
Advanced Geodynamics: Fourier Transform
Methods

David T. Sandwell

November 8, 2021



To Susan, Katie, Melissa, Nick, and Cassie

Eddie Would Go

Preprint for publication by Cambridge University Press, October 16, 2020



Contents

1 Observations Related to Plate Tectonics 7
1.1 Global Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Fourier Transform Methods in Geophysics 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Definitions of Fourier Transforms . . . . . . . . . . . . . . . . . . . 21
2.3 Fourier Sine and Cosine Transforms . . . . . . . . . . . . . . . . . . 22
2.4 Examples of Fourier Transforms . . . . . . . . . . . . . . . . . . . . 23
2.5 Properties of Fourier Transforms . . . . . . . . . . . . . . . . . . . . 26
2.6 Solving a Linear PDE Using Fourier Methods and the Cauchy Residue

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Plate Kinematics 36
3.1 Plate Motions on a Flat Earth . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Triple Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Plate Motions on a Sphere . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Velocity Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Recipe for Computing Velocity Magnitude . . . . . . . . . . . . . . . 45
3.6 Triple Junctions on a Sphere . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Hot Spots and Absolute Plate Motions . . . . . . . . . . . . . . . . . 46
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Marine Magnetic Anomalies 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Crustal Magnetization at a Spreading Ridge . . . . . . . . . . . . . . 48
4.3 Uniformly Magnetized Block . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Anomalies in the Earth’s Magnetic Field . . . . . . . . . . . . . . . . 52
4.5 Magnetic Anomalies Due to Seafloor Spreading . . . . . . . . . . . . 53
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ii



CONTENTS iii

5 Cooling of the Oceanic Lithosphere 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Temperature versus Depth and Age . . . . . . . . . . . . . . . . . . . 65
5.3 Heat Flow versus Age . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Thermal Subsidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 The Plate Cooling Model . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Buoyancy of the Cooling Lithosphere . . . . . . . . . . . . . . . . . 78
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 A Brief Review of Elasticity 86
6.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Stress versus Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Principal Stress and Invariants . . . . . . . . . . . . . . . . . . . . . 88
6.5 Principal Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Crustal Structure, Isostasy, Swell Push Force, and Rheology 93
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Oceanic Crustal Structure . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Continental Crustal Structure . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Vertical Force Balance: Isostasy . . . . . . . . . . . . . . . . . . . . 96
7.5 Horizontal Force Balance: Swell Push Force . . . . . . . . . . . . . . 99
7.6 Rheology of the Lithosphere . . . . . . . . . . . . . . . . . . . . . . 102
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Flexure of the Lithosphere 116
8.1 Constant Flexural Rigidity, Line Load, No End Load . . . . . . . . . 118
8.2 Variable Flexural Rigidity, Arbitrary Line Load, No End Load . . . . 121
8.3 Stability of Thin Elastic Plate under End Load . . . . . . . . . . . . 124
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Flexure Examples 127
9.1 Seamounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.2 Trenches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3 Fracture Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10 Elastic Solutions for Strike-Slip Faulting 150
10.1 Interseismic Strain Buildup . . . . . . . . . . . . . . . . . . . . . . . 150
10.2 Geodetic Moment Accumulation Rate . . . . . . . . . . . . . . . . . 160
10.3 Inclined Fault Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4 Matlab Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.5 Exercises: Response of an Elastic Half Space to a 3-D Vector Body Force167

11 Heat Flow Paradox 173
11.1 Heat Flow Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



CONTENTS iv

11.2 Seismic Moment Paradox . . . . . . . . . . . . . . . . . . . . . . . . 177
11.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

12 The Gravity Field of the Earth, Part 1 181
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.2 Global Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

13 Reference Earth Model: WGS84 193
13.1 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
13.2 Disturbing Potential and Geoid Height . . . . . . . . . . . . . . . . . 195
13.3 Reference Gravity and Gravity Anomaly . . . . . . . . . . . . . . . . 196
13.4 Free-Air Gravity Anomaly . . . . . . . . . . . . . . . . . . . . . . . 197
13.5 Summary of Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 197

14 Laplace’s Equation in Spherical Coordinates 199
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.2 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 200
14.3 Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.4 Earth’s Gravity Field . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

15 Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry 207
15.1 Solution to Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . 207
15.2 Derivatives of the Gravitational Potential . . . . . . . . . . . . . . . . 211
15.3 Geoid Height, Gravity Anomaly, and Vertical Gravity Gradient from

Satellite Altimeter Profiles . . . . . . . . . . . . . . . . . . . . . . . 214
15.4 Vertical Deflections from Along-Track Slopes . . . . . . . . . . . . . 221
15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

16 Poisson’s Equation in Cartesian Coordinates 226
16.1 Solution to Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . 226
16.2 Gravity Due to Seafloor Topography: Approximate Formula . . . . . 228
16.3 Gravity Anomaly from a 3-D Density Model . . . . . . . . . . . . . . 229
16.4 Computation of Geoid Height and Gravity Anomaly . . . . . . . . . . 230
16.5 Gravity Anomaly for a Slab: Bouguer Anomaly . . . . . . . . . . . . 231
16.6 Gravity Anomaly from Topography: Parker’s Exact Formula . . . . . 232
16.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

17 Gravity/Topography Transfer Function and Isostatic Geoid Anomalies 236
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
17.2 Flexure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
17.3 Gravity/Topography Transfer Function . . . . . . . . . . . . . . . . . 239
17.4 Geoid/Topography Transfer Function . . . . . . . . . . . . . . . . . . 240
17.5 Isostatic Geoid Anomalies . . . . . . . . . . . . . . . . . . . . . . . 241
17.6 Geoid Height for Plate Cooling Model . . . . . . . . . . . . . . . . . 242
17.7 Isostatic Geoid and the Swell Push Force . . . . . . . . . . . . . . . . 245



CONTENTS v

17.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

18 Postglacial Rebound 248
18.1 Introduction and Dimensional Analysis . . . . . . . . . . . . . . . . 248
18.2 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
18.3 Elastic Plate over a Viscous Half Space . . . . . . . . . . . . . . . . 252
18.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

19 Driving Forces of Plate Tectonics 257
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
19.2 Age of Subducting Lithosphere . . . . . . . . . . . . . . . . . . . . . 260
19.3 Forces due to Phase Changes . . . . . . . . . . . . . . . . . . . . . . 260
19.4 Forces due to Thermal Buoyancy . . . . . . . . . . . . . . . . . . . . 261
19.5 Asthenospheric Drag Force . . . . . . . . . . . . . . . . . . . . . . . 263
19.6 Discussion – Relative Magnitudes of Forces . . . . . . . . . . . . . . 264
19.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



Introduction

Geodynamics by Turcotte and Schubert (2014) provides a deterministic, physics-based
exposition of solid-Earth processes at a mathematical level assessable to most students.
This classic textbook begins with a clear and concise overview of plate tectonics, fol-
lowed by stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid
mechanics, rock rheology, faulting, flows in porous media, and chemical geodynamics;
the latest edition has sections on numerical modeling. I have used this textbook, includ-
ing earlier editions, in a graduate level class for the past 28 years to prepare students
in quantitative modeling of Earth processes. The book uses a minimum of mathemat-
ical complexity, so it can be understood by a wide range of students in a variety of
fields. However, this more limited mathematical approach does not provide the gradu-
ate student with the tools to develop more advanced models having three-dimensional
geometries and time dependence.

This new book, Advanced Geodynamics, was developed to augment Geodynamics with
more complex and foundational mathematical methods and approaches. The main new
tool is multi-dimensional Fourier analysis for solving linear partial differential equa-
tions. Each chapter has a set of homework problems that make use of the higher-level
mathematical and numerical methods. These are intended to augment the already ex-
cellent homework problems provided in Geodynamics. Detailed solutions are available
from the author on request.

Chapter 1 – Observations Related to Plate Tectonics
This chapter reviews the global observations that were used to develop and refine the
theory of plate tectonics. These include the latest maps of topography, marine gravity,
seismicity, seafloor age, crustal thickness, and lithospheric thickness. This chapter also
provides the global grids as overlays to Google Earth for exploration and interaction
by students. In addition, all the data and tools needed to prepare the global maps using
Generic Mapping Tools (GMT) are provided at the Cambridge web site.

Chapter 2 – Fourier Transform Methods in Geophysics
This chapter provides a brief overview of Fourier transforms and their properties in-
cluding: similarity, shift, derivative, and convolution as well as the Cauchy residue
theorem for calculating inverse transforms. These tools are used throughout the book
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to solve multi-dimensional linear partial differential equations (PDE). Some examples
include: Poisson’s equation for problems in gravity and magnetics; the biharmonic
equation for problems in linear viscoelasticity, flexure, and postglacial rebound; and
the diffusion equation for problems in heat conduction. There are two approaches to
solving this class of problem. In some cases, one can derive a fully analytic solution,
or Green’s function, to the point-source problem. Then a more general model is con-
structed by convolution using the actual distribution of sources. We focus on the second
semi-analytic approach since it can be used to solve more complicated problems where
the development of a fully analytic Green’s function is impossible. This involves us-
ing the derivative property of the Fourier transform to reduce the PDE and boundary
conditions to algebraic equations that can be solved in the transform domain. A more
general model can then be constructed by taking the Fourier transform of the source,
multiplying by the transform domain solution, and performing the inverse transform
numerically. When dealing with spatially complex models, the second approach can
be orders of magnitude more computationally efficient, because of the efficiency of the
fast Fourier transform algorithm.

Chapter 3 – Plate Kinematics
This chapter is focused on the basics of plate kinematics and relative plate motions.
Students are encouraged to learn the names of the major plates, the plate boundaries,
and triple junctions. We then review the rules governing the relative motions across
the three types of plate boundaries, spreading ridges, transform faults, and subduction
zones and use these rules for triple junction closure of the relative velocity vectors.
The remainder of the chapter is concerned with plate motions on a sphere using vector
calculus. The exercises involve calculations of plate motions and plate circuit closure
using published rotation poles.

Chapter 4 – Marine Magnetic Anomalies
This chapter uses the Fourier transform tools developed in Chapter 2 to compute the
scalar magnetic field that is recorded by a magnetometer towed behind a ship, given a
magnetic timescale, a spreading rate, and a skewness. We first review the origin of nat-
ural remnant magnetism, to illustrate that the magnetized layer is thin compared with
its horizontal dimension. Then the relevant differential equations are developed and
solved under the ideal case of seafloor spreading at the north magnetic pole. Anoma-
lies that formed at lower latitudes have a skewness that causes a wavelength-dependent
phase shift. The exercises include the calculation of the magnetic anomalies associ-
ated with seafloor magnetic stripes and comparisons with shipboard magnetic data to
establish the seafloor spreading rate and skewness.

Chapter 5 – Cooling of the Oceanic Lithosphere
This chapter uses the Fourier transform method to solve for the temperature in the
cooling oceanic lithosphere for half space and plate cooling models. For researchers in
the areas of marine geology and geophysics, this is the essence of geodynamics since
it explains the age variations of marine heat flow, seafloor depth, elastic thickness,
and geoid height. The cooling models are also used to calculate the driving forces
of plate motions including ridge push and slab pull. We focus on the buoyancy of the
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lithosphere as a function of crustal thickness to explain the conditions when subduction
is possible. A highlight of this chapter are nine challenging heat flow exercises based
on publications including thermal evolution of an oceanic fracture zone, lithospheric
reheating from a mantle plume, and frictional heating during an earthquake.

Chapter 6 – A Brief Review of Elasticity
This chapter reviews stress, strain, and elasticity in three dimensions using tensors.
There is a brief presentation of tensor rotations, principal stress, and stress invariants.
The principal stress vs. strain is inverted using the symbolic algebra in matlab . This
is used to translate the Lamé elastic constants to Poisson’s ratio and Young’s modulus.
The plane stress formulation is used to develop the moment versus curvature relation-
ship for a thin elastic plate. This chapter is intended as a review and reminds some
students that they need to master this material.

Chapter 7 – Crustal Structure, Isostasy, Swell Push Force, and Rheology
This chapter covers four topics. The first is the basic structure of the oceanic and conti-
nental crust. The second and third topics are the vertical and horizontal force balances
due to variations in crustal thickness. The vertical force balance, isostasy, provides a
remarkably accurate description of variations in crustal thickness based on a knowl-
edge of the topography. The horizontal force balance provides a lower bound on the
force needed to maintain topographic variations on the Earth. The fourth topic is the
rheology of the lithosphere. How does the lithosphere strain in response to applied
deviatoric stress? The uppermost part of the lithosphere is cold, so frictional sliding
along optimally oriented, pre-existing faults governs the strength. At greater depth, the
rocks can yield by nonlinear flow mechanisms. The overall strength-versus-depth pro-
file is called the yield-strength envelope (YSE). The integrated yield strength transmits
the global plate tectonic stress. Moreover, the driving forces of plate tectonics cannot
exceed the integrated lithospheric strength. This provides an important constraint on
the geodynamics of oceans and continents.

Chapter 8 – Flexure of the Lithosphere
This chapter covers lithospheric flexure theory for an arbitrary vertical load. The ap-
proach is similar to the solutions of the marine magnetic anomaly problem, the litho-
spheric heat conduction problem, the strike-slip fault problem, and the flat-Earth grav-
ity problem. In all these cases, we use the Cauchy residue theorem to perform the
inverse Fourier transform. In a later chapter we combine this flexure solution with the
gravity solution to develop the gravity-to-topography transfer function. Moreover, one
can take this approach further, to develop a Green’s function relating temperature, heat
flow, topography, and gravity to a point heat source. In addition to the constant flexural
rigidity solution found in the literature, we develop an iterative solution to flexure with
spatially variable rigidity.

Chapter 9 – Flexure Examples
This chapter provides practical examples of flexural models applied to structures in the
lithospheres of Earth and Venus. The models are all solutions to the thin and thick-
plate flexure equation, with a variety of surface loads, sub-surface loads, and boundary
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conditions. Both gravity and topography data are used to constrain the models. We
provide a numerical example that takes arbitrary topography and gravity anywhere
on the Earth and uses Generic Mapping Tools to find the best elastic thickness and
densities. A unique feature of this chapter is a comprehensive discussion of the non-
linear relationship between plate bending moment and curvature that dominates at all
subduction zones. This chapter includes eight challenging flexure exercises based on
publications including: ice shelf flexure, seamount flexure, fracture zone flexure, trench
and outer rise yield strength and fracturing, and flexure on Venus.

Chapter 10 – Elastic Solutions for Strike-Slip Faulting
This chapter provides the mathematical development for the deformation and strain
pattern due to a strike-slip fault in an elastic half space. We develop the solution from
first principles using the Fourier transform approach. This approach does not explicitly
use dislocations but simulates dislocations using body force couples following Steketee
(1958) and Burridge and Knopoff (1964). The main advantage of this method is that
it is easily extended to three dimensions as well as complicated fault geometries. We
also demonstrate the inherent non-uniqueness of inverting for slip versus depth from
surface geodetic data yet show that the overall seismic moment is well resolved by
surface data. The exercises at the end of the chapter illustrate the use of the 3-D Fourier
transform, the Cauchy residue theorem, and computer algebra to solve for the response
of an elastic half space to 3-D vector body forces.

Chapter 11 – Heat Flow Paradox
This chapter is a quantitative investigation of the heat flow paradox that relates the
expected frictional heating on a fault to the measurements of surface heat flow above
the fault (e.g., (Lachenbruch and Sass, 1980)). A straightforward calculation, using a
reasonable coefficient of friction, predicts measurably high heat flow above the fault
that is not observed. We also investigate the maximum tectonic moment that could
be sustained by a fault and show that it is at least an order of magnitude greater than
what is observed. Finally, we discuss the implications in terms of fault strength and
earthquake predictability.

