195 
north components and the residuals are similar to the biharmonic case although somewhat 196 
smaller.  The last example (Figure 2d) is the coupled interpolation with a Poisson’s ratio of 197 
0.5.  The residuals are significantly smaller and show more of a random orientation reflecting 198 
the coupling between the two velocity components.  This case also has a much smaller misfit 199 
in both velocity and strain rate than the two uncoupled cases. 200 

 201 
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 202 
Figure 2. Velocity vectors across the creeping section of the San Andreas Fault. (a) Original 203 
Tong et al., [2014] model has an rms variation of 10.6 mm/yr. (b) Residual model based on 204 
biharmonic spline interpolation has an rms error of 0.94 mm/yr. (c) Residual model based on 205 
the coupled interpolation with a Poisson’s ratio of -1 (no coupling between east and north 206 
velocity) has an rms error of 0.57 mm/yr.  (d) Residual model based on the coupled 207 
interpolation with a Poisson’s ratio of 0.5 has an rms error of 0.44 mm/yr. 208 
 209 

One of the main applications of this method is to calculate a grid of strain rate from 210 
randomly distributed vector velocity measurements.  Our analysis provides an estimate of the 211 
type of errors to expect in the second invariant of the strain rate when it is undersampled 212 
using the GPS station distribution provided in Figure 1.  The original velocity model results 213 
in the strain rates shown in Figure 3a where there are areas of very high strain rate above 214 
faults that are creeping or have shallow locking depth (e.g. red areas > 500 nanostrain/yr).  215 
The model also has very low strain rate in the interiors of the blocks (e.g. blue areas < 10 216 
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nanostrain/yr). The difference between the original and recovered strain rate tensor converted 217 
to second invariant are shown in Figure 3b.  Errors are small (< 3 nanostrain/yr) in areas that 218 
have adequate GPS sampling (white dots) and where the model strain rate is also small.  219 
Errors are large (100 – 1000 nanostrain/yr) in areas where the model strain rate is large and 220 
the GPS sampling is inadequate.  To illustrate a couple of cases, the red arrow points to a 221 
region of high strain rate where there is also dense GPS coverage.  The strain rate error in 222 
this area is quite low because of the good GPS coverage.  In contrast the blue arrow points to 223 
a region of high strain rate where there is sparse GPS coverage.  The strain rate error in this 224 
area is quite high because of the poor GPS coverage.  Indeed this interpolation tool could be 225 
used, along with a reasonable strain rate grid, to estimate the improvement in strain rate 226 
accuracy for a prescribed GPS or InSAR data coverage. 227 

 228 
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 229 

Figure 3 (a) Second invariant of 2-D strain tensor ε II = εxx
2 +εyy

2 +2εxy
2( )1/2 derived from the 230 

Tong et al., [2014] velocity grid. (b) Second invariant of the difference between the model 231 
strain rate tensor and the strain rate tensor derived from the gpsgridder program with a 232 
Poisson ratio of 0.5. 233 
 234 
Discussion and Conclusions 235 

While this method is not new, our analytic approach provides some insight into the 236 
behavior of the coupled interpolation for a wide range of Poisson’s ratio.  As discussed in 237 
Haines et al., [1993, 2015] this approach provides improved interpolation of sparse vector 238 
data when the physics of the deforming material follows elasticity equations.  There are other 239 
attributes of this approach that have not been fully discussed in the paper although they will 240 
be important for interpolation of noisy data.  The first is the inversion of the set of linear 241 
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equations in (9) will be numerically unstable if the ratio of the largest to smallest spacing of 242 
vector positions becomes too great.  The gpsgridder program automatically eliminates 243 
duplicate locations that would make the inversion exactly singular.  In addition, the 244 
blockmedian program can be used to combine nearby measurements. The second obvious 245 
attribute not discussed above is that uncertainties are easily added to this formulation by 246 
dividing both sides of equation (9) by the standard deviations of the data.  This extension is 247 
implemented in the gpsgridder program via the –C, –W options where the rms misfit of the 248 
model to the noisy data can be adjusted by reducing the number of eigenvalues to use for the 249 
singular value decomposition of the inversion.  In the case above there were 3563 250 
observations but tests where the number of eigenvalues was reduced to 2400 provided almost 251 
identical uncertainties. We have found that an adequate fit to real GPS data is obtained when 252 
the number of eigenvalues is ¼ the number of data points.  The user will need to experiment 253 
with these paramters to find acceptable solutions to fitting the data within the uncertainties. 254 

One other important issue not discussed here is that this approach can only interpolate 255 
thousands and not millions of data because of finite computer memory, computer precision 256 
and computer time.  A practical solution to dealing with very large data sets is to assemble 257 
the data into finite size rectangular grids having 50% overlap.  Data within each full subgrid 258 
are used to solve for the vector forces but the vector model velocity is only computed in the 259 
interior of each subgrid [e.g., Sandwell, 1987].  One final issue is that a variety of data types 260 
such as GPS vectors and 2-D tensor strain measurements could be combined in the inversion.  261 
This would require an extension of (9) to include analytical derivatives of Green functions, 262 
which are messy but not difficult.  263 

We have implemented this method in both GMT and MATLAB and provide example data 264 
sets and programming parameters at the following ftp site 265 
(ftp://topex.ucsd.edu/pub/sandwell/strain/gpsgridder_tests.tar) 266 
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