
Optimal Interpolation of Spatially Discretized Geodetic Data

by Zheng-Kang Shen,* Min Wang, Yuehua Zeng, and Fan Wang

Abstract We present an algorithm to calculate horizontal strains (or strain rates)
through interpolation of geodetically derived displacements (or velocities). This is an
underdetermined inverse problem to derive smoothly distributed strains (or strain rates)
using spatially discretized geodetic observations. A priori information, in the form of
weighted smoothing, is critical to facilitate the solution. At a given site, the horizontal
displacement (or velocity) field in its vicinity is approximated by a bilinear function and
represented by rigid block translation, rotation, and strains (or their rates). The weighted
displacement (or velocity) data in the neighborhood are used to estimate the field param-
eters through a least-squares inversion procedure. Optimal weightings are prescribed for
the neighboring data, based on their distances to the interpolation site and their spatial
coverage. Nonelastic strains resulted from surface fault rupture and creep may also be
excluded from the solution. We apply this method to the Southern California Earthquake
Center Crustal Motion Map version 4.0 velocity field and derive the strain-rate field in
southern California. Our result shows that (1) distance-dependent weighting can be op-
timally achieved by employing either a Gaussian or quadratic decay function, with the
former offering a slightly sharper result than the latter. (2) Spatially dependent weighting
is important to improve the interpolation, and can be done by invoking either an azimuthal
weighting or a Voronoi cell areal weighting function. (3) The strain-rate pattern in
southern California is dominated by dextral shear of the San Andreas fault (SAF) sys-
tem, and the secondary faults surrounding the Big Bend of the SAF strike at oblique
angles with respect to the maximum shear direction, suggesting that tectonic defor-
mation field on and off the SAF is dominated by mechanic processes of the SAF.

Introduction

Geophysical studies frequently require estimating crustal
strains or strain rates from discrete geodetic measurements.
The data can be angle changes between stations, baseline line
length changes, and/or station displacements for horizontal
strain estimates. Strain rates are estimated when the changes
are divided by the time span during which the changes take
place. In the following text, we will use the term strain, with
the knowledge that this word is interchangeable with the term
strain rate, as the latter is merely a time derivative of the for-
mer, and all the methods and techniques discussed here can be
equally applied.

A variety of methods have been developed to model
strains using geodetic data. One group of such methods di-
vides a region under investigation into subnetworks, and uses
the data within each subnetwork to estimate mean strains in-
side the subnetwork (e.g., Frank, 1966; Prescott, 1976; Brun-
ner et al., 1981). However, these methods usually yield
discontinuous strain estimates at the subnetwork boundaries.
Such discontinuities are artifacts caused by abrupt changes

of data input for model evaluation across the subnetwork
boundaries.

To tackle the aforementioned problem, a school of meth-
ods were developed using a continuous modeling approach
(e.g., El-Fiky et al., 1997; El-Fiky and Kato, 1999). These
methods usually estimate the global variance and covariance
of the displacements first, and then use the variance and
covariance as a spatial weighting function to interpolate dis-
crete displacements into a continuous field. The strains are
derived as spatial derivatives of the continuous displacement
field. These methods basically adopt the concepts of geosta-
tistics (Matheron, 1970; Wackernagel, 1995), and one of such
applications is the Kriging technique (Srivastava and Isaaks,
1989), commonly used for optimal interpolation of a discrete
scalar field. These methods provide better interpolation of the
displacement field than the early subnetwork method, but
they are valid only with the assumption that the deformation
field is homogeneous and isotropic. A homogeneous field
means that it has a constant mean and its autocovariances
depend only on the distance between points. The field is iso-
tropic if the autocovariances are invariant under rotation. Un-
fortunately, these two conditions are often not met in real
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world crustal deformation. A simple example is for a velocity
field caused by strike-slip dislocation across a vertical fault
beneath a locking depth; the mean surface velocity field
under the circumstance would change across the fault boun-
dary, and the autocovariances would be a function of the
strike direction of the fault.