Chapters 12 – The Gravity Field of the Earth, Part 1
This chapter provides a brief introduction to physical geodesy that describes the size
and shape of the Earth and its gravity field. We decompose the Earth’s reference grav-
ity field into a spherical term and terms related to hydrostatic flattening by rotation.
Superimposed on this reference model are anomalies discussed in later chapters. This
chapter also describes how the reference Earth model has been developed and defined
using satellite observations.

Chapters 13 – Reference Earth Model: WGS84
This chapter is a summary of the reference shape and gravity field of the Earth as
defined by the WGS84 parameters. Deviations from this reference model are defined
in terms of geoid height, gravity anomaly, and deflections of the vertical.
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Chapter 14 – Laplace’s Equation on Spherical Coordinates
This chapter introduces spherical harmonics and their properties for representing plan-
etary gravity fields. We explain how the harmonic decomposition of a function on a
sphere is analogous to the Fourier series decomposition of a 2-D function in Cartesian
coordinates. We then use this spherical harmonic formulation to solve Laplace’s equa-
tion and discuss upward continuation. Finally, we describe how the Earth’s gravity
field is represented as spherical harmonic coefficients and their time variation.

Chapter 15 – Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry
This chapter is focused on shorter wavelength components of the gravity field that are
best represented in Cartesian coordinates using Fourier series. The Fourier transform
of Laplace’s equation is used to illustrate upward continuation as well as the connection
between the anomalous potential (geoid height), its first derivatives (gravity anomaly
and deflections of the vertical), and the second derivatives (gravity gradient tensor).
This chapter also contains a rather complete discussion of satellite radar altimetry and
how it is used to recover short wavelength variations in gravity which provides an
important tool for investigating plate tectonics.

Chapter 16 – Poisson’s Equation in Cartesian Coordinates
This chapter is focused on solving Poisson’s equation using Fourier transforms. This
solution is used to generate models of the disturbing potential and its derivatives from
a 3-D density model. One approach is to perform a convolution of the Green’s function
with the 3-D density model. However, this approach, which appears in most textbooks,
is error prone, computationally inefficient, and almost never used in modern publica-
tions. Instead, we illustrate the Fourier transform approach where the model is divided
into layers and the density of each layer is Fourier transformed, upward continued, and
summed to generate a surface model. A uniform density leads to the Bouguer slab cor-
rection. Finally, we develop Parker’s exact formula for computing the gravity model
for a layer with non-uniform topography.

Chapter 17 – Gravity/Topography Transfer Function and Isostatic Geoid Anomalies
This chapter combines thin-elastic plate flexure theory with the solution to Poisson’s
equation, to develop a linear relationship between gravity and topography. We discuss
three uses of this relationship: (1) If both the topography and gravity are measured
over an area that is several times greater than the flexural wavelength, then the grav-
ity/topography relationship (in the wavenumber domain) can be used to estimate the
elastic thickness of the lithosphere and/or the crustal thickness. (2) At wavelengths
greater than the flexural wavelength, where features are isostatically compensated, the
geoid/topography ratio can be used to estimate the depth of compensation of crustal
plateaus and hot-spot swells. (3) If the gravity field is known over a large area, but
there is rather sparse ship-track coverage, the topography/gravity transfer function can
be used to interpolate the seafloor depth between the sparse ship soundings. Finally,
we show that the geoid height for isostatically compensated topography is proportional
to the swell push or ridge push force so under ideal conditions, one component of the
plate driving force can be measured from the geoid height.
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Chapter 18 – Postglacial Rebound
This chapter considers the classic postglacial rebound problem using the Fourier trans-
form approach. The chapter relies on Chapter 6 in Geodynamics where the differential
equations for viscous flow of an incompressible fluid are developed. We then solve
for the response of a viscous half space to an arbitrary initial topography to illustrate
the effect of load wavelength on the relaxation time. In addition, an elastic lithosphere
is added to the viscous half space to simulate the present-day collapse of the flexural
forebulge on the perimeter of the major Laurentide and Fennoscandia ice loads.

Chapter 19 – Driving Forces of Plate Tectonics
This chapter discusses the three major driving forces of plate motion — ridge push,
slab pull, and viscous drag. In previous chapters we showed that the ridge-push force is
proportional to the age of the cooling ocean lithosphere. In this chapter we focus on the
slab pull force which depends on age of the subducted lithosphere as well as the depth
that the slab remains coupled to the surface. We use results from recent publications
to calculate the positive and negative buoyancy of three major phase changes. (1) The
basalt crust and depleted layer undergo a phase change to the higher density eclogite.
(2) Endothermic phase changes (positive Clapeyron slope) produce a zone of increased
density in the cold lithosphere for a large part of the transition zone between depths of
310 and 660 km. (3) Exothermic phase changes (negative Clapeyron slope) below 660
km result in a zone of decreased density between depths of 660 and 720 km. Finally,
we discuss the magnitudes of the forces for subduction of a small young plate as well
as a large old plate to illustrate that the slab pull force (thermal plus phase changes)
dominates ridge push and the difference must be attributed to the drag force.

The mathematical developments refer back to the section or equation in Geodynamics
where the solutions are provided. Note that Geodynamics contains much more in-
formation than is provided in this new book Advanced Geodynamics, so both will be
needed for a graduate-level geodynamics course.

Acknowledgments I thank Jerry Schubert, Tony Watts, Paul Wessel, and numerous
students for reviewing and commenting on the manuscript. The Generic Mapping Tools
(GMT) (Wessel et al., 2019) were used extensively in data analysis and to generate fig-
ures. The individual chapters in this book were first developed as lecture notes and con-
verted to LATEX by the people at Dangerous Curve (typesetting@dangerouscurve.org),
some of whom have been doing typography since 1979.



Chapter 1

Observations Related
to Plate Tectonics

1.1 Global Maps

The plate tectonic model states that the outer shell (lithosphere) of the Earth is divided
into a small number of nearly rigid plates which slide over the weak asthenosphere.
The plates are the surface thermal boundary layer (TBL) of mantle convection, and
descending slabs are the primary active components of the convective system. Plate
boundaries are generally narrow and are characterized by earthquakes and volcanoes.

It is useful to assess the global data sets that are most relevant to plate tectonics. Be-
low are a series of global maps that help to confirm various aspects of plate tectonic
theory. Plate boundaries are classified as ridges, transform faults, or subduction zones
based on basic observations of topography (Figures 1.1 and 1.2), gravity anomaly

(Figure 1.3), and seismicity (Figure 1.4). Remarkably, the axes of nearly all seafloor
spreading ridges lie at a depth of 2500–3000 m below sea level, which is the level of
isostasy for a hot thin lithosphere. Depths gradually increase away from the ridges,
because of cooling and thermal contraction, so old ocean basins are commonly 4500–
5000 m deep. Fracture zones and aseismic ridges also show up on these maps. Global
seismicity (magnitude >5.1, Figure 1.4) highlights the plate boundaries and reveals
their tectonic style. Shallow normal-faulting earthquakes (<30 km deep) are common
along slow-spreading ridges, but largely absent along faster-spreading ridges where the
plates are too thin and weak to retain sufficient elastic energy to generate large earth-
quakes. Transform faults are characterized by relatively shallow (<30 km) strike-slip
earthquakes, and they are common along both fast, and slow-spreading ridges. The
deeper-earthquakes (green and blue dots in Figure 1.4) occur only in subduction zones

7
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where sheets of seismicity (i.e., Wadati-Benioff zone) are critical evidence that the
relatively cold lithosphere is subducting back into the mantle. But even convergent
boundaries are characterized by shallow extensional earthquakes on the ocean side of
the trenches. Some regions (e.g., Africa, Asia, western North America, and the Indian
Ocean) have distributed earthquake activity indicating broad deformational zones. To-
pography and seismicity provide strong evidence for tectonic activity but little or no
information on the rate of plate motion.

Marine magnetic anomalies, combined with relative plate motion directions based on
satellite altimeter measurements of fracture-zone trends, have been used to construct a
global age map (Figure 1.5) of the relatively young (<180 Myr) oceanic lithosphere.
Finally, the distribution of off-ridge volcanoes that have been active during the Quater-
nary mainly occur directly behind trenches where wet subducting slabs reach astheno-
spheric depths and trigger back-arc volcanism (Figure 1.6). A few active volcanoes
occur within the interiors of the plates and in diffuse extensional plate boundaries.

The geoid (Figure 1.7) shows little correlation at long wavelengths with surface tec-
tonics, and primarily reflects mass anomalies deep in the mantle. It is expected that the
dynamic topography–the topography not due to crustal and near-surface variations–
and the stress-state of the lithosphere will also reflect deep density differences. In-
sofar as volcanoes correlate with high surface elevations and extensional stress, one
expects correlation of volcanoes with deep mantle structure, even if there is no mate-
rial transfer. These maps are available for viewing in Google Earth at the following
site: topex.ucsd.edu/geodynamics/tectonics.kmz.

A global map of crustal thickness (Figures 1.8) and 1.2), based on refraction seismol-
ogy as well as receiver function analyses, shows the major contrast between oceanic
and continental crust. Ocean crustal thickness is relatively uniform (6–7 km). In con-
trast, the crustal thickness under the continents is generally 30–40 km in areas where
the topography is within a few hundred m of sea level. Areas of high elevation such as
the Andes Mountains, the Himalayas, and the Tibetan Plateau have much thicker crust.
As discussed throughout the text, the lack of high-amplitude, long-wavelength grav-
ity anomalies is evidence that these large-scale topographic variations are isostatically
compensated—mostly by variations in crustal thickness.

The final map shows lithospheric thickness derived from surface wave tomography
(Figure 1.9). Over the ocean, the thickness of the lithosphere increases with the age of
the plates. The thickest oceanic lithosphere occurs along the western side of the North
and South Atlantic basins as well as the Western Pacific. The lithosphere is very thick
(>150 km) beneath the continental cratons of South Africa, Australia, northern Eurasia,
northeastern North America, eastern South America, Greenland, and East Antarctica.
Thinner continental lithosphere occurs in tectonically active areas. One prominent
exception is Tibet and the mountain ranges of central Asia where there is active crustal
shortening and underthrusting of the Indian plate beneath Tibet.

topex.ucsd.edu/geodynamics/tectonics.kmz


CHAPTER 1. OBSERVATIONS RELATED TO PLATE TECTONICS 9

Fi
gu

re
1.

1:
To

po
gr

ap
hy

of
th

e
E

ar
th

ba
se

d
on

a
gl

ob
al

co
m

pi
la

tio
n

of
la

nd
da

ta
(S

R
T

M
an

d
ot

he
r

so
ur

ce
s)

an
d

oc
ea

n
da

ta
fr

om
a

co
m

bi
na

tio
n

of
sp

ar
se

sh
ip

so
un

di
ng

s
an

d
m

ar
in

e
gr

av
ity

an
om

al
ie

s
de

riv
ed

fr
om

sa
te

lli
te

al
tim

et
ry

(S
m

ith
an

d
Sa

nd
w

el
l,

19
97

;
To

ze
r

et
al

.,
20

19
).



CHAPTER 1. OBSERVATIONS RELATED TO PLATE TECTONICS 10

0

10

20

30

40

50

cr
us

ta
l t

hi
ck

ne
ss

 (k
m

)

0302010
area %

−10

−8

−6

−4

−2

0

2

4

6

8

0 1 2 3 4

 d
ep

th
 (k

m
)  

   
   

   
   

   
   

   
  e

le
va

tio
n 

 (k
m

)

maximum (Mt. Everest  8848 m)

maximum (Mariana Trench -11034 m)

mean height (743 m)

mean depth (-3734 m)
median depth (-4093 m)

(a)

(b)
oceanic
crust

continental
crust

area %

Figure 1.2: (a) Histogram of topography (100 m bins), based on a global compilation
(Becker et al., 2009). The Earth has a bimodal histogram with the largest peak repre-
senting the land and submerged continental shelf. The second largest peak represents
the median ocean depth of about 4000 m. This ocean peak has two subpeaks of un-
known origin, but perhaps representing the relatively uniform depth of hot-spot swells.
(b) Histogram of crustal thickness (1 km bins) based on refraction seismology as well
as receiver function analyses (Laske et al., 2013). Crustal thickness also has a bimodal
distribution where oceanic crust is 6–7 km thick and continental crust is usually greater
than 28 km thick.
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1.2 Exercises

Exercise 1.1. Install Google Earth on your computer and download the global tec-
tonic maps (topex.ucsd.edu/geodynamics/tectonics.kmz). Identify the follow-
ing triple junctions, and use the overlays to determine the type of deformation (R-ridge,
F-transform fault, or T-trench) for each of the three boundaries. Do this for the Men-
docino, Galapagos, Chile, Bouvet, Azores, and Indian Ocean triple junctions.

Exercise 1.2. Sketch a topographic profile across the Atlantic Ocean following a tec-
tonic flow line (i.e., perpendicular to isochrons). The profile should extend from the
east coast of North America to the west coast of Africa. Label the major topographic
features. Provide approximate depths for the major topographic features. Sketch a
second profile that extends from the ridge axis to the coast of North America and also
intersects the Island of Bermuda. What are some major differences between this profile
and the first profile?

Exercise 1.3. Where is the youngest ocean floor? Where is the oldest ocean floor?
What are their approximate ages?

Exercise 1.4. What types of earthquake focal mechanism occur on the three main types
of plate boundary?

Exercise 1.5. Use the book Geodynamics (Turcotte and Schubert, 2014) to complete
Table 1.1. Devise a thought experiment to measure each quantity. The experiments
should be physically realistic, but not necessarily practical.

Example temperature: One could use a thermometer to measure temperature, but that
depends on knowing the coefficient of thermal expansion. One could use the definitions
of the freezing/boiling point of water to define temperatures of 0 ◦C and 100 ◦C. Or one
could use the Stefan–Boltzmann law to measure temperature by measuring radiation L
from a black body at temperature T .

L = σT 4 (1.1)

where σ is the Stefan–Boltzmann constant (5.67x10−8 W m−2 K−4).

topex.ucsd.edu/geodynamics/tectonics.kmz
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Parameter Symbol Units Typical Value and Quantity

Temperature T ◦C or K 100 ◦C is the boiling point of
water at 1 atm. of pressure.

Thermal conductivity

Heat capacity

Density

Coefficient of thermal
expansion (volumetric)

Acceleration of gravity

Gravitational constant

Young’s modulus

Poisson’s ratio

Shear modulus

Bulk modulus

Dynamic viscosity

Table 1.1

Acknowledgments: The data provided in these figures represent decades of data col-
lection by thousands of scientists. Figures were constructed using Generic Mapping
Tools (GMT) (Wessel and Smith, 1995; Wessel et al., 2019). All the global maps can
be reconstructed or customized using the data and GMT scripts at the following site:
topex.ucsd.edu/geodynamics/global_maps.tgz.

topex.ucsd.edu/geodynamics/global_maps.tgz


Chapter 2

Fourier Transform Methods
in Geophysics

2.1 Introduction

Fourier transforms are used in many areas of geophysics such as image processing,
time series analysis, and antenna design. Here we focus on the use of Fourier trans-
forms for solving linear partial differential equations (PDE). Some examples include
Poisson’s equation for problems in gravity and magnetics; the biharmonic equation
for problems in linear viscoelasticity; and the diffusion equation for problems in heat
conduction. We do not treat the wave equation in this book, because there are already
many excellent books on seismology. For each of these problems, we search for the
Green’s function that represents the response of the model to a point source. There
are two approaches to solving this class of problem. In some cases, one can derive a
fully analytic solution, or Green’s function, to the point-source problem. Then a more
general model can be constructed by convolving the actual distribution of sources with
the Green’s function. A familiar example is the case of constructing a gravity anomaly
model given a 3-D density anomaly structure. The second, semi-analytic, approach
can be used to solve more complicated problems where the development of a fully ana-
lytic Green’s function is impossible. This involves using the derivative property of the
Fourier transform to reduce the PDE and boundary conditions to algebraic equations
that can be solved exactly in the transform domain. A more general model can be con-
structed by taking the Fourier transform of the source, multiplying by the transform
domain solution, and performing the inverse transform numerically. Indeed, the only
difference between the two methods is that in the first case, the final model is generated
by direct convolution, while in the second case, the convolution theorem is used for
model generation. When dealing with spatially complex models, the second approach

20
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can sometimes be orders of magnitude more computationally efficient, because of the
efficiency of the fast Fourier transform algorithm.

