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Analytic and Numeric Tests of Fourier Deformation Model 
(Copyright 2003, Bridget R. Smith and David T. Sandwell) 

 
Although the solutions of our Fourier deformation model have been checked using 

computer algebra, it is necessary to verify the accuracy of our computer code through 
comparison with known analytic solutions. Faulting behavior for our Fourier model is 
simulated by imbedding a prescribed fault in a 1-km spaced grid, performing a 2-D 
horizontal Fourier transform of the grid, multiplying by appropriate transfer functions, 
and inverse transforming to arrive at the final solution. The following tests and 
comparisons have been made: 
 
 

i.)  2-D analytic tests 
a.) Homogeneous elastic half-space [Weertman, 1964] 
b.) Layered elastic half-space [Rybicki, 1971] 
c.) Non-surface observation planes [Savage and Lisowski, 1993] 
d.) Layered viscoelastic half-space [Nur and Mavko, 1977] 
 

     ii.) 2-D analytic Boussinesq tests 
a.)  2-D analytic point load solution [Love, 1944] 
b.)  Half-space and a plate model comparisons with gravity 
c.)  Analytic flexure solution [Le Pichon et al., 1973] 
 

     iii.) 3-D Okada [1985,1992] model comparison 
a.) Demonstration of single couple (deep slip) model 
b.) Demonstration of double couple (shallow slip) model 

 
     iv.)  Demonstration of sign convention  

a.) Straight fault geometry 
b.) Diagonally-oriented fault geometry 

 
v.) Comparison of elastic and viscoelastic San Andreas model 

 
vi.)  Example of time-dependence for viscoelastic San Andreas model 
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i) 2-D analytic tests    
Although the solutions of our Fourier model have been checked using computer 

algebra, it is necessary to verify the accuracy of our computer code through comparison 
with known analytic solutions. These include 2-D analytic examples for displacement of 
a fault plane in (1) a homogeneous elastic half-space (2) a layered elastic half-space and 
(3) a layered viscoelastic half-space. Faulting behavior for our Fourier model is simulated 
by imbedding an infinitely-long fault in the y-dimension in a 1-km spaced grid, 
performing a 2-D horizontal Fourier transform of the grid, multiplying by appropriate 
transfer functions, and inverse transforming to arrive at the final solution.  
 
a)  Homogeneous elastic half-space  

As a basic test, we compare our Fourier-derived fault solution to 2-D analytic 
solutions for a homogeneous elastic half-space.  The surface displacement due to a 2-D 
fault in a homogeneous elastic medium that is freely slipping between depths of d1 and d2  
[Weertman, 1964] is: 
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This solution is often used to described the far-field behavior deep slip on a fault 

plane.  For a fault that is locked between depths d1 and d2, the surface displacement due to 
a 2-D fault can be described by: 
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This solution is often used to describe a minimum and maximum depth at which a 

fault plane is locked until an earthquake occurs.  For both solutions, Vo = slip, d1 = lower 
locking depth, d2 = upper locking depth, and x = distance across fault-plane. 
 

 
 
 
 
 
 
 
 
 
We can simulate both of these faulting behaviors for our Fourier-derived fault 

solution. In order to form a double-couple dislocation, we have constructed a screw 
dislocation by taking the derivative of the fault-source in the direction normal to the fault 
plane.  This corresponds to multiplication in the Fourier domain.   For this 2-D 
comparison, we imbed an infinitely-long fault in the y-dimension in a 1-km spaced grid, 
which is Fourier transformed, multiplied by the transfer functions described in earlier 
notes, and inverse Fourier transformed.   
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In order to test the deep slip case (Eq. 1), we assign an upper locking depth of 30 km 
(d2) and extend the lower depth to infinity (d1).  For this test, we use the following 
parameters in both our Fourier model and for comparison with the analytic solution:  d1 = 
-100000 km, d2 = -30 km, z = 0, and Vo = 1 mm.  Figure 1 shows the comparison between 
a fault-perpendicular profile of our Fourier-derived grid results and that of the deep slip 
analytic solution (Eq. 1).   

 
The comparison between the analytic Weertman [1964] solution and the fault-

perpendicular profile of our Fourier model provides a numerical accuracy of 10-3.   In 
order to achieve even better accuracy, the x-length of the Fourier grid must be extended 
to 8192 (presently 4096).  A smaller dimension can be used if the fault has a finite length 
in the y-direction. 