Another approach of interpolating the displacement field
is to fit it by a spline function (e.g., Sandwell, 1987; Haines and
Holt, 1993). Methods developed under such an algorithm have
no assumption of homogeneity and isotropy for the displace-
ment field. The algorithm usually predivides the region into a
grid, and fit the data within the grid using spline functions. If
the degree of spline function is predetermined, spatial resolu-
tion for the grid is then fixed (e.g., Holt et al., 2000; Kreemer
et al., 2003). An alternative approach is to allow variation of
the degree of spline function (or degree of tension), which is
determined by users based on the goodness of data fitting (Mi-
tášová and Mitáš, 1993; Wessel and Bercovici, 1998; Wessel
and Becker, 2008). This approach is more flexible than the
previous one and may provide a reasonable fitting to the data
globally. However, if the spatial distribution of the data is
heterogeneous it may not provide a good representation of
the regional deformation field.

All of the methods mentioned above are based primarily
on geometric information only. Another approach of the prob-
lem is to combine geometric information with physics-based
models, such as incorporating information on fault location
and faulting style and earthquake focal mechanism (e.g.,
Kreemer et al., 2014), and utilizing dislocation-induced defor-
mation in continuum media for model constraints (e.g., Noda
and Matsu’ura, 2010). Strain-rate derivation and result com-
parison have been a focus at a couple of Earthscope and South-
ern California Earthquake Center (SCEC) meetings or
workshops in recent years, variations of models and results
based on the algorithms mentioned above were presented (e.g.,
Hearn et al., 2010), and the debate about algorithms of strain-
rate estimation continues. In this study, we focus on a method
of geometric inversion without invoking any physics model,
except for one application excluding shallow fault rupture or
creeping effects from the strain inversion. A previous version
of the algorithmwas applied to California strain-rate estimation
and the result was provided to the exercise of strain-rate com-
parison organized by SCEC, but this update has incorporated
significant advancements over the previous version on spatial
data weighting and resolution (for the computer code and an
application example, see Data and Resources).

Method

Shen et al. (1996) introduced an algorithm tomodel strains
as continuous functions using a modified least-squares method.
This algorithm is iterated over a 2D space with arbitrarily small
increments to warrant solution continuity. At each interpolation
coordinateR, the horizontal velocity field is expanded to its first-
order derivatives, that is, to be represented by a model of rigid
block motion (translation and rotation) and a uniform strain

field. The displacement data are then linked to the deformation
parameters by a linear relationship:

d � Am� ϵ; �1�

in which d is the data vector,m is the vector for the unknowns of
translation, rotation, and strain, A is the partial derivative ma-
trix, and ϵ is the error vector. For the case of horizontal strain
only, m � �Ux Uy ω τxx τxy τyy�T in a Cartesian coordinate
system, Ux and Uy are the translation components in x and y
directions, respectively, ω is the rotation, and τxx, τxy, and τyy
are the horizontal strain components respectively. Equation (1)
can also be written as
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in which Vxi and Vyi are the displacement components of the
ith site at location ri. Δxi and Δyi are the vector components
of ΔRi � ri − R. Let ϵ ∼ N�0; C�, and C be the covariance
matrix of the velocity data, a least-squares solution can be ob-
tained in the form of

m � �ATC−1A�−1ATC−1d: �3�

Without modification of the data and/or their errors, the solution
above would be for the mean strain field of the entire region. In
Shen et al. (1996) and also in this study, the data are reweighted
to give more weight to the sites located closer to site R. In Shen
et al. (1996), a uniformGaussian spatial weighting function was
defined. In this study, we introduce the spatial weighting func-
tion in various forms, with their smoothing parameters optimally
determined based on the in situ data strength.