This chapter introduces the minimum amount of Fourier analysis needed to understand
the solutions to the PDEs provided in the following chapters. A reader not familiar with
Fourier transforms and complex analysis should first study any of the excellent books
on the topic. We recommend the first six chapters of the book by Bracewell (1978) for
a more complete discussion of the material presented here.

2.2 Definitions of Fourier Transforms

The one-dimensional forward and inverse Fourier transforms are defined as

F (k) =

∞∫
−∞

f (x)e−i2πkx dx or F (k) = =
[
f (x)

]
(2.1)

f (x) =

∞∫
−∞

F (k) ei2πkx dk or f (x) = =−1[F (k)
]

(2.2)

where x is the distance and k is the wavenumber, and where k = 1/λ and λ is the
wavelength. We also use the shorthand notation introduced by Bracewell (1978). The
two-dimensional forward and inverse Fourier transforms are defined as

F (k) =

∞∫
−∞

∞∫
−∞

f (x) e−i2πk·xd2x or F (k) = =2
[
f (x)

]
(2.3)

f (x) =

∞∫
−∞

∞∫
−∞

F (k) ei2πk·xd2k or f (x) = =−1
2

[
F (k)

]
(2.4)

where x = (x, y) is the position vector, k = (kx, ky) is the wavenumber vector, and
k · x = kxx + kyy. For several of the derivations, we’ll also take the Fourier transform
in the z-direction (i.e., a 3-D transform) using the following notation

F (kz) =

∞∫
−∞

f (z) e−i2πkzz dz (2.5)

f (z) =

∞∫
−∞

F (kz) ei2πkzz dkz. (2.6)
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Fourier transformation with respect to time is also sometimes used to form a 4-D
transform

F (ν) =

∞∫
−∞

f (t) e−i2πνtdt (2.7)

f (t) =

∞∫
−∞

F (ν) ei2πνtdν. (2.8)

While algebraic manipulation of equations in 4-D is sometimes challenging and error-
prone, we’ll use computers to help us in two ways. First we’ll use the tools of computer
algebra to solve the most challenging algebraic manipulations associated with the 3-D
and 4-D problems. This will result in a closed-form solution on the Fourier domain
called a transfer function. Then we’ll use the Fast Fourier Transform (FFT) algorithm
to forward transform a complicated source and inverse transform the transfer function
times this source, to arrive at the final result.

Note that the wavenumber can be defined to include the 2π. For example, let the
wavenumber s = 2π/λ. In this case the forward and inverse transform become

F(s) =

∞∫
−∞

f (x) e−isx dx (2.9)

f (x) =
1

2π

∞∫
−∞

F(s) eisx ds. (2.10)

We will use this alternate notation in Chapter 8, and it is commonly used throughout
the literature so the reader should be familiar with both notations.

2.3 Fourier Sine and Cosine Transforms

Here we introduce the sine and cosine transforms to illustrate the transforms of odd and
even functions. Also, in later chapters, we’ll use sine and cosine transforms to match
asymmetric and symmetric boundary conditions for particular models.

Any function f (x) can be decomposed into odd O (x) and even E (x) functions such that

f (x) = E (x) + O (x) (2.11)
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where E (x) = 1
2
[
f (x) + f (−x)

]
and O (x) = 1

2
[
f (x) − f (−x)

]
. Note that the complex

exponential function can be written as

eiθ = cos (θ) + i sin (θ) . (2.12)

Exercise 2.1. Use equation (2.12) to show that

cos (θ) =
1
2

(
eiθ + e−iθ

)
and sin (θ) =

1
2i

(
eiθ − e−iθ

)
.

Using this expression (2.12), we can write the forward 1-D transform as the sum of
two parts

F (k) =

∞∫
−∞

f (x) cos (2πkx) dx − i

∞∫
−∞

f (x) sin (2πkx) dx. (2.13)

After inserting equation (2.11) into this expression and noting that the integral of an
odd function times an even function is zero, we arrive at the expressions for the cosine
and sine transforms

F (k) = 2

∞∫
0

E (x) cos (2πkx) dx − 2i

∞∫
0

O (x) sin (2πkx) dx. (2.14)

Throughout this book, we’ll be dealing with real-valued functions. From equation (2.14)
it is evident that the cosine transform of a real, even function is also real and even. Also,
the sine transform of a real odd function is imaginary and odd. In other words, when
a function in the space domain is real valued, its Fourier transform F (k) has a special
Hermitian property F (k) = F(−k), where the overbar signifies the complex conjugate.
Therefore, one can reconstruct the transform of the function with negative wavenum-
bers from the transform with positive wavenumbers. Later, when we perform numerical
examples using real-valued functions such as topography, we can use this Hermitian
property to reduce the memory allocation for the Fourier-transformed array by a factor
of 2. This is important for large 2-D and 3-D transforms.

2.4 Examples of Fourier Transforms

Throughout the book, we will work with only linear partial differential equations, so all
the problems are separable and the order of differentiation and integration is irrelevant.
For example, the 2-D Fourier transform is given by

F
(
kx, ky

)
=

∞∫
−∞


∞∫
−∞

f (x, y) e−i2πkx x dx

 e−i2πkyy dy

=

∞∫
−∞


∞∫
−∞

f (x, y) e−i2πkyy dy

 e−i2πkx x dx.

(2.15)
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Note that this 2-D transform consists of a sequence of 1-D transforms. This property
can be extended to 3-D, 4-D, and even N-D; each transform can be performed sepa-
rately and independently of the transforms in the other dimensions. In the following
analysis, we’ll only show examples of 1-D transforms, but the extension to higher di-
mensions is trivial.

Delta Function By definition the delta function has the following property

∞∫
−∞

f (x) δ (x − a) dx ≡ f (a) . (2.16)

Under integration it extracts the value of f (x) at the position x = a. One can describe
the delta function as having infinite height at zero argument and zero height elsewhere.
The area under the delta function is 1. In terms of pure mathematics, the delta function
is not a function and only has meaning when integrated against another function. In this
book, we use the delta function as a powerful tool provided to us by the mathematicians,
so we trust all the mathematical theory behind it. What is the Fourier transform of
a delta function? By definition, if one performs a forward transform of a function
followed by an inverse transform, or vice versa, one will arrive back with the original
function. Let’s try this using the delta function. By definition, the inverse transform of
a delta function is

∞∫
−∞

δ (k − ko)ei2πkx dk = ei2πko x. (2.17)

Next let’s take the forward transform of equation (2.17). The left-hand side will be
the delta function, because we have performed an inverse and forward transform. The
right-hand side is given by

δ (k − ko) =

∞∫
−∞

ei2πko xe−i2πkx dx =

∞∫
−∞

e−i2π(k−ko)x dx. (2.18)

This result shows that the Fourier basis functions are orthonormal. If we consider the
special case of ko = 0, we see that the inverse Fourier transform of a delta function is
=−1 [δ (k)] = 1. Since Fourier transformation is reciprocal in distance x and wavenum-
ber k, it is also true that = [δ (x)] = 1. The delta function and its Fourier transform
provide an amazingly powerful tool for solving linear PDEs.

Cosine and Sine Functions Let’s use the delta function tool and the expressions
from Exercise 2.1 to calculate the Fourier transform of a cosine function having a
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single wavenumber cos (2πk0x)

∞∫
−∞

cos (2πkox) e−i2πkx dx =
1
2

∞∫
−∞

(
ei2πko x + e−i2πko x

)
e−i2πkx dx

=
1
2

[
δ (k − ko) + δ (k + ko)

]
.

(2.19)

So the Fourier transform of a cosine function is simply two delta functions located
at ±ko.

Exercise 2.2. Show that the Fourier transform of sin (2πk0x) is

1
2i

[
δ (k − ko) − δ (k + ko)

]
.

Gaussian Function The Gaussian e−πx2
function also plays a fundamental role in

solutions to several types of PDEs. Its Fourier transform is

F (k) =

∞∫
−∞

e−πx2
e−i2πkx dx =

∞∫
−∞

e−π(x2+i2kx) dx. (2.20)

Note that (x + ik)2 =
(
x2 + i2kx

)
− k2. Using this, we can rewrite equation (2.20) as

F(k) = e−πk2

∞∫
−∞

e−π(x+ik)2
dx = e−πk2

∞∫
−∞

e−π(x+ik)2
d (x + ik) = e−πk2

(2.21)

where we have used the result that the infinite integral of e−πx2
is 1. This is a remarkable

and powerful result that the Fourier transform of a Gaussian is simply a Gaussian. See
Figure 2.1.
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δ(k)

cos (2π   x)

sin (2π   x)

1

exp (−πk2)

k

exp (−πx2)

x

ko

ko

ko

ko

-ko

-ko

Figure 2.1: Schematic plots of 1-D Fourier transform pairs. The solid lines indicate
real-valued functions, while dashed lines indicate imaginary valued functions (modi-
fied from Bracewell (1978)).

2.5 Properties of Fourier Transforms

There are several properties of Fourier transforms that can be used as tools for solving
PDEs.

Similarity Property The first property, called the similarity property, says that if you
scale a function by a factor of a along the x-axis, its Fourier transform will be scaled
by a−1 along the k-axis and the amplitude will be scaled by |a|−1.
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Exercise 2.3. Use the definition of the Fourier transform equation (2.1) and a change
of variable to show the following. Try positive and negative values of a to understand
why the absolute value is needed in the amplitude scaling.

=
[
f (ax)

]
=

1
|a|

F
(

k
a

)
(2.22)

Shift Property The shift property says that the Fourier transform of a function that
is shifted by a along the x-axis equals the original Fourier transform scaled by a phase
factor. This property is especially useful for numerically shifting a function a non-
integer amount of the data spacing along the axis.

Exercise 2.4. Use the definition of the Fourier transform and a change of variable to
show the following is true.

=
[
f (x − a)

]
= e−i2πkaF(k) (2.23)

Derivative Property The derivative property of the Fourier transform is the essential
tool used in this book to transform linear PDEs into algebraic equations that are easily
solved. It states that the Fourier transform of the derivative of a function is the Fourier
transform of the original function scaled by the imaginary wavenumber.

=

[
∂ f
∂x

]
= i2πk F(k) (2.24)

To show this is true, we start with the inverse transform of equation (2.24)

∂ f
∂x

=

∞∫
−∞

i2πk F(k) ei2πkx dk. (2.25)

Next, take the forward transform of equation (2.25) and rearrange terms

=

[
∂ f
∂x

]
=

∞∫
−∞

∞∫
−∞

i2πko F(ko) ei2πko x dkoe−i2πkx dx

=

∞∫
−∞

i2πko F(ko)


∞∫
−∞

e−i2π(k−ko)x dx

 dko.

(2.26)

The term in the curly brackets is the delta function δ (k − ko) given in equation (2.18).
The result is

=

[
∂ f
∂x

]
=

∞∫
−∞

i2πko F(ko) δ (k − ko) dko = i2πk F(k) . (2.27)
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Convolution Theorem The final property considered here is the convolution theo-
rem, which states that the Fourier transform of the convolution of two functions is
equal to the product of the Fourier transforms of the original functions.

=


∞∫
−∞

f (u) g (x − u) du

 = F(k) G(k) (2.28)

To show this is true, one can perform the Fourier integration on the left side of equa-
tion (2.28) and rearrange the order of the integrations

=


∞∫
−∞

f (u) g(x − u) du

 =

∞∫
−∞


∞∫
−∞

f (u) g(x − u) du

 e−i2πkx dx

=

∞∫
−∞

f (u)


∞∫
−∞

g(x − u) e−i2πkx dx

 du.

(2.29)

Next, use the shift property of the Fourier transform to note that the function in the
curly brackets on the right side of equation (2.29) is e−i2πkuG (k). The result becomes

=


∞∫
−∞

f (u) g(x − u) du

 = G(k)

∞∫
−∞

f (u) e−i2πku du = F(k) G(k) . (2.30)

Note that these four properties are equally valid in two dimensions or even N dimen-
sions. The properties also apply to discrete data. See Chapter 18 in Bracewell (1978).

Cauchy Residue Theorem The Cauchy residue theorem is an additional tool that
we will use many times in the book to perform inverse transforms for cases where the
function is analytic and has poles in the complex plane. Let f (z) be an analytic function
in the complex plane z = x + iy.

An analytic function has the special property that a path integral of the function about
any closed loop in the complex plane is zero∮

f (z) dz = 0. (2.31)

As an example, the gravitational potential associated with the topography of the Earth
represents an analytic function. A cyclist riding along any closed path will gain and
lose potential energy along the path, but no matter how the path is traversed, they will
have the same potential at the end of the circuit as he started with. Next, suppose
the same integration is performed with a pole (zero) in the denominator at a complex
point zo. The Cauchy residue theorem states∮

f (z)
z − zo

dz = i2π f (zo) . (2.32)
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The function in the numerator could be very complicated, but as long as it is analytic,
the path integral can be evaluated.

Exercise 2.5. Without using the Cauchy residue theorem, show that the following
is true. ∮

1
z

dz = i2π (2.33)

2.6 Solving a Linear PDE Using Fourier Methods
and the Cauchy Residue Theorem

In the following chapters, we’ll derive the Green’s function and/or its Fourier trans-
form, starting from a PDE and boundary conditions. The approach will follow the same
format, so here we have selected a simple example to illustrate the general method.

Heat Flow for a Line Source of Heat at Depth

Consider a line source of heat at a depth of −a buried in a conductive half space, as
shown in Figure 2.2.

z

−a

x

y

Q(x,z)=(x)(z+a)

a

Figure 2.2: Line source of heat at z = −a. The surface boundary condition can be met
by placing an equal but opposite line sink of heat at z = a.
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Calculate the temperature in the half space. The differential equation and three bound-
ary conditions are

∂2T
∂x2 +

∂2T
∂z2 = δ (x) δ (z + a)

T (x, 0) = 0

lim
|x|→∞

T (x, z) = 0

lim
z→∞

T (x, z) = 0.

(2.34)

The first step in the solution is to take the 2-D Fourier transform of the PDE. Each
derivative on the left hand side is replaced with an i2πk according to the derivative
property of the Fourier transform, and the 2-D transform of the right hand side is done
using the definition of the Delta function. The result is

−4π2
(
k2

x + k2
z

)
T (kx, kz) = ei2πkza

T (kx, kz) =
ei2πkza

−4π2
(
k2

x + k2
z

) . (2.35)

Now that we have solved the algebraic problem, we’ll start by taking the inverse Fourier
transform in the z-direction.

T (kx, z) =
−1
4π2

∞∫
−∞

ei2πkz(z+a)(
k2

z + k2
x

) dkz (2.36)

The denominator of equation (2.36) can be factored as (kz + ikx) (kz − ikx), which rep-
resent two poles in the complex plane (Figure 2.3.).

T (kx, z) =
−1
4π2

∞∫
−∞

ei2πkz(z+a)

(kz + ikx) (kz − ikx)
dkz (2.37)

To perform this integration, we’ll integrate around one of these poles using the Cauchy
residue theorem. First consider the case kx > 0, z > −a. We would like to integrate
along the kz-axis from−∞ to∞, as shown in Figure 2.3. If we close the integration path
in the upper hemisphere of the complex plane, the numerator will become vanishingly
small, because it is a decaying exponential function. Therefore, the integration along
the kz-axis will be equivalent to the full integration around the pole kz = ikx. Using
equation (2.32), the result is

T (kx, z) =
−i2π
4π2

ei2πikx(z+a)

2ikx
=
−e−2πkx(z+a)

4πkx
. (2.38)
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ikx

−ikx

Re kz

Im kz

Figure 2.3: Closed integration path about a pole in the complex plane.