 
To test the locked-fault case (Eq. 2), we assign an upper locking depth of 1 km (d2) 

and a lower locking depth of 30 km (d1).  In this model, we use the following parameters: 
d1 = -30 km, d2 = -1 km, z =0, and Vo = 1 mm.  Figure 2 shows the comparison between a 
fault-perpendicular profile of our Fourier-derived grid results and that of the deep slip 
analytic solution (Eq. 2).   

 
Figure 1. 

 
Figure 2. 
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Again, the comparison between the analytic Weertman [1964] solution and the fault-
perpendicular profile of our Fourier model provides a numerical accuracy of 10-3.    In 
order to achieve even better accuracy, the x-length of the Fourier grid must be extended 
to 8192. 
 
 
b)  Layered elastic half-space  

As a second test, we compare our Fourier-derived fault solution to the 2-D analytic 
solution for deformation in a layered elastic half-space.  The surface displacement due to 
a 2-D fault in a layered elastic medium that is locked between depths of d1 and d2 
[Rybicki, 1971] is given by: 
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where Vo= slip, d1 = lower locking depth, d2 = upper locking depth, H = layer thickness, 
µ1 and µ2 are layer rigidities, and m refers to the number of image terms included in the 
calculation (Figure 3).  This solution behaves similarly to the Weertman [1964] solution 
for a homogeneous half-space, with the exception of the infinite sum term that is 
dependent upon the ratio of the upper and lower rigidity moduli and the plate thickness. 
This simple 2-D analytic solution reflects the fundamental first-order behavior of a 
locked fault in a layered medium and is the premise of more sophisticated layered 
models. 
  
 

 
 

 
 
 
 
 
 
 
 
 
 
Here we demonstrate three examples for our layered Fourier-derived fault solution 

simulating a layer of thickness H, overlying an elastic/viscoelastic half-space, depending 
on the ratio of rigidities, µ1 and µ2.   In all three models, we use the following parameters:  
d1= -30 km, d2 = -1 km, H = 30 km, z = 0, and Vo = 1 mm.  Our three examples will be 
those of: 

 
 

(3) 

Figure 3. 
 



 
http://topex.ucsd.edu/body_force 

5 

(1) an elastic half-space (µ2  = µ1) 
(2) an elastic layered half-space (µ2  = µ1 /3) 
(3) an elastic plate overlying a viscous half-space (µ2 = 0).  

 
Figure 4 demonstrates the behavior of each case for the analytic solution of Eq. 3: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
(b1) Elastic half-space  As a first test, we set

! 

µ
1

= µ
2
 and test the case for a layered half-

space of the same rigidity, better described as a homogeneous half-space.  Figure 5 shows 
the comparison between fault-perpendicular profile of our Fourier-derived grid results 
and that of the analytic solution provided by Rybicki [1971] (Eq. 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5 
 
 

 
 
 Figure 4. 
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The comparison between the analytic solution and the fault-perpendicular profile of 

our Fourier model provides a numerical accuracy of 10-3.   This solution also matches (as 
it should!) the Weertman [1964] solution for an homogeneous half-space.  This 
comparison is independent of the number of “m” terms summed in the infinite series 
because the rigidity ratio is always zero. 
 
(b2) Layered half-space  As a second test, we will inspect the case for a layered half-
space of varying rigidities.  By setting

! 

µ
1

= 1,  µ
2

= µ
1

3 , we now require multiple terms to 
be summed in the infinite series because the rigidity ratio is non-zero.  Convergence of 
the series is necessary for both the analytic solution (Eq. 3) and of our Fourier solution.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 shows the results for m = 10 summed terms for both analytic and Fourier 
solutions.  For the layered medium, 
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m converges quickly. The coefficient 

converges to zero for terms > m = 10.  The residual differences seen in Figure 6 in the far 
field are due to accuracy limitations due to grid size as mentioned before. In order to 
achieve even better accuracy, the x-length of the Fourier grid must be extended to 8192. 
 
(b3) Elastic plate over viscous half-space  As a third test, we will inspect the case for a 
layered half-space with the half-space rigidity set to zero, simulating an elastic plate.  By 
setting

! 

µ
1

= 1,  µ
2

= 0 , the rigidity ratio becomes one and remains one for all summed terms.  
This allows for an analytic summation to be performed on the infinite series, which we 
invoke in our Fourier calculation.  For the special case of 

! 

µ
1

= 1,  µ
2

= 0 , our Fourier model 
will be independent of  “m” terms involved in the summation, and the analytic Rybicki 
solution (Eq. 3) should converge to our Fourier solution for multiple “m”. 