We reconstruct the covariance matrix C by multiplying a
weighting function to each of its diagonal terms Ci, and the
weighting is given as Ci←CiG−1

i . The weighting function
Gi � Li × Zi, in which Li and Zi are functions of distance
and spatial coverage dependent, respectively. For distance-
dependent weighting, Li is assumed to be in the form of
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Li � exp�−ΔR2
i =D

2� or �4a�

Li � 1=�1� ΔR2
i =D

2� ; �4b�
in which a spatial smoothing parameterD is introduced. Both
functions allow reduced weight of the data as distance in-
creases. The difference between the two is that the Gaussian
function reduces the weight at a faster pace with distance ΔRi

than that of the quadratic function. Depending on the data qual-
ity, the Gaussian function can offer a relatively finer resolution
of the interpolation result if the data are clean and smooth. On
the other hand, if the data are somewhat heterogeneous, the
quadratic function is relatively more conservative and provides
a more smoothed solution, especially for regions in which data
are sparsely distributed. In addition, any data points with dis-
tance weighting function L less than a threshold value L0 will
be excluded. For L0 � 0:01, it means a data selection radius of
R0 � 2:15D for Gaussian weighting and R0 � 10D for quad-
ratic weighting, respectively. Because the Lweighting function
is inversely multiplied to data variances, a 0.01 cutoff threshold
on variance is equivalent to 0.1 weighting cutoff on data. That
is, sites with less than 0.1 weights will be omitted.

Shen et al. (2007) introduced a method to optimally de-
termine the smoothing distance D. At each evaluation coor-
dinate, solutions with varying values of D were attempted,
and a trade-off curve was acquired betweenW, the sum of the
reweighting coefficients, and σ, the uncertainty of the strain-
rate estimates (σ decreases as W increases, and vice versa).
An optimal value ofDwould be selected in the middle of this
trade-off curve. This approach indeed improved quality of
the interpolation, but it still has a certain degree of arbitrari-
ness because it is not certain precisely where along the curve
the right spot is to pick the optimal value. In our current al-
gorithm, we choose to leave the option of optimal value se-
lection to the users. Let W � ΣiGi, the total reweighting
coefficients of the data, and letWt be the threshold ofW. For
a given Wt, the smoothing constant D is determined by
W�D� � Wt. It should be noted that W is a function of the
interpolation coordinate, therefore for the same Wt assigned,
D varies spatially based on the in situ data strength; that is, the
denser the local data array is, the smaller is D, and vice versa.

The Zi function is important to compensate for the often
unevenly distributed data points spatially and takes an option
of two functional forms. One functional form measures the
azimuth span of the site with respect to each of the data
points selected in the previous step. As shown in Figure 1,
at the interpolation site R, the azimuth span θi for data point i
is measured between two strike directions of the i − 1 and
i� 1 data points in its neighborhood, ranked in counter-
clockwise order. The azimuthal weighting function for the
ith data point is then attributed as

Zi � nθi=4π; �5a�
in which n is the total number of data points selected.

An alternative way to assign spatially dependent weight-
ing is through Voronoi cell (Fortune, 1992). The studied re-

gion is first meshed into Delaunay triangles based on the
locations of the data points. These triangles are then further
meshed into Voronoi cells by connecting the central division
lines of the sides of Delaunay triangles, with one geodetic
site located within each cell. The surface areas of these Vor-
onoi cells are then used as reweighting coefficients

Zi � nSi=
Xn
k�1

Sk; �5b�

in which Si is the surface area of the Voronoi cell for the ith
data point selected, and n is the total number of data points
selected. Voronoi cell weighting was also used by Hsu et al.
(2009); the major difference between their method and ours
is that they imposed the weighting on data errors and we ap-
ply them on data variances. Comparing the azimuthal span
and Voronoi cell weighting approaches, the former scales the
weights based on the station azimuthal coverage only, where-
as the latter measures the weights based on not only azimuthal
but also radial range coverage of a station. Thus, they are vir-
tually 1D versus 2D in their weighting factor determination.