Note that this is a decaying exponential function of z that satisfies the last boundary
condition in equation (2.34). Next, consider the case kx < 0, z > −a. This time, we
close the integration path in the lower hemisphere to also achieve a decaying exponen-
tial function. Integration about the pole in the clockwise direction reverses the sign in
the Cauchy residue theorem, so the result is

T (kx, z) =
−i2π
4π2

e−i2πikx(z+a)

−2ikx
=

e2πkx(z+a)

4πkx
. (2.39)

Equations (2.38) and (2.39) can be combined by using the absolute value of kx.

T (kx, z) =
−e−2π|kx |(z+a)

4π |kx|
(2.40)

The next step is to take the inverse transform with respect to kx.

T (x, z) =
−1
4π

∞∫
−∞

e−2π|kx |(z+a)

|kx|
ei2πkx x dkx (2.41)

One way to perform this final integration is to use the derivative property of the Fourier
transform to find the solution for ∂T/∂z and then integrate over z to get the desired result.

∂T (x, z)
∂z

=
1
2

∞∫
−∞

e−2π|kx |(z+a)ei2πkx x dkx (2.42)

One can look up this definite integral

∂T (x, z)
∂z

=
− (z + a)

4π
[
x2 + (z + a)2

] , z > −a. (2.43)

After integrating over z, we find

T (x, z) =
−1
4π

ln
[
x2 + (z + a)2

]1/2
. (2.44)
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Finally, we have not yet met the surface boundary condition T (x, 0) = 0. This can be
achieved by placing a line heat sink at z = a. The sum of the source and sink satisfies
the differential equation and the four boundary conditions.

T (x, z) =
−1
4π

{
ln

[
x2 + (z + a)2

]1/2
− ln

[
x2 + (z − a)2

]1/2
}

(2.45)

2.7 Fourier Series

Many geophysical problems are concerned with a small area on the surface of the Earth
having a width of W and length of L, as shown in Figure 2.4.

x

y

z

W

L

Δx
Δy

Figure 2.4: Cartesian coordinate system used throughout the book with z positive up.
The z = 0 plane is the surface of the Earth. Fourier transforms deal with infinite
domains while the Fourier series has finite domains. For our numerical examples we
will select an area of length L and width W consisting of uniform cells of size ∆x and
∆y. This can be represented as a 2-D array of numbers with J = L/∆x columns and
I = W/∆y rows.

The coefficients of the two-dimensional Fourier series are computed by the following
integration

Fm
n =

1
LW

L∫
o

W∫
o

f (x, y) exp
[
−i2π

(m
L

x +
n
W

y
)]

dy dx. (2.46)

The function is reconstructed by the following summations over the Fourier coefficients

f (x, y) =

∞∑
n=−∞

∞∑
m=−∞

Fm
n exp

[
i2π

(m
L

x +
n
W

y
)]
. (2.47)
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The finite size of the area leads to a discrete set of wavenumbers kx = m/L, ky =

n/W, and a discrete set of Fourier coefficients Fm
n . In addition to the finite size of the

area, geophysical data commonly have a characteristic sampling interval ∆x and ∆y.
Note that I = L/∆x is the number of points in the x-direction and J = W/∆y is the
number of points in the y-direction. The Nyquist wavenumbers are kx = 1/ (2∆x) and
kx = 1/ (2∆x), so there is a finite set of Fourier coefficients −I/2 < m < I/2 and
−J/2 < n < J/2. Recall the trapezoidal rule of integration

L∫
0

f (x) dx �
I−1∑
i=0

f (xi)∆x where xi = i∆x

L∫
0

f (x) dx � L
I

I−1∑
i=0

f (xi).

(2.48)

The discrete forward and inverse Fourier transform are

Fm
n =

1
IJ

I−1∑
i=0

J−1∑
j=0

f j
i exp

[
−i2π

(m
I

i +
n
J

j
)]

(2.49)

f j
i =

I/2−1∑
n=−I/2

J/2−1∑
m=−J/2

Fm
n exp

[
i2π

(
i
I
m +

j
J

n
)]
. (2.50)

The summations for the forward and inverse discrete Fourier transforms are similar, so
one can use the same computer code for both transforms. Sorry for the dual use of the
letter ‘i.’ The italic ‘i’ in front of the 2π is

√
−1, whereas the non-italic ‘i’s are integers.

2.8 Exercises

Exercise 2.6. What is the Fourier transform of the following function? Show your
work and simplify the result.

Π(x) =


1 |x| < 1/2
1/2 |x| = 1/2
0 otherwise

(2.51)

Exercise 2.7. Use the convolution theorem to calculate the Fourier transform of the
following. Show your work.

Λ(x) =

1 − |x| |x| ≤ 1
0 |x| > 1

(2.52)

Note Λ = Π ∗ Π.
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Exercise 2.8. Perform the following path integral on |z| = 2.∮
z + 2

(z2 + 1)
dz (2.53)

Exercise 2.9.

%
% 1) Write a program to generate a cosine function
% using 2048 points. Generate exactly 32, or 64 cycles
% of the function. Plot the results and add labels.
%
figure(1)
clf
nx=2048;
kc=64/nx;
x=0:nx-1;
%
% generate the function
%
y=cos(2*pi*x*kc);
%
figure(1)
plot(x,y);
xlabel(’x’)
ylabel(’cos(x)’)
pause
%
% 2) Take the Fourier transform of the function that you made in problem 1.
% Use fftshift to shift the zero frequency to the center of the spectrum.
% Generate wavenumbers for the horizontal axis.
% Take the inverse FFT. Do you get what you started with? (Don’t
% forget to undo the fftshift.)
%
figure(2)
subplot(5,1,1),plot(x,y);
xlabel(’x’)
ylabel(’cos(x)’)
%
% generate the wavenumbers
%
k=-nx/2:nx/2-1;
%
cy=fftshift(fft(y));
subplot(5,1,2),plot(k,real(cy));
xlabel(’k’)
subplot(5,1,3),plot(k,imag(cy));
%
% do the inverse FFT
%
yo=ifft(fftshift(cy));
subplot(5,1,4),plot(x,real(yo));
xlabel(’x’)
ylabel(’cos(x)’)
subplot(5,1,5),plot(x,real(y-yo));
xlabel(’x’)
ylabel(’difference’)
pause
%
% 3) Do problem 2 over, using a sine function instead of a cosine function.
%
% 4) Show that the Fourier transform of a Gaussian function is a Gaussian function.
% Plot the difference between the fft result and the exact function.
% When you do this problem, it is best to make the Gaussian function an even function
% of x just prior to computing the fft(). If you do this then the transformed
% Gaussian will be real and even. Also you will need to scale the transform by
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% the point spacing dx = L/nx.
%
clear
figure(3)
nx=2048;
L=20;
dx=L/nx;
a=1.;
x=a*(-nx/2:nx/2-1)*dx;
g=exp(-pi*x.*x);
subplot(4,1,1),plot(x,g);
axis([-4,4,-.5,1.1])
xlabel(’x’)
ylabel(’Gaussian’)
%
% generate the wavenumbers
%
k=(-nx/2:nx/2-1)/L;
%
cg=fftshift(fft(fftshift(g)))*dx;
%
% 5) Use this Gaussian example to demonstrate the stretch property of Fourier transform. The
% results should be compared in the wavenumber domain.
%
%
% 6) Use this Gaussian function to illustrate the shift property of the Fourier transform.
% The results should be displayed as a shifted Gaussian in the space domain.
%
%
% 7) Use the Gaussian function to demonstrate the derivative property of the Fourier
% transform. The analytic derivative of the Gaussian should be compared with the
% Fourier derivative in the space domain.
%



Chapter 3

Plate Kinematics

3.1 Plate Motions on a Flat Earth

Plate tectonic theory describes the motions of rigid plates on a spherical Earth. How-
ever, when considering the relative motions very close to the plate boundary or at a
triple junction, it is appropriate to use a flat-Earth approximation. We’ll begin with the
flat-Earth case and then move on to the spherical case (Fowler, 1990). Consider the
two plates A and B, which have a subduction zone boundary between them, such as
the Nazca and South American plates. In this analysis, all plate motions are relative, so
one can either consider plate B as fixed or plate A as fixed, and draw the relative vector
velocity between them—as shown in Figure 3.1.

36
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         A                                       B 
 
 
      fixed                                  VBA 

                
       A                                      B 
 
 
    VAB                                       fixed 

VAB velocity vector of plate A relative to plate B.

VBA velocity vector of plate B relative to plate A.

VAB = −VBA

VBA = Vxi + Vy j

Figure 3.1

3.2 Triple Junction

A triple junction is the intersection of three plate boundaries. The most common types
of triple junctions are ridge-ridge-ridge (R-R-R), ridge-fault-fault (R-F-F), and ridge-
trench-trench (R-T-T); see Figure 3.2.

Each type of plate boundary has rules about relative velocities:

Ridge relative velocity must be divergent and is usually perpendicular to the ridge.

Transform Fault relative velocity must be parallel to the fault.

Trench relative velocity must be convergent, but no direction is preferred.

All triple junctions must satisfy a velocity condition such that the vector sum around
the plate circuit is zero.

VBA + VCB + VAC = 0 (3.1)

In most cases we can map the geometry of the spreading ridges, transform faults, and
trenches, but cannot always measure the relative velocities. The triple junction closure
equation (3.1) can be used to solve for spreading velocities given the triple junction
geometry, the rules, and at least one relative plate velocity.
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       A                       B 
     (fixed) 
 
 
                    C 
                
               R - F - F 

 
       A                       B 
     (fixed) 
 
 
                   C 
              
              R - R - R 

 
                         A            
                  
                                        B 
  
                   C 
                
               R - T - T 

Figure 3.2: Three of the most common triple junctions: R-ridge, F-fault, and T-trench.

A B

C

CIR

SEIR

SW
IR

Figure 3.3: Indian Ocean Triple Junction: R-R-R. The three spreading ridges are the
Central Indian Ridge (CIR), the Southeast Indian Ridge (SEIR), and the Southwest
Indian Ridge (SWIR). The greyscale image is the vertical gravity gradient discussed in
later chapters.

Example 3.1. Given the geometry of the Indian Ocean Triple Junction in Figure 3.3
and one spreading rate |VCB| = 50 mm/yr, calculate the other two spreading rates.
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VBA

VAC

VCB

17

45

118

Figure 3.4: Sum of interior angles = 180◦

The first step is to construct a diagram of the sum of the relative plate velocities as
shown in Figure 3.4. In this case we used the rule that the relative spreading direction
between two plates is described by the orientation of the significant-offset transform
faults closest to the triple junction (dashed lines in Figure 3.3). We then use the law of
sines to solve for the lengths of the vectors on the other two sides of the triangle.

|VBA|

sin 45
=
|VAC |

sin 17
=
|VCB|

sin 118
(3.2)

We find |VBA| = 40.0 mm/yr and |VAC | = 16.6 mm/yr. The map in Figure 3.5 shows
the other triple junctions. As an exercise, use a bathymetric map (e.g., Google Earth
and this KMZ-file topex.ucsd.edu/pub/srtm30_plus/SRTM30_PLUS.kmz) to de-
termine the geometry of another triple junction, and then use Table 3.1 in the next
section to calculate the spreading rate at one of the ridges. The next section develops
the mathematics for calculation of plate motions on a spherical Earth.

topex.ucsd.edu/pub/srtm30_plus/SRTM30_PLUS.kmz
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3.3 Plate Motions on a Sphere

These notes are largely based on
three publications (Minster and
Jordan, 1978; DeMets et al., 1990,
2010).

Given:

ω angular velocity vector
(

rad
s

)
r position on Earth (m)

Calculate:

v velocity vector at position r
(

m
s

)

r
v

ω

Δ

Of course, the velocity of the plate must be tangent to the surface of the Earth, so the
velocity is the cross product of the position vector and the angular velocity vector.

v = ω × r (3.3)

or
v = ı̂

(
ωyz − ωzy

)
− ̂ (ωxz − ωzx) + k̂

(
ωxy − ωyx

)
(3.4)

where ı̂, ĵ, and k̂ are unit vectors. The magnitude of the velocity is given by

|v| = |ω| |r| sin (∆) (3.5)

where ∆ is the angle between the position vector and the angular velocity vector. It is
given by the following formula:

cos (∆) =
ω · r
|ω| |r|

(3.6)

The formulas above assume that the angular velocity vector and the position vector
are provided in Cartesian coordinates. However, usually they are specified in terms
of latitude and longitude. Thus, one must transform both vectors. The usual case is
to calculate the relative velocity between two plates somewhere along their common
boundary. Table 3.1 lists the pole position and rates of rotation for relative motion
between plate pairs shown in Figure 3.8. The Cartesian position of a point along the
plate boundary is

x = a cos θ cos φ
y = a cos θ sin φ
z = a sin θ

(3.7)
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where θ is latitude, φ is longitude, and a is the mean Earth radius. It is helpful to
memorize the conversion from latitude-longitude to the Cartesian coordinate system,
where the x-axis runs from the center of the Earth to a point at 0◦ latitude and 0◦

longitude (i.e., the Greenwich meridian), the y-axis runs through a point at 0◦ latitude
and 90◦ east longitude, and the z-axis runs along the spin-axis to the North Pole.

Similarly, the pole positions must be converted from geographic coordinates (θp, φp)
into the Cartesian system:

ωx = |ω| cos θp cos φp

ωy = |ω| cos θp sin φp

ωz = |ω| sin θp

(3.8)

where |ω| is the magnitude of the rotation vector provided in Table 3.1. There are two
ways to compute the magnitude of the velocity. One could compute the cross product
of the rotation vector and the position vector (equation (3.3)). Then the magnitude of
the velocity is

|v| =
(
v2

x + v2
y + v2

z

)1/2
. (3.9)

One could also calculate the angle ∆ between the position vector and the angular veloc-
ity vector using equation (3.6) and then use that value in equation (3.5) to calculate the
magnitude of the velocity. Indeed, both Fowler (1990) and Geodynamics (Turcotte and
Schubert, 2014) use this second approach. However, they use the rather cumbersome
spherical trigonometry to calculate the angle ∆. We prefer to use equation (3.5), after
converting everything to Cartesian coordinates.
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Figure 3.6: (A) Epicenters for earthquakes with magnitudes equal to or larger than
3.5 (black) and 5.5 (red), and depths shallower than 40 km, for the period 1967–2007.
Hypocentral information is from US Geological Survey National Earthquake Infor-
mation Center files. (B) Plate boundaries and geometries employed for MORVEL.
Plate name abbreviations are as follows: AM, Amur; AN, Antarctic; AR, Arabia; AU,
Australia; AZ, Azores; BE, Bering; CA, Caribbean; CO, Cocos; CP, Capricorn; CR,
Caroline; EU, Eurasia; IN, India; JF, Juan de Fuca; LW, Lwandle; MQ Macquarie; NA,
North America; NB, Nubia; NZ, Nazca; OK, Okhotsk; PA, Pacific; PS, Philippine Sea;
RI, Rivera; SA, South America; SC, Scotia; SM, Somalia; SU, Sundaland; SW, Sand-
wich; YZ, Yangtze. Blue labels indicate plates not included in MORVEL. Patterned
red areas show diffuse plate boundaries. Figure from DeMets et al. (2010).
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plate latitude longitude ω
pair (deg.) (deg.) (deg. Myr−1)

AU-AN 11.3 41.8 0.633
CP-AN 17.2 32.8 0.580
LW-AN -1.2 -33.6 0.133
NB-AN -6.2 -34.3 0.158
NZ-AN 33.1 -96.3 0.477
PA-AN -65.1 99.8 0.870
SM-AN 11.2 -56.7 0.140
EU-NA 61.8 139.6 0.210
NB-NA 79.2 40.2 0.233
AR-NB 30.9 23.6 0.403
CO-NZ 1.6 -143.5 0.636
CO-PA 37.4 -109.4 2.005
JF-PA -0.6 37.8 0.625
NZ-PA 52.7 -88.6 1.326
RI-PA 25.7 -104.8 4.966
NB-SA 60.9 -39.0 0.295
SW-SC -32.0 -32.2 1.316
AR-SM 22.7 26.5 0.429
CP-SM 16.9 45.8 0.570
IN-SM 22.7 30.6 0.408
AN-SR 85.7 -139.3 0.317
NB-SR 70.6 -60.9 0.346

Table 3.1: Best-fitting angular velocities describe counter-clockwise rotation of the first
plate relative to the second. From DeMets et al. (2010).