 
Figure 6. 
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From Figure 7, we again note that the analytic solution for a layered half-space 
slowly approaches the Fourier solution with increasing “m”, due to the nature of the 
infinite series computation. For the case of an elastic plate, 
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between +/-1, and thus the solution depends on the inner +/- 2mH terms to converge. Our 
fftplate.f (maxwell.f) program makes use of the analytic form of the infinite series for a 
rigidity ratio of 1, and thus computes the full plate solution in one step. Alternatively, the 
analytic solution requires many iterations/summations in order to finally converge to the 
full plate solution. 
 
c) Non-surface observation planes 

Displacement can also be computed at an observation plane other than the surface 
(

! 

z " 0).   The analytic solution for this case, taken from Savage and Lisowski [1993], is:   
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where D is the upper locking depth of an infinitely deep fault and z is the observation 
plane.  Figure 8 shows the behavior of displacement for an infinitely-long and infinitely-
deep fault locked at D = 30 km, observed at planes z = 0, 10, 30, 50, and 100 km. 

 
Figure 7. 

(4) 
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Our Fourier model can also calculate both stresses and displacements within a region 
above or below the locked portion of the fault plane by simply segmenting the faulting-
regime into two pieces and adding.  Figure 9 shows the behavior of observation depth for 
both the analytic solution (Eq. 4) and our Fourier model: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. 

 

Figure 9. 
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d)  Layered viscoelastic half-space  
Our final 2-D comparison will be made with the results of Nur and Mavko [1974], a 

time-dependent version of the Rybicki [1971] solution that utilizes the Correspondence 
Principle to manipulate the rigidity of the half-space [Savage and Prescott, 1978; Cohen, 
1999].  We again consider the simple case of an infinitely long vertical strike-slip fault 
that is imbedded in an elastic plate overlying a time-dependent Maxwell viscoelastic half-
space. Within the plate, the “fault” can be thought of as two separate sections: the lower 
fault and the upper fault.  The lower fault deforms at depths extending from the base of 
the locked region (d1) to the base of the elastic plate (H).  This region responds to tectonic 
loading during the interseismic period of the earthquake cycle.   The upper portion of the 
fault (d1 – d2) remains locked during this time and accumulates a slip deficit, eventually 
leading to coseismic deformation caused by an earthquake.  Postseismic displacements 
are caused by the relaxation of the Maxwell fluid as the elastic plate redistributes stress 
and the fault becomes reloaded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model results (Figure 10) are obtained at multiples of Maxwell time (

! 

"
m

= 24 � � � ).  
Black (t = 0) and red  (t =

! 

") profile lines represent time-dependent cases reviewed by 
Cohen [1999] of the Nur and Mavko [1974] model.  The first episode of deformation 
involves the geologic development of a fluid half-space (Figure 10a) where deformation 
occurs at depths below a locked fault that cuts halfway through a 50 km thick elastic 
plate. In this example, we capture the evolution of the substrate by evaluating our Fourier 

 

Figure 10.   
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model at times applicable for a homogeneous elastic half-space (t = 0), evolving into an 
elastic plate over a fluid half-space (t = 

! 

"). Fault-parallel displacement profiles of 
Fourier model as a function of distance from the fault with respect to plate thickness, H.. 
A full step-function of plate velocity is achieved at times greater than t = 100τm or t =

! 

" , 
which we will henceforth refer to as the “secular model”.  We also demonstrate both 
coseismic and postseismic responses of the same locked fault that has accumulated 4 m 
of shallow slip (Figure 10b).   Total displacement (secular model + postseismic models) 
produces the full 4 m of displacement (Figure 10c) at all distances from the fault.  Such 
behavior is typical of the viscoelastic deformation problem and has been well-
documented by many investigators [e.g., Nur and Mavko, 1974; Rundle and Jackson, 
1977; Savage and Prescott, 1977; Ward, 1985; Cohen, 1999].  
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ii) Analytic Boussinesq tests 
 With the exception of the 3-D elastic half-space solution [Okada, 1985, 1992], thus 

far we have only discussed 2-D model tests where the surface normal stress is zero.  
However, to test our model in 3-D requires testing the response of the model to vertical 
loads.  To do this, we first compare our solution to the classic solution of Love [1944] for 
a vertical point load in a homogeneous elastic medium.  We also provide a visual 
comparison of both homogeneous and layered half-space models with and without a 
gravitational restoring force.  Finally, a comparison of an end-member Boussinesq model 
and an approximate solution to the crustal flexure problem is made [Brotchie and 
Sylvester, 1969; Turcott and Schubert, 1982]. 
 
 
a) 2-D analytic point load solution  

In order to satisfy the surface boundary condition of zero shear stress, images sources 
are included to partially satisfy this boundary condition.  But by including these extra 
sources, the vertical normal stress at the surface is doubled, and so the remaining task is 
to find a supplemental solution that cancels the normal stress without introducing 
additional shear stress.   This problem is called the Boussinesq problem, and we address 
the mathematics in previous notes for the homogeneous half-space and layered half-space 
problems.    
 

