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1. Introduction

1.1. SCEC is constructing and updating a suite of community models for the Southern California Region to facilitate cross-disciplinary research.  Currently they include: the Community Fault Model (CFM), the Community Velocity Model (CVM), the Community Geodetic Model (CGM), the Community Stress Model and eventually the Community Rheology Model (CRM) [Jordan et al., 2016].

1.2. Here we are concerned with the development of the CGM.  Eventually the CGM will consist of vector deformation time series at ~1 km resolution and better than seasonal sampling.  The CGM draws upon expanded Global Positioning System (GPS) coverage, new SAR missions, and maturing data analysis techniques that leverage the complimentary features of both data types.  By adopting a community-driven approach, we bring together the kind of broad expertise and diverse perspectives needed to explore the effect of modeling choices and provide a window into the scope of epistemic uncertainty. 

1.3. Previously SCEC has developed the Southern California Crustal Motion Map [e.g., V4.0 Shen et al., 20XX], which consists of the motion of a large number of geodetic monuments in Southern California. These motions were estimated from a combination of EDM, GPS, and VLBI data.  
1.4. The science and hazard communities also require a dense grid of vector surface velocities to compute, for example crustal strain rate, for hazard analysis [e.g., UCERF3; Field et al., 2014]. The main unknown is the strain partitioning between elastic strain buildup in the near field of the main faults and off-fault inelastic deformation.  A previous analysis of strain-rate map produced by 16 different research groups using primarily the same GPS velocity measurements, reveals that modeled strain rate can differ by factors of 5 to 8 times, with the largest differences occurring along the most active faults [Hearn et al., 2010]. 
1.5. This report is a continuation of that effort to arrive at a consensus CGM horizontal velocity model. The model consists of the underlying GPS uniform vector velocities recently compiled by Zeng and Shen [2016] as well as a 1-km resolution grid of north and east velocities and velocity uncertainties. The grid is used to construct a matching grid of horizontal strain rate tensor and strain rate uncertainty.  This uniform velocity is just a first step in the development of the full 3-D time dependent CGM. Nevertheless this compilation is important for hazard analysis as well as more practical uses such as isolating the vertical deformation in InSAR time series.  As new GPS and InSAR data become available the SCEC community will update these models
2. Assembly

2.1. The models considered for this initial release are 15 velocity and/or strain rate models of a large region of California [Figure 1 and Table 1]. The region was selected to be larger than the SCEC region and also 14 of the 15 models discussed below cover this region. The primary data are horizontal GPS velocities compiled by Zeng and Shen [2016] and McCaffrey et al., [2013].  Additional compilations from Crowell et al., [2013] and Murray et al. [20XX]. Of course these are compilations of other compilations so there are major contributions from the Plate Boundary Observatory [20XX], . .  . . ...
	NAME
	MODEL

VEL
	MODEL

STRAIN_RATE
	STRAIN RATE EVAL.
	PUBLICATION

	
	
	
	VAR.
	SHmax
	CORR
	

	becker
	O
	X
	82
	14.5
	.75
	Platt and Becker, 2010

	bird
	X
	X
	186
	19.2
	.58
	Petersen et al., 2014; Field et al., 2014

	bormann_hammond
	X
	X
	106
	19.6
	.63
	Johnson et al., 2013

	gpsgridder
	X
	X
	109
	17.6
	.65
	Sandwell and Wessel, 2016

	hackl
	X
	X
	127
	26.2
	.69
	Hackl, 2009

	holt
	X
	X
	126
	18.2
	.73
	Flesch et al., 2000

	kreemer
	X
	X
	152
	20.5
	.70
	Kreemer et al., 2014

	loveless_meade
	X
	X
	149
	19.1
	.64
	Loveless and Meade, 2011

	mccaffrey
	X
	X
	53
	14.4
	.58
	McCaffrey et al., 2013

	parsons
	O
	X
	92
	24.4
	.41
	Parsons et al., 2006

	shen
	X
	X
	91
	12.7
	.73
	Shen et al., 2015

	smith_konter
	X
	X
	175
	14.0
	.63
	Smith-Konter and Sandwell, 2009

	tape
	O
	X
	74
	26.1
	.64
	Tape et al., 2009

	tong
	X
	X
	178
	16.0
	.63
	Tong et al., 2013

	zeng
	X
	X
	112
	17.1
	.73
	Zeng and Shen, 2016


2.2. 2 models based on InSAR

2.3. GPS Velocity data from Zeng_Shen

2.4. Documentation for all

3. Evaluation

3.1. Roughness of second invariant (Figure 2)

3.2. Model roughness

3.3. Second invariant correlation matrix

3.4. Shmax

3.5. Winnowing

3.6. Select candidate models 

3.7. Perform correlation on model subset

4. Polishing

4.1. Polish each of the candidate models with the zeng_shen data

4.2. Perform cross-correlation analysis

4.3. Perform sum and difference analysis on velocities

4.4. Perform sum and difference analysis on strain

4.5. Compare with seismicity and Shmax

TODO:


Rename Sandwell to gpsgridder_data


Get velocity data for Kreemer

Get velocity data for Shen


Make correlation maps to pick winners


Polish the velocities of the winners with the Zeng GPS to make a new set.


Take the mean and standard deviation of that set.
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