3.4 Velocity Azimuth

We know that the velocity vector is tangent to the sphere. Given the Cartesian velocity
components from equation (3.4), we would like to compute the latitude vθ and longi-
tude vφ components of velocity. Begin by taking the derivative of equation (3.7) with
respect to time:

vx = a
(
− cos φ sin θ vθ − cos θ sin φ vφ

)
vy = a

(
− sin φ sin θ vθ + cos θ cos φ vφ

)
vz = a (cos θ vθ)

(3.10)

From the last equation in (3.10), we can solve for the latitude velocity component.

vθ =
vz

a cos θ
(3.11)
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Now plug vθ into either the vx or vy equation, and solve for vφ.

vφ =
vy + vz sin φ tan θ

a cos θ cos φ
(3.12)

If this equation turns out to be singular, then use the vx equation:

vφ = −
vx + vz cos φ tan θ

a cos θ sin φ
(3.13)

3.5 Recipe for Computing Velocity Magnitude

In summary, to calculate the magnitude of the velocity:

1. Transform lat and lon into the unit vector x = (x, y, z) using equation (3.7).

2. Transform pole lat and lon into the unit vector xp = (xp, yp, zp) using equa-
tion (3.8).

3. cos ∆ = x · xp

4. v = ωa sin ∆

Example 3.2. Given the rotation pole between the Pacific and Nazca plates, calculate
the spreading rate at −20◦113.5◦W.

Pole Point

52.7 −88.6 1.326 × 10−6 deg/yr 20.0◦S 113.5◦W

52.7 271.4 2.314 × 10−8 rad/yr −20.0 246.5

xp = 0.0148 x = −0.375

yp = −0.606 y = −0.862

zp = 0.795 z = −0.342

cos ∆ = x · xp = (−0.0056 + .522 − .272) = .244

∆ = 75.8 v = ω a sin ∆ = 142.9 mm/yr

3.6 Triple Junctions on a Sphere

Triple junction closure on a sphere is similar to triple junction closure on a flat-Earth,
except that the sum of the rotation vectors must be zero:

ωBA + ωCB + ωAC = 0 (3.14)
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Example 3.3. Galapagos Triple Junction Given the rotation vectors of the Cocos
plate relative to the Pacific plate and the Pacific plate relative to the Nazca plate, calcu-
late the spreading rate at 2◦N, 260◦E.

ωCP + ωNC + ωPN = 0
ωNC = −ωCP − ωPN

vNC = ωNC × r(θ, φ)

|v| is the magnitude of the spreading rate

3.7 Hot Spots and Absolute Plate Motions

So far, we have only considered relative plate motions, because there was no way to tie
the positions of the plates to the mantle. One method of making this connection and
thus determining absolute plate motions is to assume that “hot spots” remain fixed with
respect to the lower mantle.

A hot spot is an area of concentrated volcanic activity. There is a subset of hot spots
that have the following characteristics:

1. They produce linear volcanic chains in the interiors of the plates.

2. The youngest volcanoes occur at one end of the volcanic chain, and there is a
linear increase in age away from that end.

3. The chemistry of the erupted lavas is significantly different from lava erupted at
mid-ocean ridges or island arcs.

4. Some hotspots are surrounded by a broad topographic swell about 1000 m above
the surrounding ocean basin.

These features are consistent with a model where the plates are moving over a relatively
fixed mantle plume. After identifying the linear volcanic chains associated with the
mantle plumes, it has been shown that the relative motions among hot spots is about
10 times less than the relative plate motions.

3.8 Exercises

Exercise 3.1. Calculate the spreading rate at a point on the northern Mid-Atlantic
Ridge (latitude 30, longitude 319).
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Exercise 3.2. Calculate the slip rate along the San Andreas Fault in San Francisco
(latitude 38, longitude −122.7). You will need to use tables from DeMets et al. (2010).

Exercise 3.3. Where is the fastest seafloor spreading ridge on the Earth? Use Table 3.1
to calculate the spreading rate at that location.

Exercise 3.4. The vector sum of relative plate velocities around a triple junction is zero:

vBA + vCB + vAC = 0 (3.15)

Show that the following is also true at a position ro:

ωBA + ωCB + ωAC = 0 (3.16)

where the ω’s are the relative rotation poles on a sphere and ro is not parallel to any of
the ω’s.

Exercise 3.5. Use the Google Earth overlays of vertical gravity gradient and earth-
quake epicenters to sketch the geometry of the ridges and transform faults around the
Galapagos triple junction. Given the spreading rate across the southern segment of the
East Pacific Rise (EPR) of 120 mm/yr, calculate the spreading rates on the northern
segment of the EPR and the Cocos ridge.



Chapter 4

Marine Magnetic Anomalies

4.1 Introduction

This chapter develops the equations needed to compute the scalar magnetic field that is
recorded by a magnetometer towed behind a ship, given a magnetic timescale, a spread-
ing rate, and a skewness (e.g., Schouten (1971); Schouten and McCamy (1972); Gee
and Kent (2007)). A number of assumptions are made to simplify the mathematics.
The intent is to first review the origin of natural remnant magnetism (NRM), to illus-
trate that the magnetized layer is thin compared with its horizontal dimension. Then
the relevant differential equations are developed and solved under the ideal case of
seafloor spreading at the north magnetic pole. This development highlights the Fourier
approach to the solution to linear partial differential equations. The same approach will
be used to develop the Green’s functions for heat flow, flexure, gravity, and elastic dis-
location. For a more general development of the geomagnetic solution, see the paper
by Parker (1973).

4.2 Crustal Magnetization at a Spreading Ridge

As magma is extruded at the ridge axis, its temperature falls below the Curie point,
and the uppermost part of the crust becomes magnetized in the direction of the ambient
magnetic field. Figure 4.1, from Kent et al. (1993), illustrates the current model of
crustal generation. Partial melt that forms by pressure-release in the uppermost mantle
(∼40 km depth) percolates to a depth of about 2000 m beneath the ridge, where it
accumulates to form a thin magma lens. Beneath the lens a mush-zone develops into a
3500 m thick gabbro layer, by some complicated ductile flow. Above the lens, sheeted

48
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Figure 4.1: Model of crustal structure derived from reflection and refraction seismology
(Kent et al., 1993).

dikes (∼1400 m thick) are injected into the widening crack at the ridge axis. Part of
this volcanism is extruded into the seafloor as pillow basalts. The pillow basalts and
sheeted dikes cool rapidly below the Curie temperature as cool seawater percolates to a
depth of at least 2000 m. This process forms the basic crustal layers seen by reflection
and refraction seismology methods.

The highest magnetization occurs in the extrusives, forming seismic layer 2A (Fig-
ure 4.2, Table 4.1), although the sheeted dikes and gabbro layers provide some contri-
bution to the magnetic anomaly measured on the ocean surface. Note that the reversals
recorded in the gabbro layer do not have sharp vertical boundaries (Figure 4.3). The
tilting reflects the time delay when the temperature of the gabbro falls below the Curie
point. The sea-surface magnetic-anomaly model shown in Figure 4.3 (Gee and Kent,
1994) includes the thickness and precise geometry of the magnetization of all three
layers. For the calculation below, we assume all of the magnetic field comes from the
thin extrusive layer.
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Figure 4.2: NRM values (in Am−1) from Hole 504B. Depths are measured from the
seabottom and include 274.5 m of sediment. The horizontal lines separate the upper
units, the transition zone, and the dike complex. (From Smith and Banerjee (1986).)

The other assumptions are:

1. The ridge axis is 2-D, so there are no along-strike variations in magnetization.

2. The magnetization contrast between alternately magnetized blocks is sharp rela-
tive to the mean ocean depth.

3. The spreading rate is uniform with time. Before going into the calculation, we
briefly review the magnetic field generated by a uniformly magnetized block.
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Figure 4.3: Magnetic anomalies generated by a realistic model of crustal magnetization
at a half spreading rate of 32 mm/yr. The primary magnetization signature comes
from the thin layer of extrusives. Dipping magnetization in the Gabbros reflects the
position of the Curie isotherm at depth away from the ridge axis. (Jeff Gee, personal
communication.)

Layers Thickness
Seismic Velocity Description Thermoremnant

Magnetism (TRM)

layer 1 variable
<2.5 km/s sediment N/A

layer 2A 400–600 m
2.2–5.5 km/s

extrusive,
pillow basalts 5–10 A m−1

layer 2B 1400 m
5.5–6.5 km/s

intrusive,
sheeted dikes ∼1 A m−1

layer 3 3500 m
6.8–7.6 km/s intrusive, gabbro ∼1 A m−1

Table 4.1
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4.3 Uniformly Magnetized Block

M magnetization vector (A m−1)

∆B magnetic anomaly vector (T)

µo magnetic permeability (4π × 10−7 T A−1m)

                                       B

                             M

A magnetized rock contains minerals of magnetite and hematite that can be preferen-
tially aligned in some direction. For a body with a uniform magnetization direction,
the magnetic anomaly vector will be parallel to that direction. The amplitude of the
external magnetic field will have some complicated form:

∆B(r) = µoM f (r) (4.1)

where f (r) is a function of position that depends on geometry. The total magnetization
of a rock has two components: thermoremnant magnetism (TRM) MTRM , and magne-
tization that is induced by the present-day dipole field MI :

M = MTRM + MI MI = χH (4.2)

where χ is the magnetic susceptibility and H is the applied dipole field of the Earth.
The Koenigberger ratio Q is the ratio of the remnant field to the induced field. This
value should be much greater than 1 to be able to detect the crustal anomaly. Like the
magnetization, the value of Q is between 5 and 10 in Layer 2A, but falls to about 1
deeper in the crust.

4.4 Anomalies in the Earth’s Magnetic Field

When a magnetometer is towed behind a ship, one measures the total magnetic field B,
and must subtract out the reference Earth magnetic Be field to establish the magnetic
anomaly ∆B:

B = Be + ∆B (4.3)

Most marine magnetometers measure the scalar magnetic field. This is an easier mea-
surement, because the orientation of the magnetometer does not need to be known. The
total scalar magnetic field is

|B| =
(
|Be|

2 + 2Be · ∆B + |∆B|2
)1/2

(4.4)

The dipolar field of the Earth is typically 50,000 nT, while the crustal anomalies are
much smaller (100–1000 nT). Thus, |∆B|2 is small relative to the other terms, and we
can develop an approximate formula for the total scalar field:

|B| � |Be|

(
1 +

2∆B · Be

|Be |
2

)1/2
� |Be|

(
1 +

∆B · Be

|Be |
2

)
(4.5)
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Equation (4.5) can be rearranged to relate the measured scalar anomaly A to the vector
anomaly ∆B, given an independent measurement of the dipolar field of the Earth Be:

A = |B| − |Be| =
∆B · Be

|Be |
(4.6)

4.5 Magnetic Anomalies Due to Seafloor Spreading

To calculate the anomalous scalar field on the sea surface due to thin magnetic stripes
on the seafloor, we go back to Poisson’s equation relating magnetic field to magnetiza-
tion. The model is shown in Figure 4.4.

We have an xyz coordinate system with z pointed upward. The z = 0 level corresponds
to sea level and there is a thin magnetized layer at a depth of zo.

We define a scalar potential U and a magnetization vector M. The magnetic anomaly ∆B
is the negative gradient of the potential. The potential satisfies Laplace’s equation
above the source layer and it satisfies Poisson’s equation within the source layer.

∆B = −∇U (4.7)

∇2U = 0 z , zo (4.8)

∇2U = µo∇ ·M z = zo (4.9)

U(x, y, z) magnetic potential T m

µo magnetic permeability 4π × 10−7 T A−1 m

M magnetization vector A m−1

x

y

z

zo
p(x)

Figure 4.4
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In addition to assuming the layer is infinitesimally thin, we assume that the magnetiza-
tion direction is constant, but that the magnetization varies in strength and polarity as
specified by the reversal function p(x). The approach to the solution is:

1. Solve the differential equation and calculate the magnetic potential U at z = 0.

2. Calculate the magnetic anomaly vector ∆B.

3. Calculate the scalar magnetic field A = (∆B · Be)/|Be| .

Let the magnetization be of the following general form

M(x, y, z) =
(
Mx ı̂ + My ̂ + Mzk̂

)
p (x) δ(z − zo). (4.10)

The differential equation (4.9) becomes

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 =

= µo

⌊
∂

∂x
Mx p (x) δ(z − zo) +

��
���

���XXXXXXXX

∂

∂y
My p (x) δ(z − zo) +

∂

∂z
Mz p (x) δ(z − zo)

⌋
. (4.11)

The y-source term vanishes, because the source does not vary in the y-direction (i.e.,
the y derivative is zero). Thus the component of magnetization that is parallel to the
ridge axis does not produce any external magnetic potential or external magnetic field.
Consider a N-S oriented spreading ridge at the magnetic equator. In this case, the TRM
of the crust has a component parallel to the dipole field, which happens to be parallel
to the ridge axis, so there will be no external magnetic field anomaly. See Figure 4.5.

N

Figure 4.5

This explains why the global map of magnetic anomaly picks (Cande et al., 1989)
has no data in either the equatorial Atlantic or the equatorial Pacific, where ridges
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are oriented N-S. Now, with the ridge-parallel component of magnetization gone, the
differential equation reduces to

∂2U
∂x2 +

∂2U
∂z2 = µo

⌊
∂

∂x
Mx p (x) δ(z − zo) +

∂

∂z
Mz p (x) δ(z − zo)

⌋
. (4.12)

This is a second-order differential equation in two dimensions, so four boundary con-
ditions are needed for a unique solution:

lim
|x|→∞

U(x) = 0 and lim
|z|→∞

U(x) = 0 (4.13)

Take the two-dimensional Fourier transform of the differential equation where the for-
ward and inverse transforms are defined as

F(k) =

∞∫
−∞

∞∫
−∞

f (x)e−i2π(k·x)d2x F(k) = =2
[
f (x)

]

f (x) =

∞∫
−∞

∞∫
−∞

F(k)ei2π(k·x)d2k f (x) = =−1
2 [F(k)]

(4.14)

where x = (x, z) is the position vector, k = (kx, kz) is the wavenumber vector, and
(k · x) = kxx + kzz. The derivative property is =2[dU/ dx] = i2πkx =2[U]. The Fourier
transform of the differential equation is

−
[
(2πkx)2 + (2πkz)2

]
U(kx, kz) = µo p(kx)e−i2πkzzo (i2πk ·M) . (4.15)

The Fourier transform in the z-direction was done using the following identity:

∞∫
−∞

δ (z − zo)e−i2πkzz dz ≡ e−i2πkzzo (4.16)

Now we can solve for U(k):

U(k) =
−iµo

2π
p(kx)(k ·M) e−i2πkzzo(

k2
x + k2

z

) (4.17)

Next, take the inverse Fourier transform with respect to kz, using the Cauchy residue
theorem:

U(kx, z) =
µo

2πi
p (kx)

∞∫
−∞

(k ·M)ei2πkz(z−zo)(
k2

x + k2
z

) dkz (4.18)

The poles of the integrand are found by factoring the denominator:

k2
x + k2

z = (kz + ikx)(kz − ikx) (4.19)
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We see that U(k) is an analytic function with poles at ±ikx. The integral of this function
about any closed path in the complex kz plane is zero, unless the contour includes a
pole, in which case the integral is i2π times the residue at the pole:∮

f (z)
z − zo

dz = i2π f (zo) (4.20)

One possible path integral is shown in Figure 4.6.

ikx

−ikx

Re kz

Im kz

Figure 4.6

There are two ways to close the path at infinity. The selection of the proper path—and
thus the residue—depends on the boundary condition, equation (4.13). First, consider
the case where kx > 0. If we close the path of integration in the upper imaginary plane,
then the pole will be ikx. The residue will have an exponential term that vanishes
as z goes to plus infinity. This is what we need, since the observation plane is above
the source.