The basic nature of the problem is to impose a negative surface traction to match the 
boundary condition.   This process has been likened to the 2-D analytic point load 
solution on an elastic half-space, discussed by Love [1944] in “A Treatise on the 
Mathematical Theory of Elasticity” (p. 190). 
 
 
 
 
 
 
 
     
 
 
 
 
As described by Love, a “double force without moment”, also called the center of 
compression (P), is applied to a single point in a cavity within a body.    For simplicity, 
Love uses a spherical cavity and applies the single point load P at the center.    The 
following mathematics summarized his approach: 
 
For z = 0, we have the following equations describing 3-D surface displacement: 
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For 

! 

z " 0, we have a slightly different set of equations:   
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For 

! 

z " 0, we can also calculate the analytic solution for vertical and horizontal stress:   
 

! 

r = x
2 + y

2 + z2( )
1/ 2

            
"r

"x
=

1

2

1

r
2x =

x

r

# xx = $
"U

"x
+
"V

"y
+
"W

"z

% 

& 
' 

( 

) 
* + 2µ

"U

"x

% 

& 
' 

( 

) 
*     # yy = $

"U

"x
+
"V

"y
+
"W

"z

% 

& 
' 

( 

) 
* + 2µ

"V

"y

% 

& 
' 

( 

) 
*   

      

# zz = $
"U

"x
+
"V

"y
+
"W

"z

% 

& 
' 

( 

) 
* + 2µ

"W

"z

% 

& 
' 

( 

) 
*              # xy = µ

"U

"y
+
"V

"x

% 

& 
' 

( 

) 
* 

 

 
 

! 

For the full stress calculation, we need 
"U

"x
,
"V

"y
,and 

"W

"z
(note

"U

"y
 and 

"V

"y
= 0) : 

 

! 

4"

P

#U

#x
=
1

µ
zr

$3 $ 3zx 2r $5( ) $
1

% + µ( )
rz + r 2( )

$1

$ x rz + r 2( )
$2 zx

r
+ 2x

& 

' 
( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 

4"

P

#V

#y
=
1

µ
zr

$3 $ 3zy 2r $5( ) $
1

% + µ( )
rz + r 2( )

$1

$ y rz + r 2( )
$2 zy

r
+ 2y

& 

' 
( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 

4"

P

#W

#z
=
1

µ
2zr

$3 $ 3z 3r $5( ) $
% + 2µ( )

µ % + µ( )
zr

$3

 

 
 We will now show the results of our Fourier model for a point load on an elastic half-
space.  The model is run by applying a point load (Fz = 1) in the center of a grid of size 
1024 x 1024 horizontal elements.  The grid is then Fourier transformed, multiplied by the 
Boussinesq solutions, and then inverse transformed.  No body forces are included for this 
comparison. In the analytic comparison, the point load is represented by P = 1 and the 
above analytic solutions are used.  The observation plane is set to z = -2 to ensure short 
wavelength correspondence (z = -10 can be used for longer-wavelengths). The shear 
modulus for both models is set to µ = 2.6 x 1010.   
 

(6) 

(7) 

(8) 
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 Figures 11 demonstrates, in map view, the vertical Boussinesq response (in mm) from 
a vertical point load applied to a homogeneous elastic half-space the displacement results 
of our Fourier model and the comparison with Love analytic solution.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 shows both horizontal and vertical deformation from a vertical point load 
applied to a homogeneous elastic medium.  Love [1944] solutions from Equation 6 are 
shown as blue lines (a & b) and corresponding horizontal and vertical Boussinesq 
solutions generated from the Fourier model are shown as red lines (a & b).  Relative 
errors for both horizontal and vertical components are less than 1%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 11.  

Figure 12.  
 

Figure 11.  
 

(a) 

(b) 
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Likewise, Figures 13 and 14 show the stress results of our Fourier model and the 
comparison with Love [1944] solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. 

Figure 14. 