Nonelastic deformation takes place if a fault is not
locked interseismically in the brittle part of the crust due to
surface rupture or creeping, causing discontinuous deforma-
tion across the fault. If one prefers to map elastic strain ac-
cumulation only, such nonelastic strain due to slip across a
known fault needs to be removed. We therefore develop an
algorithm to exclude the fault rupture or creeping effect,
which takes place across a fault plane in the upper crust and
results in little or no elastic strain accumulation. To do so, we
set up a barrier along the rupture or creeping section of the
fault, to screen out the data from the other side of the fault
being used in interpolation calculation. At a given interpola-

Figure 1. The azimuth span θi of geodetic data point ri relative
to interpolation site R. Triangles denote locations of geodetic data
points near the interpolation site R.
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tion coordinate, azimuthal directions of all the data points are
evaluated. If a data point is hiding behind the fault barrier, or in
other words, its azimuthal direction is within the azimuthal
span of the barrier’s two endpoints, that data point is removed
from calculation. See Figure 2 for geometric illustration.

Method Application to Global Positioning System
Velocity Field in Southern California

SCEC produced four versions of secular crustal motion
velocity solution for southern California (Shen et al., 1997,
2011). These solutions provided geodetic station secular
velocities, coseismic offsets, and postseismic displacements,
and were derived from a combination of geodetic data includ-
ing electronic distance meter (EDM), very long baseline inter-
ferometry (VLBI), and Global Positioning System (GPS). The
secular velocity field of the latest release, the SCEC Crustal
MotionMap version 4.0 (CMM4) (Shen et al., 2011) is shown
in Figure 3, which includes 1092 station velocities covering
a region of 32°–38° N, 114°–123° W for southern California,
western Nevada, and northern Mexico (for the velocity data-
set, see Data and Resources).

As described above, we use our code velocity interpola-
tion for strain rate to interpolate the CMM4 velocity solution.
To avoid redundant use of data, EDM andVLBI velocities tied
to GPS at collocated sites are removed (Fig. 3). Four sets of
solutions are produced using different combinations of data
weighting functions, and the results are described below.

The first set of solutions is obtained employing the Gaus-
sian function for distance weighting and Voronoi cell for areal
weighting, respectively, and the net weighting threshold is set
to be Wt � 6, 12, 24, and 48, respectively. The mesh of the
Voronoi cells is shown in Figure 4. For the sites located at
the vertices of the network exterior, their Voronoi cells often
have strange shapes, and the cell areas are usually not ad-
equate for areal weighting of the data. A different scheme is
then employed to assign their areal weighting, in the form

of πr2d, in which rd is the mean of the distances between the
interpolation site and six closest neighborhood data points.
For some data points near the hull boundaries, their Voronoi
cells may yield huge areas, resulting in unreasonably large
weights. Their areal weightings are then reassigned to be
πr2d if their Voronoi cell areas are greater than 2πr2d. Shapes
of these circular areas for the vertices and some boundary

Figure 2. The data exclusion area near a creeping or ruptured
fault. The thick black line denotes the creeping or rupture segment of
a fault. R is the strain interpolation site. The gray area behind the creep-
ing or rupture segment of the fault is the region where the geodetic data
points are excluded from participating in the strain estimation.

Figure 3. The secular velocity field of Southern California
Earthquake Center (SCEC) Crustal Motion Map version 4.0
(CMM4). All the station velocities are referenced to the stable North
America plate. Error ellipses represent 95% confidence.

Figure 4. Voronoi cell meshing based on CMM4 network sta-
tion distribution. For sites located at the vertices of the network
exterior, their Voronoi cell areal weightings are replaced by circular
areal weightings.
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sites are also plotted in Figure 4. Figure 5 shows the inter-
polation result obtained from one of the first set of solu-
tions, with Wt � 24, including the principal strain rates,
second invariant of horizontal strain rates, rotation rates,
smoothing constant D, and shear-strain-rate uncertainty σ.
The second invariant of horizontal strain rates is defined as

τ2inv �
������������������������������
τ2e � τ2n � 2τ2en

q
; �6�

in which τe, τn, and τen are three strain-rate components in a
north and east Cartesian coordinate system. To demonstrate

the effect of selection ofWt, we plot the cases ofWt � 6, 12,
and 48 in Figure 6, which shows clearly that as Wt increases,
D also increases, and the strain rates become more smoothed,
at the expense of less sharpness of the strain-rate pattern at
certain regions with dense data population.