∮
() dkz =

e−2πkx(z−z0)

2ikx
(kx Mx + ikx Mz) (4.21)

Next, consider the case where kx < 0. To satisfy the boundary condition as z goes to
plus infinity, the −ikx pole should be used, and the integration path will be clockwise
instead of counterclockwise, as in equation (4.20).∮

() dkz =
e+2πkx(z−z0)

2ikx
(kx Mx − ikx Mz) (4.22)

One can combine the two cases by using the absolute value of kx:

U(k, z) =
µo
2 p (k) e−2π |k| (z−z0)

(
Mz − i k

|k|Mx

)
(4.23)

where we have dropped the subscript on the x-wavenumber.
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This is the general case of an infinitely long ridge. To further simplify the problem,
let’s assume that this spreading ridge is located at the magnetic pole of the Earth, so
the dipolar field lines will be parallel to the z-axis and there will be no x-component of
magnetization. The result is

U(k, z) =
µo Mz

2
p (k)e−2π|k|(z−zo) (4.24)

Next calculate the magnetic anomaly ∆B = −∇U:

∆B = (−i2πk, 2π |k|) U(k, z) (4.25)

The scalar magnetic field is given by equation (4.6). Since only the z-component of the
Earth’s field is non-zero, the anomaly simplifies to

A(k, z)

observed
anomaly

=
µo Mz

2
p (k)

reversal
pattern

× 2π |k| e−2π|k|(z−zo).

Earth
filter

(4.26)

The reversal pattern is a sequence of positive and negative polarities. To generate the
model anomaly, one would take the Fourier transform of the reversal pattern, multiply
by the Earth filter, and take the inverse transform of the result. An examination of
the Earth filter in Figure 4.7 illustrates why a square-wave reversal pattern becomes
distorted.

|k|

gain

e−2π|k|z

2π|k|

 upward
 continuation

 derivative

Figure 4.7: The Earth filter is the product of a derivative filter and an upward continu-
ation filter.

This Earth filter attenuates both long and short wavelengths, so it acts like a band-pass
filter. In the space domain it modifies the shape of the square-wave reversal pattern, as
shown in Figure 4.8.
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Figure 4.8: Synthetic magnetic anomalies generated from the reversal pattern (lower)
using a 0.5 km thick magnetized layer at a depth of 4.25 km and a spreading rate of 100
mm/yr. The three curves have skewness of +30, 0, and −30 degrees. From Horner-
Johnson and Gordon (2003).

When the seafloor spreading ridge is not at the magnetic pole, both the magnetization
and the Earth’s magnetic field will have an x-component. This introduces a phase shift,
or skewness Θ, in the output magnetic anomaly. At the ocean surface, the skewed
magnetic anomaly is

A(k) =
µo Mz

2
p (k)eiΘ k

|k| 2π |k| e+2π|k|zo . (4.27)

The skewness depends on both the geomagnetic latitude and the orientation of the
spreading ridge when the crust was magnetized. Moreover, this parameter will vary
over time. If one knows the skewness, then the model profile can be skewed to match
the observed profile. Alternatively, the observed magnetic anomaly can be de-skewed.
This is called reduction to the pole, because it synthesizes the anomaly that would have
formed on the magnetic pole.

Apole(k) = Aobserved(k)e−iΘ k
|k| (4.28)

4.6 Discussion

The ability to observe magnetic reversals from a magnetometer towed behind a ship
relies on some remarkable coincidences related to reversal rate, spreading rate, ocean
depth, and Earth temperatures (mantle, seafloor, and Curie). In the case of marine
magnetic anomalies, four scales must match.

First, the temperature of the mantle (1200 ◦C), the seafloor (0 ◦C), and the Curie tem-
perature of basalt (∼500 ◦C) must be just right for recording the direction of the Earth’s
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magnetic field at the seafloor spreading ridge axis. Most of the thermoremnant mag-
netism (TRM) is recorded in the upper 1000 m of the oceanic crust. If the thickness of
the TRM layer was too great, then as the plate cooled while it moved off the spreading
ridge axis, the positive and negative reversals would be juxtaposed in dipping vertical
layers (Figure 4.3). This superposition would smear the pattern observed by a ship. If
the seafloor temperature was above the Curie temperature, as it is on Venus, then no
recording would be possible.

The second scale is related to ocean floor depth and thus the Earth filter. The external
magnetic field is the derivative of the magnetization, which, as shown above, acts as
a high-pass filter applied to the reversal pattern recorded in the crust. The magnetic
field measured at the ocean surface will be naturally smooth (upward continuation),
due to the distance from the seafloor to the sea surface; this is a low-pass filter. This
smoothing depends exponentially on ocean depth, so for a wavelength of 2π times the
mean ocean depth, the field amplitude will be attenuated by 1/e, or 0.37, with respect
to the value measured at the seafloor. The combined result of the derivative and the
upward continuation is a band-pass filter with a peak response at a wavelength of 2π
times the mean ocean depth, or about 25 km. Wavelengths that are shorter (<10 km) or
much longer (>500 km) than this value will be undetectable at the ocean surface.

The third and fourth scales that must match are the reversal rate and the seafloor-
spreading rate. Half-spreading rates on the Earth vary from 10 to 80 km per million
years. Thus, for the magnetic anomalies to be most visible on the ocean surface, the
reversal rate should be between 2.5 and 0.3 million years. It is astonishing that this
is the typical reversal rate observed in sequences of lava flows on land! While most
ocean basins display clear reversal patterns, there was a period between 85 and 120
million years ago when the magnetic field polarity of the Earth remained positive, so
the ocean surface anomaly is too far from the reversal boundaries to provide timing
information. This area of seafloor is called the Cretaceous quiet zone; it is a problem
area for accurate plate reconstructions.

The lucky convergence of length and time scales makes it very unlikely that magnetic
anomalies due to crustal spreading will ever be observed on another planet.

4.7 Exercises

Exercise 4.1. Explain why magnetic lineations cannot be observed from a spacecraft
orbiting the Earth at an altitude of 400 km.

Exercise 4.2. Explain why scalar magnetic anomalies are not observed at a N-S ori-
ented spreading ridge located at the magnetic equator.

Exercise 4.3. Write a matlab program to generate marine magnetic anomaly versus
distance from a spreading ridge axis. Use equation (4.27) relating the Fourier transform
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of the magnetic anomaly to the Fourier transform of the magnetic timescale. You
will need a magnetic timescale and the start of a matlab program (topex.ucsd.edu/
pub/class/geodynamics/hw3). Assume symmetric spreading about the ridge axis,
constant spreading rate, and constant ocean depth.

Use the program and magnetic anomaly profiles across the Pacific-Antarctic Rise
(NBP9707.xydm) and the Mid-Atlantic Ridge (a9321.xydm) to estimate the half-spreading
rate at each of these ridges. You may need to vary the mean ocean depth and skewness
to obtain good fits.

Describe some of the problems that you had fitting the data. Provide some estimates
on the range of total spreading rate for each ridge.

Exercise 4.4. Explain how the global gridded data set EMAG2 was constructed (www.
ngdc.noaa.gov/geomag/emag2.html). Download the grid as a geotiff file and ex-
tract a subgrid approximately 2000 km by 2000 km. Use the upward continuation
formula A(k, z) = A(k, 0)e−2π|k|z to calculate the magnetic field at an altitude of 450
km. Explain why satellite measurements of the magnetic field cannot be used to map
ocean anomalies related to seafloor spreading.

topex.ucsd.edu/pub/class/geodynamics/hw3
topex.ucsd.edu/pub/class/geodynamics/hw3
www.ngdc.noaa.gov/geomag/emag2.html
www.ngdc.noaa.gov/geomag/emag2.html


Chapter 5

Cooling of the Oceanic
Lithosphere

5.1 Introduction

This chapter uses the Fourier transform method to solve for the temperature in the
cooling oceanic lithosphere. For researchers in the areas of marine geology, marine
geophysics, and geodynamics, this is the most important concept you can learn from
this book. As noted in the original paper on the topic by Turcotte and Oxburgh (1967),
convection of the mantle is primarily controlled by thin thermal boundary layers. The
surface thermal boundary layer, or oceanic lithosphere, is the most important compo-
nent of the convecting system, because it represents the greatest temperature gradient
in the Earth. It also has a greater surface area than the second-most important ther-
mal boundary layer, which is at the core–mantle boundary. As the lithosphere cools it
becomes denser, the seafloor depth increases, and ultimately the lithosphere founders
(subduction). This subduction process both drives the convective flow and efficiently
quenches the mantle.

This chapter covers the same material as Geodynamics (Turcotte and Schubert, 2014,
Sections 4.15 to 4.17). The main difference is the method of solution. Turcotte and
Schubert solve the half-space cooling problem by using a similarity variable to reduce
the time-dependent heat conduction equation from a partial differential equation to an
ordinary differential equation that can be solved by integration. These notes provide
an alternate solution to the problem by using the tools of Fourier analysis. Basically,
any type of heat conduction problem can be solved with the Fourier approach (Carslaw
and Jaeger, 1959). This Fourier approach is more than just a new way to solve an old
problem. Many 3-D heat conduction problems with complicated sources and boundary

61
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conditions do not have complete analytic solutions, but do have solutions in the Fourier
transform domain. In these cases, the FFT algorithms, coupled with modern computers,
can be used to compute accurate results in seconds. Resorting to finite difference or
other numerical schemes is error-prone and the results are more difficult to interpret,
since the analytic foundation is gone. Thus, the Fourier approach is worth learning.

The basic model is shown in Figure 5.1, which represents one half of a seafloor spread-
ing system.

x

asthenosphere

v

lithosphere

TO

Tm

Figure 5.1

The model assumptions and consequences are:

• lithospheric plates are rigid and move away from the spreading ridge axis at a
uniform rate of v;

• hot, low-viscosity asthenosphere fills the void (passive);

• internal heat generation is much smaller than the other terms in the heat equation,
so it is neglected; and

• there is a singular point at x = z = 0. (This heat is released by hydrothermal
circulation.)

This is a two-dimensional problem with no heat sources, so the heat equation has only
diffusive and advective terms

∂2T
∂x2 +

∂2T
∂z2 =

v
κ

∂T
∂x

(5.1)

where T is temperature and κ is the thermal diffusivity. The first term represents the
lateral diffusion of heat, the second term represents the vertical diffusion of heat, and
the third term (on the right side) is the advection of heat by the motion of the plate.
Away from the ridge axis, the lateral heat diffusion is much smaller than the vertical
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heat diffusion. Dropping this term simplifies the differential equation, although a solu-
tion can also be developed where the term is retained. Next we move from a Eulerian
coordinate system to a Lagrangian system moving with the lithosphere.

v =
∂x
∂t
→

∂T
∂x

∂x
∂t

=
∂T
∂t

(5.2)

This reduces the problem to the half-space cooling problem.

∂2T
∂z2 =

1
κ

∂T
∂t

(5.3)

The boundary and initial conditions are

T (0, t) = To

T (∞, t) = Tm

T (z, 0) = Tm.

(5.4)

The infinite half-space has constant thermal diffusivity and an initially constant tem-
perature Tm. At times greater than zero, the surface temperature is To. The temperature
will evolve with time. Note that for this problem, time also corresponds to the age of
the cooling oceanic lithosphere. Define a dimensionless temperature as

θ =
T − To

Tm − To
. (5.5)

Now the differential equation and boundary conditions become

∂2θ

∂z2 =
1
κ

∂θ

∂t

θ(0, t) = 0

θ(∞, t) = 1

θ(z, 0) = 1.

(5.6)

Turcotte and Schubert (2014, page 184) introduce the following dimensionless quan-
tity and use it to reduce equation (5.6) to an ordinary differential equation with two
boundary conditions.

η =
z

2
√
κt

(5.7)
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They then integrate the differential equation twice and match the boundary conditions.
Suppose one did not know this trick or the problem was more complicated. An ap-
proach called method of images is straightforward. The model is expanded to a full-
space with an initial step-function temperature distribution, so the zero-temperature
boundary condition is always matched. The problem becomes

∂2θ

∂z2 =
1
κ

∂θ

∂t

θ(∞, t) = 1
θ(z, 0) = 2H(z) − 1

(5.8)

where the definition of the step function is

H(z) ≡

z∫
−∞

δ(ξ) dξ. (5.9)

Now take the Fourier transform of equation (5.8) with respect to z. The differential
equation becomes

− κ(2πk)2Θ(k, t) =
∂Θ

∂t
. (5.10)

The general solution is
Θ(k, t) = Coe−κ(2πk)2t. (5.11)

Now take the Fourier transform of the initial condition.

=
[
Θ(k,0)

]
= =

[
2H(z)

]
− = [1] (5.12)

We know that
= [1] = δ(k). (5.13)

Also, using the derivative property we know that

=

[
∂H
∂z

]
= i2πk=[H(z)] . (5.14)

Since the derivative of the step function is a delta function, the Fourier transform of the
initial condition is

Θ(k,0) =
1

iπk
− δ(k). (5.15)

The solution that satisfies the initial condition is

Θ(k, t) =

[
1

iπk
− δ(k)

]
e−κ(2πk)2t. (5.16)
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Now we take the inverse Fourier transform.

θ(z, t) =

∞∫
−∞

e−κ(2πk)2t

iπk
ei2πkz dk −

∞∫
−∞

δ(k) e−κ(2πk)2t ei2πkz dk (5.17)

The second integral on the right side of equation (5.17) is equal to 1, since the delta
function extracts the integrand at k = 0. The first integral on the right side of equa-
tion (5.17) is performed in two steps. First take the derivative with respect to z to
note that

∂θ(z, t)
∂z

= 2

∞∫
−∞

e−κ(2πk)2tei2πkz dk. (5.18)

This is the Fourier transform of a Gaussian function. The following substitution puts
the integral in the form that appears in Bracewell (1978).

k′ = k
√

4πκt and z′ =
z
√

4πκt
(5.19)

The result is
∂θ(z, t)
∂z

=
2
√

4πκt
e
−z2
4κt . (5.20)

Next integrate equation (5.20) over z. The introduction of the similarity variable based
on equation (5.20) helps to identify the integral as the definition of the error function.

η =
z

2
√
κt

so dz = 2
√
κt dη (5.21)

The integral becomes

θ(z, t) =
2
√
π

η∫
∞

e−η
2

dη − 1. (5.22)

The right side of equation (5.22) is just the definition of the error function erf(η). The
final solution is

T (z, t) = (Tm − To) erf
(

z
2
√
κt

)
+ To. (5.23)

5.2 Temperature versus Depth and Age

The thermal parameters and temperatures appropriate to the Earth are given in Table 5.1.

If we define the base of the thermal boundary layer as some large fraction of the deep
mantle temperature, as in the table, one can calculate the thickness of the thermal
boundary layer versus the age of the lithosphere.