 Figure 14. 
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b) Half-space and a plate model comparisons with gravity 
 We next test the accuracy and consistency of our viscoelastic Fourier model by 
applying a vertical point load to a variety of elastic/viscoelastic mediums   As discussed 
in previous notes, our new Boussinesq solutions for a layered half-space can also take 
into the effects of gravitational support (ρg) if one wishes to do so. We have solved for 
the Boussinesq coefficients for the following four cases:   
 

(1) Homogeneous half-space Boussinesq solution (no gravity)  
(2) Homogeneous half-space Boussinesq solution with gravity 
(3) Layered half-space solution (no gravity) 
(4) Layered half-space solution with gravity 
 
We use the coefficients obtained for these four cases to demonstrate both rheological 

and gravitational characteristics of vertical displacement due to a vertical point load.  In 
the subsequent model examples we use the following parameters, Fz = 1 MPa, H = -10 
km, E = 70 GPa, µ1 = 2.6 x 1010 GPa, and η = 1019 Pas, unless otherwise specified.  For 
the two examples that include the effects of a layered half-space (case 3 and 4), we 
assume a half-space shear modulus of µ2 = 0 to simulate an elastic plate over a fluid half-
space, but require the bulk modulus, κ, to remain constant: 
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In addition, for those examples that include the gravitational contribution (case 2 and 4), 
ρ� = 3300 kg/m3 and g = 9.81 m/s2. 
 
Case (1): Homogeneous half-space Boussinesq solution (no gravity)  
For this case, we assume the thickness of the elastic layer to be zero (H = 0) and 
compare the results of our Boussinesq solutions for a layered half-space to our 
previous solutions for a homogeneous half-space.   The comparison provides an 
exact match.  Figure 15a shows these results for displacement in x, y, and z 
(layered solution). Demonstrating similar behavior to the model of Figure 11, Figure 
15a shows the z-component of deformation in a homogeneous half-space forming a 
negative bulls-eye region in the center of the grid. 
 
Case (2): Homogeneous half-space Boussinesq solution with gravity 
For this case, we assume the thickness of the elastic layer to again be zero (H = 0) 
and compare the results of our Boussinesq solutions for a layered half-space to 
those described above, this time with the addition of the gravity force balance.  
The comparison provides a close match to the Case (1) half-space results, but the 
magnitudes are slightly higher.  Figure 15b shows these results for displacement in 
x, y, and z (layered solution). Like Figure 15a, this figure also shows the z-component 
of deformation forming a negative bulls-eye region in the center of the grid, although  
when a gravitational component is included, magnitudes become slightly larger. 
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Case (3): Layered half-space solution (no gravity) 
For the case of an elastic plate overlying a fluid half-space, we assume the 
thickness of the elastic layer to be H = 10 km.  A visual comparison of the results 
for this case (Figure 15c) shows that plate case is similar to the homogenous half-
space case, but close inspection reveals that the far-field nature of the plate model 
retains the same sign while the half-space model reverses sign.  Also note that the 
z-component of the plate model “blows up” to very large values.  This is due to 
the absence of the gravitational restoring force required to balance the point load 
applied to the plate. While the spatial scale of this figure has been preserved for 
comparison with other examples, a much larger grid is required to fully capture the full 
bulls-eye feature.  Large amplitudes are observed (over - 15 mm) because no restoring 
force was included to balance such deformation. 
 
Case (4):  Layered half-space solution with gravity 

Lastly we compare the case of an elastic plate overlying a fluid half-space, this 
time including the effects of gravity.  We assume the thickness of the elastic layer 
to again be H = 10 km.  We compare this model to the previous (Case 3), and find 
a close match, but with slightly higher magnitudes for the gravity case.  Also note 
that the z-component of the plate model with gravity now behaves as predicted, 
with a similar, although larger bulls-eye feature to the half-space cases. Inclusion of 
the gravity term (Figure 15d) eliminates the unreasonable amplitudes the previous model 
and produces slightly larger-scale bulls-eye feature compared to those of Figure 15a and 
b.  
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c) Analytic flexure solution  

The layered Boussinesq solution that includes the restoring force of gravity (Figure 
5d, case 4) can be compared with an analytic solution that approximates the flexural 
response, w(x), of a thin elastic plate due to arbitrary surface loading.  The vertical force 
balance for flexure of a thin elastic plate floating on top of the asthenosphere [e.g., Le 
Pichon, 1973; Sandwell, 1982; Turcotte and Schubert, 2001] is described by  
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In this equation, a vertical load, P(x), is balanced by the flexural resistance of the plate 
and the gravitational restoring force, ρg.   The solution for the deflection of the plate is 
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where D is the flexural rigidity comprised of Young’s modulus (E), plate thickness (H), 
and Poisson’s ratio, υ : 