The second set of solutions is obtained using the Gaus-
sian function for distance weighting and azimuthal span for
spatial weighting, respectively. The weighting threshold Wt

is chosen as 24, and the result of the second invariant of the
strain rates is shown in Figure 7a. Comparing to the result
obtained using Voronoi cell weighting (Fig. 5a for solution

Figure 5. Interpolation result using Gaussian or Voronoi cell weighting functions with the net weighting threshold set asWt � 24. (a) Second
invariant of strain rates (background) and principal strain rates (arrow pairs). (b) Rotation rate. (c) Smoothing constantD. (d) Formal uncertainty of
maximum shear-strain rate σ. CaSAF, Carrizo San Andreas fault; CoSAF, Coachella San Andreas fault; CrSAF, Creeping segment of San Andreas
fault; MoSAF, Mojave San Andreas fault; SBSAF, San Bernardino San Andreas fault; SJF, San Jacinto fault; GF, Garlock fault; MSZ, Mojave Shear
Zone; BPF, Big Pine fault; ORF, Oak Ridge fault; ECSZ, East California Shear Zone; LAB, Los Angeles basin; VB, Ventura basin.
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obtained using the same weighting threshold), the one using
azimuthal weighting is quite similar, except that the patterns
at some areas are a bit less smoothed.

The third and fourth sets of solutions are obtained using
quadratic functions for distance weighting, and Voronoi cell
and azimuthal span for spatial weighting, respectively. To
maintain the same sharpness of strain-rate pattern along the
San Andreas fault (SAF), the total weighting threshold needs
to be set as six for the quadratic or azimuthal span and three
for the quadratic or Voronoi cell-weighting models respec-
tively, and their results of second invariant of strain rates are
shown in Figure 7b and 7c, respectively. Again the strain pat-
terns are quite similar to the previous two models, but are
not as smooth as that of the Gaussian or Voronoi cell model
overall. Increased total weighting threshold results in more

smoothed strain pattern, at the expense of less sharpness
across the major fault zones.

A section of the SAF between Parkfield and San Juan
Bautista in central California is known to creep almost freely
throughout the brittle layer of the fault (Jolivet et al., 2015).
We implement an algorithm of creeping effect exclusion on
this section of the fault, and calculate the strain rates using
the Gaussian and Voronoi cell weighting with Wt � 24. The
result is demonstrated in Figure 8, which shows that the high
strain-rate concentration that appeared in previous figures
around the section is gone. However, the high strain-rate con-
centrations around the two ends of the creeping section are
still there reflecting relatively high strain rates around Park-
field and San Juan Bautista due to local partial creeping across
the SAF.

Figure 6. The second invariant of strain rates (background) and principal strain rates using Gaussian and Voronoi cell weighting func-
tions with the net weighting thresholds set as Wt � 6, 12, and 48 for (a), (b), and (c), respectively.
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Discussions

Optimal Model Determination

In the section above, we described the common features
and differences between different weighting schemes, and
their abilities in interpolating regional GPS data for strain rate
and rotation rate calculation with different weighting thresh-
olds. However, with a given weighting scheme we need to
find an optimal net weighting threshold Wt. One way to do
so is through examination of differential strain-rate pattern of
two strain-rate fields derived using different Wt.