Tl − To

Tm − To
= 0.84 = erf

(
z

2
√
κt

)
(5.24)



CHAPTER 5. COOLING OF THE OCEANIC LITHOSPHERE 66

Parameter Definition Value

To surface temperature 0 ◦C

T1 temperature at base of
thermal boundary layer

1100 ◦C

Tm mantle temperature 1300 ◦C

κ thermal diffusivity 8 × 10−7 m2 s−1

k thermal conductivity 3.3 W m−1 ◦C−1

Table 5.1

or
z � 2

√
κt or z(km) � 10

√
age(Ma). (5.25)

The isotherms for this model are displayed in Figure 5.2.

Figure 5.2: The solid lines are isotherms in the oceanic lithosphere from equa-
tion (5.23). The data points are the thickness of the oceanic lithosphere in the Pacific
determined from studies of Rayleigh wave dispersion data. (From Leeds and Kausel
(1974).)

5.3 Heat Flow versus Age

The heat flow is the thermal conductivity times the temperature gradient.

q(z) = k ∂T
∂z

(5.26)
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To calculate the heat flow we take the derivative of the error function with respect to z.

∂ erf(η)
∂z

=
∂ erf(η)
∂η

∂ η

∂z
=

1
√
πκt

e−η
2

(5.27)

q(z, t) =
k(Tm − To)
√
πκt

e
−z2
4κt (5.28)

In the limit as depth z goes to infinity, the heat flow is zero. So for this model, there is
no heat transport into the base of the lithosphere. Later we’ll compute seafloor depth
versus age for this model and show that there are large deviations at old age (i.e.,
>70 Ma). One way to flatten the depth-versus-age curve is to supply heat to the base
of the lithosphere. There are a variety of ways to accomplish this.

• Increasing basal heat flux with age corresponds to the plate cooling model of Par-
sons and Sclater (1977). The physical mechanism for this basal heat input is
small-scale convective rolls beneath the old lithosphere.

• A constant basal heat flux with age corresponds to the CHABLIS cooling model
of Doin and Fleitout (1996).

• Some papers (e.g., Crough (1983)) propose that mantle plumes reheat the old
lithosphere and eventually all old lithosphere encounters one or more plumes, so
reheating is pervasive.

The surface heat flow is just equation (5.28) evaluated at the surface of the earth.

q(t) =
k(Tm − To)
√
πκt

(5.29)

The match to the observed heat flow is shown in Figure 5.3. For ages less than about
40 Ma, the surface heat flux is less than predicted by the model. This heat flow deficit
occurs because cold seawater circulates deep into the crust and advects the heat. So
the temperature gradient will be less than predicted by a purely conductive model. At
older ages, the heat flow is higher than expected. This could either be due to a non-zero
basal heat flux or an incorrect estimate of thermal conductivity of the crust.
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Figure 5.3: Mean values and standard deviations of ocean floor heat flow measurements
as functions of age compared with equation (5.29). Data from Sclater et al. (1980).

5.4 Thermal Subsidence

As the oceanic lithosphere cools by conductive heat loss, it contracts. This thermal
contraction causes the average density of the lithosphere to increase. The seafloor
depth increases with age and eventually the lithosphere becomes so dense it founders
at a subduction zone. To develop a linear relationship between density and tempera-
ture, consider a cube of volume V , mass m, and density ρ, at temperature To, under a
confining pressure Po. (See Figure 5.4.)

V=m/ρ

Figure 5.4
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Changes in both temperature and pressure will produce changes in the volume of
the cube.

dV =

(
∂V
∂T

)
Po

dT +

(
∂V
∂P

)
T0

dP (5.30)

The two terms in equation (5.30) are related to the volumetric coefficient of thermal
expansion,

α =
1
V

(
∂V
∂T

)
Po

(5.31)

and the isothermal compressibility is

β = −
1
V

(
∂V
∂P

)
To

. (5.32)

Since ρ = mV−1 it is easy to show that

∂ρ

ρ
= −

∂V
V
, (5.33)

so the coefficient of thermal expansion becomes

α = −
1
ρ

(
∂ρ

∂T

)
Po

. (5.34)

In this model, the lithosphere slides laterally across the surface of the earth, so there are
no significant pressure variations. Thus, we need only the first term in equation (5.30).
If ρm is the density of the lithosphere at a temperature of Tm, then a reduction in tem-
perature will cause an increase in density.

ρ
(
T
)

= ρm

[
1 − α

(
T − Tm

)]
(5.35)

The diagram in Figure 5.5 illustrates the thermal subsidence of the oceanic lithosphere
as it spreads from the ridge axis at a velocity of v.

There are three layers in the model. The ocean has a density of ρw and a depth of
d0 at the ridge axis. This depth increases with age/distance from the ridge axis. We
will use the principles of thermal contraction and isostasy to determine the increase
in seafloor depth with increasing age d(t). The density of the lithosphere depends on
temperature, according to equation (5.35). The asthenosphere behaves as a fluid on
geological timescales, so the lithosphere floats on the mantle.

The major assumptions are:

• The pressure at the depth of compensation is a constant value and depends only
on the weight of the rock and water directly above (i.e., isostatic equilibrium).
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lithosphere

water

depth of compensation

ρw

ρm

ρ = ρm[1−α(T−Tm)]

asthenosphere

Figure 5.5

• The crust has uniform thickness, so it has no effect on the overall isostatic
balance.

• The thermal diffusivity κ is isotropic and independent of P and T .

• The thermal expansion coefficient α is isotropic and independent of P and T .

• Heat is transferred by conduction, so hydrothermal circulation is not important.
This is a poor assumption at the ridge axis.

• Heat conducts only vertically. This is also a poor assumption at the ridge axis.

• There are no heat sources in the crust or lithosphere.

• No heat flows into the base of the lithosphere See Doin and Fleitout (1996) for
a discussion of alternate models with basal heat input.

An additional assumption is that the lithosphere is free to contract in all three dimen-
sions. Since the lithosphere is thin in relation to its horizontal dimension, free con-
traction in the vertical dimension is a good assumption. Contraction of the plate in
the direction perpendicular to the ridge axis is probably valid as well. However, con-
traction in the ridge-parallel direction will produce significant shear strain, which will
result in thermoelastic stress. We will neglect this for now but this is an interesting area
of research.

As the lithosphere cools and contracts, its vertically integrated density increases, which
will increase the pressure at its base. To maintain isostatic balance (i.e., constant pres-
sure at constant depth zl), ocean depth must increase to replace high density rock with
lower density water. The increase in depth is determined by the following isostatic
balance between a ridge-axis column and an off-axis column. See Figure 5.6.
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ρm ρm[1−α(T–Tm)]

dO

zl

d(t)

Figure 5.6

The mathematical statement of isostatic balance is

g

zl∫
o

ρm dz = g

d∫
o

ρw dz + g

zl∫
d

ρm

[
1 − α

(
T − Tm

)]
dz (5.36)

where g is the acceleration of gravity.

After subtracting the standard ridge-axis column from both sides and dividing through
by g we get

0 =

d∫
o

(ρw − ρm) dz −

zl∫
d

ρm α
(
T − Tm

)
dz. (5.37)

Now we’ll use the solution to the half-space cooling problem (equation (5.23)) to define
T (t, z). Note this solution has temperature perturbations at infinite depth, so we must
extend the depth integration from the seafloor to infinity.

d
(
ρm − ρw

)
= ρm α

(
Tm − To

) ∞∫
d

1 − erf
(

z − d
2
√
κt

)
dz (5.38)

By setting z′ = z − d and solving for d(t), we find

d(t) =
ρm α

(
Tm − To

)
(ρm − ρw)

∞∫
o

erfc
(

z

2
√
κt

)
dz. (5.39)

To integrate this function, let η = z
/ (

2
√
κt
)
, so dz = 2

√
κt dη

d(t) =
2ρm α

(
Tm − To

)
(ρm − ρw)

√
κt

∞∫
o

erfc (η) dη. (5.40)
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After performing the definite integral of
∞∫

o

erfc (η) dη =
1
√
π

and adding the ridge axis depth do, we find that depth depends on material constants
times the square root of seafloor age.

dtot(t) = do +
2ρm α (Tm − To)

(ρm − ρw)

(
κt
π

)1/2
(5.41)

Now let’s plug in some numbers to get an estimate of how seafloor depth varies with
age (Table 5.2).

Parameter Definition Value

To surface temperature 0 ◦C

Tm mantle temperature 1365 ◦C

κ thermal diffusivity 8 × 10−7 m2 s−1

k thermal conductivity 3.3 W m−1 ◦C−1

α thermal expansion coefficient 3.1 × 10−5 ◦C−1

ρw seawater density 1025 kg m−3

ρm mantle density 3300 kg m−3

do ridge axis depth 2500 m

L asymptotic plate thickness 125 km

Table 5.2

A good approximation for the depth-age relation is

d(m) = 2500 + 350
√

age(Ma). (5.42)

To test this model of the cooling oceanic lithosphere, we need seafloor depth, seafloor
age, and sediment thickness (Renkin and Sclater, 1988).

5.5 The Plate Cooling Model

The half-space cooling model developed above provides a remarkably accurate de-
scription of the variations in heat flow and depth versus the age of the seafloor, for ages
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less than about 70 Ma. However, for older ages there is a pronounced flattening of the
seafloor depth that is better fit by the plate cooling model (Parsons and Sclater, 1977).
In this section we develop formulas for the temperature, heat flow, and depth for the
plate model and show comparisons with heat flow and depth data. Later we will use the
same model to investigate the thickness and strength of the cooling oceanic lithosphere
as well as the major driving forces for plate tectonics.

We begin with the 1-D heat diffusion equation

∂2T
∂z2 =

1
κ

∂T
∂t
. (5.43)

The only difference between the plate model and the half-space cooling model is that
the plate model has a lithosphere of finite thickness L. The initial condition and bound-
ary conditions are

T (0, t) = To

T (L, t) = Tm

T (z, 0) = Tm.

(5.44)

As in the case of the half-space cooling derivation, we non-dimensionalize the temper-
ature.

θ′ =
T − To

Tm − To
(5.45)

In addition, we recognize that as t → ∞, the temperature increases linearly with depth
so we can define the long-term non-dimensional temperature as

θ′ = θ (z, t) +
z
L

(5.46)

where θ (z, t) is the transient part of the solution that goes to zero at large time. The
differential equation and boundary conditions become
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∂2θ

∂z2 =
1
κ

∂θ

∂t

θ (0, t) = 0

θ (L, t) = 0

θ (z, 0) = 1 − z
L ; z > 0.

(5.47)

We will use separation of variables to decompose the solution as the product of two
functions.

θ (z, t) = g (z) f (t) (5.48)

Note that a Fourier sine series in depth z automatically satisfies the zero boundary
temperature at the top and bottom of the plate. We guess the form of the solution as

θ (z, t) =

∞∑
n−1

an sin
(nπz

L

)
fn (t) (5.49)

where f (0) = 1. The Fourier coefficients are given by

an =
2
L

L∫
0

θ (z, 0) sin
(nπz

L

)
dz. (5.50)

The differential equations should be satisfied for each value of n as

∂2θn

∂z2 =
1
κ

∂θn

∂t
. (5.51)

After a little algebra this becomes

− anκ
(nπ

L

)2
sin

(nπz
L

)
fn (t) = an sin

(nπz
L

)
∂ fn (t)
∂t

(5.52)

or

− κ
(nπ

L

)2
fn (t) =

∂ fn (t)
∂t

. (5.53)
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The time-dependent solution that satisfies the boundary conditioni f (0) = 1 is

fn (t) = e−κ(
nπ
L )2t (5.54)

and the time-dependent solution is

θn (z, t) = an sin
(nπz

L

)
e−κ(

nπ
L )2t. (5.55)

Finally, we need to determine the Fourier sine coefficients by inserting the initial tem-
perature distribution 1 − z

L into equation (5.50) and performing the integration. This is
left as an exercise to show that an = 2

nπ .

The final result is

θ (z, t) =
2
π

∞∑
n=1

1
n

sin
(nπz

L

)
e−κ(

nπ
L )2t (5.56)

so the total solution is

θ′n (z, t) =
z
L

+
2
π

∞∑
n=1

1
n

sin
(nπz

L

)
e−κ(

nπ
L )2t. (5.57)

The final temperature is given by

T (z, t) = To + (Tm − To)

 z
L

+
2
π

∞∑
n=1

1
n

sin
(nπz

L

)
e−κ(

nπ
L )2t

 . (5.58)

From this we can calculate the heat flow

q = −k
∂T
∂z

=
k (Tm − To)

L

1 + 2
∞∑

n=1

cos
(nπz

L

)
e−κ(

nπ
L )2t

 . (5.59)

The heat flow at the surface and the bottom of the plate is
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q(0, t) =
k(Tm−To)

L

[
1 + 2

∞∑
n=1

e−κ(
nπ
L )2t

]
q(L, t) =

k(Tm−To)
L

[
1 + 2

∞∑
n=1

(−1)ne−κ(
nπ
L )2t

] . (5.60)

In Section 5.4 on thermal subsidence we used the principle of isostatic compensation
to calculate the increase in seafloor depth as a function of cooling time or age. The
general formula is given in 5.37 and it is repeated here

d (ρm − ρw) =

L∫
0

ρmα (Tm − T )dz (5.61)

Using equation 5.58 this becomes

d (t) (ρm − ρw) = αρm (Tm − To)

L∫
0

1 − z
L
−

2
π

∞∑
n=1

1
n

sin
(nπz

L

)
e−κ(

nπ
L )2t

 (5.62)

It is left as an exercise to show the final result is

d(t) = do +
αρm (Tm − To) L

2 (ρm − ρw)

1 − 8
π2

∞∑
n=1

1
(2n − 1)2 e−κ

(
(2n−1)π

L

)2
t

 (5.63)

where we have added the constant depth at the ridge axis do.

The plate cooling model provides a good fit to the heat and depth versus age data as
shown in Figure 5.7. The upper plot shows contours of temperature versus depth and
age. The solid curves are for the plate model with a thickness of 125 km while the
dashed curves are for the half space model. The lower constant temperature boundary
condition of the plate model is maintained by an increase in heat flow into the base
of the lithosphere as shown in the dashed line of the heat flow plot (middle). These
heat flow data from Hasterok (2013) were carefully selected to avoid areas of thin sed-
iment cover where hydrothermal circulation extracts heat from the crust and lowers
the conductive heat flow. The depth versus age data were also carefully processed to
avoid areas of thickened crust and account for the thickness of the sediments. Both ef-
fects will make the depth appear shallower which has been interpreted by some authors
(Stein and Stein, 1992) as evidence for a thinner lithosphere (95 km instead of 125 km).
When we discuss flexure and the yield strength of the oceanic lithosphere, we will see
that the thicker lithosphere is required to support the trench and outer rise topography.
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Figure 5.7: (upper) Temperature contours as a function of depth and age for the plate
(PS – solid curves) (Parsons and Sclater, 1977) and half-space (HS – dashed curves)
cooling models. Flattening of the 1200 ◦C isotherm begins at an age of 70 Ma. (mid-
dle) Heat flow for plate cooling model (solid curve) and heat flow data (circles) from
Hasterok (2013). (lower) Depth versus age for the plate and half space cooling models.
Data are from Parsons and Sclater (1977) (boxes) and Garcia et al. (2019) (circles).
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5.6 Buoyancy of the Cooling Lithosphere

Cooling and contraction of the lithosphere causes seafloor depth to increase with age.
The average density of cooled mantle lithosphere is greater than the density of the un-
derlying mantle, so it would founder and subduct if it could be decoupled from more
buoyant surrounding lithosphere (e.g., continents). Once subduction begins, the nega-
tive buoyancy of the subducted slab pulls the surface plate into the mantle driving plate
tectonics. The amount of slab pull is related to the average density of the lithosphere
relative to the mantle, so older lithosphere will have greater slab pull. This simple re-
lationship needs some modification, because the oceanic crust, which is bonded to the
lithosphere, is less dense (compositional buoyancy) than the underlying mantle, so very
young lithosphere will be positively buoyant. An important question is how long the
oceanic lithosphere needs to cool before the negative thermal buoyancy exceeds the
compositional buoyancy. Oxburgh and Parmentier (1977) have addressed this issue
and have estimated the total buoyancy of oceanic lithosphere.