Figure 15.  
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Using the same parameters as described for the previous case of the elastic plate with 

gravity (Figure 15d, case 4), we compare the flexure solution with the layered Boussinesq 
solution.  Figure 16 shows, in map view, the vertical Boussinesq response (in mm) from a 
vertical point load applied to an elastic plate overlying a fluid half-space with a 
gravitational restoring force (Figure 16a) and the flexural response from the thin plate 
approximation of Le Pichon et al., [1973] and McKenzie and Bowin [1976] (Figure 16b).  
The residual difference between the two models is shown in Figure 16c.  The two models 
agree well far from the load, but due not completely agree in the center of the grid.  This 
is due to the fact that the thin plate flexure approximation has large errors for 
wavelengths smaller than five times the plate thickness [McKenzie and Bowin, 1976], 
thus a mismatch is expected near the center of the load 

 
.    

 
 
 
 

This comparison of the plate model with the vertical deflection results of the flexure 
model shows good agreement for wavelengths greater than the plate thickness (H), 
although agreement is not expected for wavelengths shorter than 5H. Profiles of these 
two models, along with profiles from Figures 15a and 15b better demonstrate these 
findings (Figure 17). Vertical profiles as a function of distance acquired for the 
Boussinesq results of Figures 15 and 16 for a half-space with no gravity (red, Figure 
15a), a half-space with gravity (blue, Figure 15b), an elastic plate over a fluid half-space 
(green, Figure 16a), and the thin plate flexure approximation (black, Figure 16b).   

 
 
 
 
 
 
 
 
 

(14) 

Figure 16.   

(a)   (b)   (c)   
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Combining the vertical results of the half-space model and the flexure solution yields 

a new profile with numerical accuracy of 10-3 when compared to the Boussinesq plate 
model.  

 
 

iii) 3-D Okada model comparison 
 

A dislocation on a fault plane is commonly represented by body force couples.  In the 
case of a horizontal strike-slip fault, a single-couple can be used to model deep slip 
simulating far-field plate boundary motion.  Alternatively, a double-couple should be 
used to ensure local balance moment in the horizontal plane [Burridge and Knopoff, 
1964].  The spatial variations in the force-couple are constructed by taking the derivatives 
of the fault function.  The primary couple is parallel to the fault (x-direction) and 
corresponds to the fault-normal derivative.  The secondary force couple is perpendicular 
to the fault (y-direction) and corresponds to the fault-parallel derivative.  

 
To ensure force and moment balance, we construct a force couple by taking the 

derivative of a point source in the direction normal to the fault trace.   In practice, the 
body forces due to the stress discontinuity across a fault plane are approximated by the 
derivative of a Gaussian function, effectively producing a model fault with a finite 
thickness.    For an accurate simulation, the half-width of the Gaussian must be greater 
than the grid size but less than the locking depth.   

 
Here we demonstrate both single and double couple methods of our Fourier model 

against the results of Okada [1985,1992] models (double couple only) provided by Y. 
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Fialko. We construct a force couple model by making the strength of the couple 
proportional to the long-term slip rate on a fault segment and the direction of the couple 
parallel to the overall plate boundary direction (not the local fault direction, if fault 
geometry is complex).  This simulates the far-field plate tectonic force couple, which we 
term the “single couple model”.  The behavior of more shallow, co-seismic slip, though, 
requires a double couple to balance forces primarily in the x-direction.   For the case of 
deep slip (single couple model), all forces in the x-direction are removed.  Due to the 
nature of both force couples, the vector sum of all forces in the model is zero.    
 

The steps we take in computing the vector force for both single and double couples 
are as follows:  compute the length and orientation of the fault segment, rotate the vector 
into the model space, compute the Gaussian and taper effects, calculate both single and 
double couples.   These steps are outlined further below: 
 
Line force element source: 

! 

f (x, y) = h(x)g(y)   
 
h(x) = a Gaussian function with an area of 1  
g(y) = a function describing the tapered ends of the fault segment 
 

! 
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In the following examples, right lateral displacement is prescribed (slip ~ -1m) and 
fault geometry is described by d2 = -10.2 km, d1 = -0.2 km, z = 0 for both models.    The 
Fourier model assumes a completely vertical fault plane, while the Okada [1985,1992] 
model has an approximately vertical fault plane (dip = 89.99999).  An 800 x 800 km size 
grid was used for the Fourier model computation.   
 
 
a)  Demonstration of single couple (deep slip) model  

We first demonstrate the behavior of the single couple model by forming a single 
fault segment oriented in the y-direction.  Following the derivative of Equation 15, Figure 
18 shows the three displacement components for the single couple model. 