Figure 9 shows three differential strain-rate fields of (a)
�Wt � 24� − �Wt � 48�, (b) �Wt � 12� − �Wt � 24�, and

(c) �Wt � 6� − �Wt � 12� for the case of Gaussian and Vor-
onoi cell weighting. The differential strain-rate field in Fig-
ure 9a is quite smooth with most of the strain-rate differences
occurred along the SAF, particularly around the creeping sec-
tion of the SAF and the Brawley Seismic Zone. Minor strain-
rate differences can also be seen along faults in the Mojave
Shear Zone and in the Transverse ranges. The pattern suggests
that asWt decreases from 48 to 24, the strain-rate model picks
up more tectonic strain signals along the active faults. However,
asWt decreases from 24 to 12 (Fig. 9b), the differential strain-
rate pattern starts to deteriorate somewhat comparing to that in
Figure 9a, but still shows that most of the incremental strains
are aligned with the known faults, indicating that additional

Figure 7. Interpolation result using different weighting functions. (a) Gaussian and azimuthal weighting andWt � 24; (b) quadratic and
azimuthal weighting andWt � 6; (c) quadratic and voronoi cell weighting andWt � 3. The background shows the second invariant of strain
rates and the arrow pairs are the principal strain rates, respectively.
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tectonic strain signals are resolved. Noises are also shown up
off-fault, and become quite significant at some places. For
model of Wt � 6, the differential strain-rate pattern in Fig-
ure 9c deteriorates further comparing to the pattern in Figure 9b;
although additional tectonic strains may still be detected along
the creeping section of the SAF and the Brawley Seismic Zone,
the noises start to take over the gain in the strain-rate signals
along most other parts of the fault system. Balancing the trade-
off between the resolution and robustness, we choose model
Wt � 24 as the optimal model for characterization of the
strain-rate field in southern California. Model Wt � 12 can
also be an option if more resolution is preferred at the ex-
pense of slight increase of noise level.

We perform similar analysis for the solutions derived
using the other three data weighting algorithms, and deter-
mine that the optimal solutions are Wt � 24 for Gaussian
and azimuthal, Wt � 6 for quadratic and voronoi cell, and
Wt � 3 for quadratic and azimuthal weightings, respectively.
Depending on the preferences, room is still available for pick-
ing in the parameter range for the most optimal solutions, but
its range is limited and centered on the optimal parameter we
presented previously.

Assessment of Solution Uncertainties and Resolution

Several parameters are important in assessing the quality
of strain-rate estimation. Figure 5d plots the formal uncertainty
of shear-strain rate, which is deduced in the least-squares esti-
mation. However, it is obvious from the figure that the formal
uncertainty cannot be directly used, in a classic sense, to mea-
sure the quality of the result. As shown in the figure, contrary to
intuition, the uncertainties are smaller in regions in which the

data distributions are more sparse. This is because such un-
certainties are measures of averaged strain rates, which are
strongly affected by the degree of smoothing imposed on the
data. As the degree of smoothing varies spatially, assessment of
the spatial distribution of the smoothing range becomes a cru-
cial part for the evaluation of real strain-rate uncertainties.
Figure 5c shows the Gaussian smoothing coefficient D used
in reweighting, which is a measure of the range of smoothing
involved in the calculation. It can be regarded as a measure of
the in situ data strength because it is reciprocally proportional
to data density, and reflects spatial resolution of the result. For
the assessment of quality of strain-rate interpolation result, it is
more practical and useful to assess the relative resolution, as
shown in Figure 5c, than to examine the formal uncertainty.
This is because a strain-rate estimate at a given site, if averaged
over a large area, cannot be taken as an accurate estimate for
the site due to the lack of spatial constraints from data, no mat-
ter how small the formal uncertainty may become.