(15) 

(16) 

(17) 
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Single Couple (Fourier model) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
Demonstration of double couple (shallow slip) model 

Next we demonstrate the behavior of the double couple model.  Following the 
derivative of Equation 16, Figure 19 shows the three displacement components for the 
single couple model. 
 

Double Couple (Fourier model) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the differences between the double and single couples (Figure 18) lie primarily 
in the x-component.  The amplitudes in the z-component are also mismatched in 

 

 

Figure 18. 

Figure 19. 
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amplitude.  Now we compare the Fourier-derived double couple model to the Okada 
[1985, 1992] model (Figure 20): 
 

Double Couple (Okada model) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 21 shows across-fault profiles from y-displacement models from both Fourier and 
Okada models: 

 
Comparison of Fourier and Okada models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 20. 

Figure 21. 
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Figure 22 demonstrates the numerical differences between the two models: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Differences between the double-couple Fourier model and the Okada [1985, 1992] model 
are primarily due to the fact that we have constructed a fault of finite-width.   

 
Figure 22. 
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iv)  Demonstration of sign convention 
 
The following figures (Figure 23-26) display map view results of our Fourier model for a 
vertical strike-slip fault of varying orientations.  Right lateral displacement is prescribed 
(slip ~ -1m) and fault geometry is described by d2 = -100000 km, d1 = -10 km.  
Displacement is observed at a depth of z = -1 km. 
 
a) Straight fault geometry 

Case 1: N-S oriented fault 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case 2: E-W oriented fault 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 23. 

Figure 24. 
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b) Diagonally-oriented fault geometry 
 
 

Case 3: N-S fault oriented 45° clockwise 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case 4: N-S fault oriented 45° counter-clockwise 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

Figure 25. 

Figure 26. 
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v) Comparison of elastic and viscoelastic San Andreas model 
 
In order to demonstrate consistency between the original version of our Fourier model 
(homogeneous half-space) and the new viscoelastic Fourier model, we now compare the 
two for various geometries along the San Andreas Fault region.   
 
Homogeneous half-space model:    fftfault.f    +     subroutines 
Layered half-space model:   maxwell.f    +     subroutines  

 
 
The usage of each model is as follows: 
 
fftfault:          fftfault D1  D2  Zobs   ele.dat   istr  xd.grd  yd.grd  zd.grd 
    D1, D2      - depth to bottom and top of fault (neg) 
   Zobs  -  depth of observation plane 
   ele.dat  -  file of :  x1, x2, y1, y2, F1, F2, F3 
   istress  - (0) – disp.  U, V, W, or (1) – stress Txx, Tyy, Txy 
   x, y, z.grd - output files of disp. or stress 
 
maxwell: maxwell F D1 D2 Z T dble ele.dat istr U.grd V.grd W.grd 
 
         F       - factor to multiply output files 
          D1, D2  - depth to bottom and top of fault (neg)  
         Z       - depth of observation plane  
         T       - time since earthquake (yr)  
          dble    - (0-single couple, 1-double couple) 
          ele.dat - file of: x1,x2,y1,y2,F1,F2,F3 
          istress - (0)-disp. U,V,W 
                     (1)-stress Txx,Tyy,Txy 
                     (2)-stress Tnormal,Tshear,Tcoulomb 
          x,y,z.grd - output files of disp. or stress  
          H       - plate thickness (default: H=-50km) - optional 
          eta     - viscosity (default: eta=1.e19) - optional 
          pois    - poissons ratio (default: pois=0.25) - optional 
          fd      - depth factor (default: fd=1) - optional 
 
 
We will make the following comparisons and checks: 

(1) Displacement on an infinitely deep fault, evaluated at the surface 
(2) Displacement on a shallowly-locked fault, evaluated at the surface 
(3) Displacement on an intermediately-locked fault, evaluated at the surface 

 
For all cases, the layered viscoelastic model will artificially simulate a homogenous 
elastic half-space by forcing the layer thickness 

! 

H "#.  For this demonstration, all fault 
segments will be calculated at the same locking depth.  All models computed with 
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maxwell.f have density (rho) set to zero to ensure that the layered Boussinesq subroutine 
defaults to that for a homogeneous elastic half-space (gravity contribution removed). 
 
 
Case (1) Displacement on an infinitely deep fault, evaluated at the surface 
Model parameters:  D1 = -100000 km  D2 = -1km H = -100000 km  t = 

! 

"  
 
Half-space model:    fftfault  -100000 -1 0 all_segs_old.dat 0 xhs1.grd yhs1.grd zhs1.grd 
Viscoelastic model:  maxwell 1 -100000 -1 0 9999 0 all_segs.dat 0 xm1.grd ym1.grd  
                                 zm1.grd  -1000000 1.e19 0.25 1 
 
 
 
 
                                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 27. 

Figure 28. 
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Figures 27 and 28 demonstrate the 3-D results of both elastic half-space model (fftfault.f) 
and viscoelastic layered model (maxwell.f), respectively.  The two models agree to 10-3 
numerical accuracy for all three displacement components. 
 
Case (2) Displacement on a shallowly-locked fault, evaluated at the surface 
Model parameters:  D1 = -10 km D2 = -1km H = -100000 km  t = 

! 

"  
 
Half-space model:    fftfault –10 –1 0 all_segs_old.dat 0 xhs2.grd yhs2.grd zhs2.grd 
Viscoelastic model:  maxwell 1 –10 –1 0 9999 0 all_segs.dat 0 xm2.grd ym2.grd zm2.grd  
                                  –1000000 1.e19 0.25 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 29. 

Figure 30. 
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Figures 29 and 30 again demonstrate the 3-D results of both elastic half-space model 
(fftfault.f) and viscoelastic layered model (maxwell.f), respectively, although this time for 
a shallow fault system.  The two models again agree to 10-3 numerical accuracy for all 
three displacement components. 
 
Case (3) Displacement on an intermediately-locked fault, evaluated at the surface 
Model parameters:  D1 = -50 km D2 = -1km H = -100000 km t = 

! 

"  
 
Half-space model:   fftfault  -50 –1 0 all_segs_old.dat 0 xhs3.grd yhs3.grd zhs3.grd 
Viscoelastic model: maxwell 1 –50 –1 0 9999 all_segs.dat 0 xm3.grd ym3.grd zm3.grd 
                                                -100000 1.e19 .25 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 31. 

 
Figure 32. 
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Figures 31 and 32 again demonstrate the 3-D results of both elastic half-space model 
(fftfault.f) and viscoelastic layered model (maxwell.f), respectively, although this time for 
a fault system locked to 50 km.  The two models again agree to 10-3 numerical accuracy 
for all three displacement components. 

As a separate example, Figures 33 and 34 demonstrate the results of the maxwell.f 
model for a plate thickness of H = 50 km, with and without the restoring force of gravity 
(all other parameters same as above).  Note how the vertical (z) component responds to a 
fault that cuts to the bottom of the plate.  For the case without gravity (Figure 33), the 
vertical responds with unphysically large amplitudes, as was demonstrate in section ii by 
Figure 15c.  When gravity is included in the calculation (Figure 34), the vertical behaves 
more reasonably, although with higher amplitudes than that of a homogeneous medium. 
 
Model parameters:  D1 = -50 km D2 = -1km H = -50 km  t = 

! 

"  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 32. 

 
Figure 33 

Figure 34 

H = 50 km 
No gravity 

H = 50 km 
With gravity 
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vi)  Example of time-dependence for viscoelastic San Andreas model 
 
Here we compare end-member viscoelastic models for a 50 km thick plate, where time 
constants t = 0 and t = 

! 

"  are evaluated. In addition, density, p, will be incorporated back 
into the model to balance the vertical forces.  Again, for this demonstration, all fault 
segments will be calculated at the same locking depth.   
 
(t = 0):  maxwell 1 -50 -1 0 0 0 all_segs.dat 0 xm4.grd ym4.grd zm4.grd 50 1.e19 .25 1 
(t = 

! 

"): maxwell 1 -50 -1 0 9999 0 all_segs.dat 0 xm3.grd ym3.grd zm3.grd 50 1.e19 .25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 35. 

Figure 36. 

H = 50 km 
t = 

! 

"  

H = 50 km 
t = 0 
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Figures 35 and 36 demonstrate the 3-D results of the viscoelastic layered model 
(maxwell.f) for t = 0 and t = 

! 

" , respectively.  These results obviously differ due to the 
different time t parameters.  Figure 35 is essentially a coseismic representation of a 50 km 
thick plate cut through its entirety by a 50 km deep fault, while Figure 36 represents a 
fully relaxed half-space that simulates the secular model. 
 
  