Tectonic Strains in Southern California

The strain-rate result we obtain clearly delineates the major
faults in southern California, such as the SAF, San Jacinto fault
(SJF), Imperial fault, Eastern California Shear Zone (ECSZ), Gar-
lock fault (GF), and Oak Ridge fault (ORF), and also appears to
be high around the Los Angeles and Ventura basins. The maxi-
mum shear-strain rate of ∼7 × 10−7 strain=yr across the creep-
ing section of the SAF is the highest in the region; however the
number is not indicative of elastic strain accumulation, but dis-
continuous offsets across the fault (Fig. 5). The second highest
shear-strain rate of up to 4 × 10−7 strain=yr is across the Braw-
ley Seismic Zone and the Imperial fault. Surface creeping was
found across the Imperial fault (Lyons et al., 2002). The Brawley
Seismic Zone is geothermally active, and the seismogenic sec-
tion of the fault is relatively shallow and may only be partially
locked (Allam and Ben-Zion, 2012). The high strain rate across
the Brawley Seismic Zone and the Imperial fault is therefore
only partially elastic within the upper crust. The shear-strain
rates are ∼3 × 10−7 strain=yr across the Carrizo and Coachella
sections of the SAF and the SJF and ∼2 × 10−7 strain=yr across
the Mojave and San Bernardino sections of the SAF. The north–
south convergent strain rates are up to 1–2 × 10−7 strain=yr
across the ORF and Santa Monica fault and within the Los
Angeles and Ventura basins. About 2 × 10−7 strain=yr is de-
tected across the southern Mojave Shear Zone, which is per-
haps partially due to postseismic seismic deformation of the
1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earth-
quakes (Shen et al., 2011). The shear-strain rate across the
GF and the section of the ECSZ north of the GF are
0:5–1 × 10−7 strain=yr. These results are consistent with pre-
vious findings by Jackson et al. (1997), Shen-Tu et al. (1999),
andWard (1998), but with better resolution. For example, strain
concentrations around the southern SAF and the SJF can be dis-
tinctively identified, instead of merging together (Fig. 5a).

Some of the recent studies also achieved sharp lineation
patterns along these faults by imposing a priori constraints

Figure 8. The same as the strain-rate result shown in Figure 5a
except that the shallow creep effect associated with the SAF in cen-
tral California is removed. The thick white line denotes the creeping
section of the SAF.
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such as wrench-style dislocation across the faults or align-
ment of maximum shear-strain orientation with the fault
strike direction (e.g., Kreemer et al., 2012, 2014). Such as-
sumptions are effective in highlighting the strains across the
faults for a region where tectonics is well understood, but
may not always be valid in the real world. Our method does
not require such knowledge.

Figure 10 shows the amplitudes and orientations of maxi-
mum strain rates (with Gaussian and Voronoi cell weighting,
Wt � 24), and how that coincides with the strikes of major
faults in southern California. This result also provides an in-
dependent validation check for the aforementioned assump-
tion that the maximum shear strains are aligned with strike-
slip fault orientations. From the figure, it can be seen that the

strike directions of the dextral maximum shear coincides re-
markably well with most of the northwest-striking strike-slip
fault segments, such as the Carrizo and Coachella segments of
the SAF, Imperial fault, and SJF. Even in the Big Bend of the
SAF region, the strike direction of the dextral maximum shear
aligns well with the Mojave segment of the SAF. The regions
where the dextral maximum shear-strain rates deviate signifi-
cantly from the local strike-slip fault orientations are at the San
Bernardino, Mission Creek, and Tejon Pass segments of the
SAF, and the Mojave Shear Zone, where the dextral maximum
shear-strain rates orient clockwise relative to the local fault
strike directions. The sinistral maximum shear-strain rates
orient in general counterclockwise from the sinistral slip faults
such as the GF and Big Pine fault (BPF). These results suggest

Figure 9. The differential strain-rate fields of Gaussian or Voronoi cell weighting and different net weighting threshold Wt. (a)
�Wt � 24� − �Wt � 48�; (b) �Wt � 12� − �Wt � 24�; and (c) �Wt � 6� − �Wt � 12�. The background denotes the second invariant of
differential strain rates and the arrow pairs are the differential principal strain rates, respectively.
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that the SAF, including the segment around the Big Bend, dic-
tates the tectonic deformation field of southern California.
Other faults such as the GF, the BPF, and the ones in theMojave
Shear Zone, play a secondary role in spreading the deformation
field around the SAF, and their stress or strain state are signifi-
cantly affected by the mechanical processes along the SAF.

The rotation rate pattern follows pretty much the shear-
strain-rate pattern along the SAF and SJF (Fig. 5a,b). However,
it shows some interesting features off the SAF system. About
1–2 × 10−7 radian=yr clockwise rotation is found within the
Mojave block. For a pure strike-slip dislocation it would pro-
duce equal amount of shear strain and rotation, but this rota-
tion rate exceeds the shear-strain rate in the central and
northern part of the block. The strain rates in the central and
north part of the block are not affected by as much postseismic
deformation as that in the southern block, thus this feature re-
veals present-day active clockwise rotation of the Mojave
block. Minimum clockwise rotation rates are found around
the GF and ORF, resulting from counter-clockwise rotations
associated with the sinistral motion across the faults. Such lo-
cal counter-clockwise rotations offset the regional clockwise
rotation associated with the dextral motion across the plate
boundary zone, resulting in local minimal rotation rates. This
effect is particularly significant around the ORF, which shows
∼3 × 10−8 radian=yr counterclockwise rotation.

Conclusions

In this article, we introduce a fully implemented method
to optimally estimate strain field as a continuous function
using discrete geodetic measurements. This method is robust
because it does not rely on certain assumptions on data as do

some other methods such as stationarity and isotropy. This
method also balances between stability and resolution, relying
on in situ data strength to determine the degree of smoothing
to be imposed on the neighboring data.

Application of this method to the SCEC CMM4 velocity
field provides the present-day strain-rate field in southern Cal-
ifornia. Our result shows that (1) distance-dependent weight-
ing can be optimally achieved by employing either a Gaussian
or quadratic decay function, with the former offering a slightly
sharper result than the latter with a given range of data selec-
tion. (2) Spatially dependent weighting is important to im-
prove the interpolation, and can be done by invoking either
an azimuthal weighting or a Voronoi cell areal weighting func-
tion. Excluding the nonelastic strain along the creeping section
of the SAF, the regional strain-rate field reveals that (1) the
highest strain rate, up to 4 × 10−7 strain=yr is found across
the Brawley Seismic Zone and the Imperial fault. (2) About
2–3 × 10−7 strain=yr shear-strain rates are detected across the
SAF from the Carrizo Plain to Coachella segment, the SJF and
ORF, and the Mojave Shear Zone. (3) North–south conver-
gence of up to 1:5 × 10−7 strain=yr is resolved within the
Los Angeles and Ventura basins. (4) Orientations of the dex-
tral maximum shear-strain rates coincide well with the strike
directions of the SAF and the SJF, but other strike-slip faults off
the SAF in the Transverse Ranges and Mojave Shear Zone
region orient obliquely with respect to the maximum shear-
strain-rate directions. These strain rates in alignment with the
SAF orientation suggest that tectonic deformation field on and
off the SAF in southern California is dominated by mechanical
processes of the SAF.

Data and Resources

The Global Positioning System (GPS) velocity data are
from the Southern California Earthquake Center (SCEC)
Crustal Motion Map version 4.0 (CMM4) and can be found
at http://scec.ess.ucla.edu/~zshen/cmm4/cmm4.html (last ac-
cessed February 2015). The computer code velocity interpola-
tion for strain rate (VISR) for strain derivation and an example
of its application to the SCEC CMM4 data can be found at
http://scec.ess.ucla.edu/~zshen/visr/visr.html (last accessed Feb-
ruary 2015). Materials of the strain derivation methods and re-
sults presented at the 2010 SCEC workshop were obtained
from ftp://topex.ucsd.edu/pub/sandwell/strain/ (last accessed
February 2015). Some plots were made using the Generic Map-
ping Tools version 4.2.1 (www.soest.hawaii.edu/gmt, last ac-
cessed February 2015; Wessel and Smith, 1998).
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