The compositional buoyancy has two components. Mantle upwelling beneath ridges
undergoes decompression melting at a depth of about 40 km. This melt migrates to the
magma chamber at the ridge axis, where it forms oceanic crust with a normal thickness
of 6–7 km and an average density of 2900 km m−3. In addition, ultramafic residues
formed by partial melting during the generation of basalt are less dense than undepleted
mantle. This zone of depleted mantle has a thickness of about 21 km and an average
density ρd of 3235 kg m−3, which is less than the normal density of peridotite mantle
of 3300 kg m−3. So this adds an additional buoyancy to the oceanic lithosphere.

Oxburgh and Parmentier (1977) have made a quantitative assessment of the overall
buoyancy of the lithosphere and define a parameter called the density defect thickness
δ as

δ =

∞∫
0

[
ρm − ρ (z)

ρm

]
dz (5.64)

where ρ(z) is the density of the lithosphere including the crust, depleted mantle, and
cooled lithosphere, and ρm is the normal mantle density. The density defect thickness
has units of length such that when δ < 0, the entire package is negatively buoyant and
can subduct, while when δ > 0, then the package is positively buoyant and will resist
subduction. They further divide the density defect thickness into a compositional and
a thermal component

δtotal = δcomp + δthermal. (5.65)

The compositional part has a contribution from the crust 0.85 km = 7 km × (ρm − ρc)/ρm

and a contribution from the depleted mantle 0.41 km = 21 km × (ρm − ρd)/ρm) for a
total of δcomp = 1.3 km. They also point out that areas having thickened crust, such as
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oceanic plateaus, will have proportionally larger buoyancy, so that a 20 km thick crust
will have a buoyancy of δcomp = 4.3 km.

The thermal buoyancy depends on the density of the cooled lithosphere given by equa-
tion (5.35) ρ (T ) = ρm [1 − α (T − Tm)]. Inserting this into equation (5.64) and simpli-
fying, one finds

δthermal = −2α (Tm − To)

∞∫
0

erfc
(

z

2
√
κt

)
dz. (5.66)

We performed a similar integration of equation (5.39). The result is

δthermal = −2α (Tm − To)

√
κt
π
. (5.67)

The total density defect thickness decreases with increasing age and eventually the
thermal buoyancy dominates. An example is shown in Figure 5.8. For a normal crustal
thickness of 6 km, the lithosphere is positively buoyant between 0 and 30 Ma and neg-
atively buoyant for greater ages. Lithosphere with thicker crust, such as that associated
with oceanic plateaus, remains positively buoyant for a longer time. For example, an
18 km thick oceanic plateau will resist subduction at even the oldest ages found in the
ocean basins of 200 Ma. In addition to crustal thickness, the buoyancy depends on the
temperature difference across the lithosphere or thermal boundary layer. Lithosphere
on the planet Venus will be more buoyant than comparable lithosphere on Earth, be-
cause Venus has a higher surface temperature of 455 ◦C. The calculation of buoyancy
versus cooling time for Venus is left as an exercise below.
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Figure 5.8: Total density defect thickness versus the age (or cooling time) of the litho-
sphere. Normal oceanic crust is 6 km thick and the lithosphere becomes negatively
buoyant after cooling for 30 Ma. For a crustal thickness of 12 km, the time until neg-
ative buoyancy is delayed until 120 Ma. Lithosphere having a 24 km thick crust will
remain buoyant for 500 Ma. Moreover, the lower lithosphere may be reheated or may
delaminate during this long time, so it may never subduct.

5.7 Exercises

Exercise 5.1. (a) What two measurements must be made to determine the conductive
heat flow at the bottom of the ocean? (b) Why is it OK to measure heat flow in the
upper few m of sediment on the seafloor, while one needs a borehole hundreds of m
deep to obtain a reliable measure of heat flow on the continents?

Exercise 5.2. Assume that the lithosphere of Venus has evolved to a steady-state tem-
perature profile and there is no heat generated in the lithosphere. Given a current heat
flow of 4 × 10−2 W m−2, a surface temperature of 450 ◦C, a mantle temperature of
1500 ◦C, and a thermal conductivity of 3.3 W m−1 ◦C−1, calculate the thickness of the
lithosphere.

Exercise 5.3. Solve for the temperature T as a function of time t and depth z in a cool-
ing half space. The differential equation for heat diffusion is, and the boundary/initial
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conditions are
∂2T
∂z2 =

1
κ

∂T
∂t

T (0, t) = To

T (∞, t) = Tm

T (z, 0) = Tm.

(5.68)

Use the following similarity variable η = z
2
√
κt

to reduce the partial differential equation
to an ordinary differential equation where κ is the thermal diffusivity, To is the surface
temperature, and Tm is the initial temperature of the half space.

Exercise 5.4. Derive the following relationship between the rate of increase in seafloor
depth with age ∂d

∂t and the difference between the surface and basal heat flow (qs − qL).

∂d
∂t

=
α

Cp (ρm − ρw)
(qs − qL) (5.69)

You will need Fourier’s law, energy conservation, and isostasy as follows:

q = k
∂T
∂z

∂T
∂t

=
k

ρmCp

∂2T
∂z2

d(t) =
−αρm

(ρm − ρw)

L∫
o

T dz

(5.70)

where:

L asymptotic lithospheric thickness and also the depth of compensation (m)

d seafloor depth (m)

q heat flow (W m−2)

α coefficient of thermal expansion (◦C−1)

Cp heat capacity (J kg−1)

ρw seawater density (kg m−3)

ρm mantle density (kg m−3)

k thermal conductivity (W m−1 ◦C−1)

Exercise 5.5. Calculate the cooling time for lithospheric subduction on Venus for
crustal thicknesses of 16 km and 24 km. The surface temperature of Venus is 455 ◦C;
use a deep-mantle temperature of 1400 ◦C. Use Earth-like values of thermal expansion
coefficient and thermal diffusivity in Table 5.2.

Exercise 5.6. Show that the coefficients of the Fourier series (5.55) are an = 2
nπ .
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Exercise 5.7. Perform the integration in (5.62) to derive the formula for depth versus
age given in (5.63).

Exercise 5.8. Seasonal variations in temperature near the surface of a glacier.
Derive the formula 9.8 in Chapter 9 of Cuffey and Patterson (2010) and reproduce
Figure 9.2. Also discuss the seasonal variations in heat flow.

Exercise 5.9. Temperature evolution of an oceanic fracture zone (Sandwell and
Schubert, 1982a). An oceanic fracture zone is the boundary between lithosphere of
different ages as shown in Figure 9.15. Consider the profile A-A’ in Figure 9.15. The
temperature far from the FZ near A is the deep mantle temperature Tm and far from
the FZ on the A’ side is the error function solution given in equation (5.23). As the
FZ ages, there will be vertical diffusion of heat causing additional half-space cooling.
Also, there will be lateral heat transport across the FZ from the young (hot) side to old
(cold) side. The differential equation, initial condition, and boundary conditions are

∂2T
∂x2 +

∂2T
∂z2 =

1
κ

∂T
∂t

(5.71)

T (x, z, to) = Tm x < 0

T (x, z, to) = To + (Tm − To) erf
(

z
√
κto

)
x > 0

T (x, 0, to) = To

T (x, z, to) = Tm

(5.72)

where z is depth, x is distance across the FZ from A to A’, t is the age of the A side and
to is the age of the A’ side. The solution for the temperature is

T (x, z, t) = To+
(Tm − To)

2

[
erfc

x
2
√
κ (t − to)

erf
z

2
√
κ (t − to)

+ erfc
−x

2
√
κ (t − to)

erf
z

2
√
κt

]
.

(5.73)

(a) Show that this solution satisfies the differential equation, initial condition, and
boundary conditions.

(b) Derive equation (5.73). This can be done by direct convolution in the space domain
or multiplication in the wavenumber domain. Both are algebraically challenging and
cannot be found in the literature.

(c) Write a matlab program to create a contour plot or image of the temperature versus
x and z for any time t > to.
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Exercise 5.10. Frictional heating during and earthquake. During an earthquake,
most of the energy is converted to heat. Calculate the temperature across a fault during
and following the earthquake for a variety of fault zone widths. Derive equation (5) in
Fialko (2004).

Exercise 5.11. Temperature and heat flow from mantle plume. When the litho-
sphere passes over a mantle plume, the lower lithosphere is reheated. The motion of
the lithosphere will advect the temperature anomaly T (x, y, z) downstream. Also, heat
will diffuse vertically through the lithosphere toward the surface, resulting in a heat
flow anomaly that is maximum downstream from the source. To simulate this reheat-
ing, we setup a problem where a half space is moving at a velocity v =

(
vx, vy

)
through

a fixed heat source at depth zo given by qo(x, y, z) = q (x, y) δ(z − zo). The differential
equation and boundary conditions for the temperature anomaly are

v · ∇T − κ∇2T =
qo(x, y, z)
ρCp

(5.74)

T (x, y, 0) = 0

lim
z→∞

T (x, y, z) = 0

lim
|x|→∞

T (x, y, z) = 0

lim
|y|→∞

T (x, y, z) = 0

(5.75)

where κ is the thermal diffusivity, Cp is the heat capacity, and ρ is the density. The
solution for an arbitrary heat source at depth zo is

T (k, z) =
Q (k)

4πρCpκp

[
e−2πp|zo−z| − e−2πp|z+zo |

]
(5.76)

where k =
(
kx, ky

)
is the horizontal vector wavenumber and Q (k) is the 2-D Fourier

transform of the heat source. The parameter p in the solution is a combination of the
wavenumbers and velocity.

p2 = k · k −
i

2πκ
v · k (5.77)

(a) Derive equation (5.76). Start by taking the 3-D Fourier transform of equation (5.74)
and separate the horizontal wavenumbers from the vertical wavenumber. The result is
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(
k · k −

i
2πκ

v · k + k2
z

)
T (k, kz) =

Q (k) e−i2πkzzo

4π2ρCpκ
. (5.78)

Continue with the derivation using definition of p2 given in equation (5.77). Perform
the inverse transform with respect to kz by integrating around the poles in the complex
plane keeping only terms with decaying exponential in z. Finally, use the method of
images to satisfy the surface boundary condition.

(b) Compute the vertical heat flow and then the surface heat flow.

(c) Write a matlab program to compute the temperature and heat flow at any depth using

a Gaussian heat source q(x, y, z) = Aδ(z − zo) exp
(
−

x2+y2

2σ2

)
where σ is the half-radius

of the source. The computational approach is to generate a 2-D array representing
the Gaussian heat source. Put the center of the source somewhere in the middle of
the 2-D array. Take its 2-D Fourier transform. Generate the wavenumbers and the
solution in equation (5.76). Multiply the source and solution and perform the inverse
2-D transform. Note the equation for the temperature (5.76) is singular when both
horizontal wavenumbers are zero (i.e., p = 0). Set this term to zero prior to computing
the 2-D inverse Fourier transform. To simulate the Hawaiian plume, use an x-velocity
of 40 mm/yr and a 2σ of 1000 km and place the source at a depth of 60 km. Make
the width of the array 4000 km and the length of the array in the x-direction at least
20,000 km. This great length is needed to avoid the Fourier edge effect caused by heat
flowing to great depth. Make images or contour maps of the temperature at a depth
of 50 km and the surface heat flow making sure the pixels are square so the results
are not distorted. Explore the parameter space of plume strength, A, plume radius σ,
plume depth zo, and plate speed vx. Note that if a finite thickness plate is used both
the wrap-around and p-singularity will be gone (Sandwell, 1982). An example of the
temperature and surface heat flow for a thinned lithosphere is shown in Figure 5.9.



CHAPTER 5. COOLING OF THE OCEANIC LITHOSPHERE 85

Temperature
at 64 km
(˚C)

Surface Heat
Flow (mWm  )-2

Figure 5.9: The response of the lithosphere moving at a velocity of 40 mm/yr over a
Gaussian heat source with half widths (circles) of (a) 2000 km and (b) 200 km. The
maximum temperature is approximately at the downstream edge of the source while
the surface heat flow is displaced significantly downstream (Sandwell, 1982).



Chapter 6

A Brief Review of Elasticity

This is a very brief review of the elasticity theory needed to understand the principles of
stress, strain, and flexure in Geodynamics (Turcotte and Schubert, 2014). This review
assumes that you have already taken a course in continuum mechanics. One difference
from Geodynamics is that we follow the sign convention used by seismologists and
engineers, where extensional strain and stress are positive.

6.1 Stress

Stress is a force acting on an area and is measured in newtons per meter squared (N m−2),
which corresponds to a pascal unit (Pa). Figure 6.1 shows a cube of solid material. Each
face of the cube has three components of stress, so there are nine possible components
of the stress tensor.

We will consider only the symmetric part of the stress tensor, so only six of these
components are independent. The antisymmetric part of the tensor represents a torque.
In Cartesian coordinates, the stress tensor is given by

σi j =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (6.1)

where index notation is the shorthand for dealing with tensors and vectors; a variable
with a single subscript is a vector ~a = ai, a variable with two subscripts is a tensor
σ = σi j, and a repeated index indicates summation over the spatial coordinates. For

86
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Figure 6.1

example, the pressure is given by P = −σii/3. In addition, a comma preceding a
subscript means differentiation with respect to that variable ∇~a = ai, j or, for example,
ax,y = ∂ax

∂y .

6.2 Strain

Strain is change in length over the original length, so it is a dimensionless variable; we
will assume strains are small (�10−3). Let the displacement vector field inside of a
solid body be given by

~u = ui =

[
ux uy uz

]
(6.2)

The gradient of this vector is a tensor: ∇~u = ui, j. This tensor is commonly decomposed
into a symmetric tensor (strain) and an antisymmetric tensor (rotation):

ui, j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
+

1
2

(
∂ui

∂x j
−
∂u j

∂xi

)
(6.3)

We will not consider the rotation tensor further, but the strain tensor is given by

εi j = 1
2

(
ui, j + u j,i

)
(6.4)



CHAPTER 6. A BRIEF REVIEW OF ELASTICITY 88

6.3 Stress versus Strain

If one assumes the material has an isotropic and linear response, then the relationship
between stress and strain is given by

σi j = λ δi j εkk + 2µ εi j (6.5)

where δi j is equal to 0, except when i = j; then it is equal to 1. The Lamé constants λ
and µ define the elastic properties. The shear modulus µ (or G in the engineering
literature) relates the shear stress to shear strain on a component-by-component basis:

σxy = 2µεxy = µ
(
∂ux

∂y
+
∂uy

∂x

)
(6.6)

6.4 Principal Stress and Invariants

This general relation between stress and strain tensors is rather involved. It is difficult
to invert this relationship to develop a relationship between strain and stress. One
means of simplifying this relationship is to find a coordinate system rotation R that will
cause the stress and strain tensors to be diagonal. Real symmetric matrices have real
eigenvalues, orthogonal eigenvectors, and can be diagonalized. This implies that there
always exists some principal coordinate system where the shear stresses are zero on
planes orthogonal to the coordinate axes, and the normal stresses act along the principal
axes directions. The eigenvectors form the rotation matrix R and the eigenvalues form
the principal stress tensor

~σp =


σ1 0 0

0 σ2 0

0 0 σ3

 = RσR t (6.7)

where they are ordered from largest to smallest

σ1 ≥ σ2 ≥ σ3. (6.8)

To establish this rotation, consider a block of material having a uniform stress state
given by


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 . (6.9)
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We seek a planar surface within the block where there is only a normal traction γ and
no shear tractions. In other words, given the vector n that is normal to that surface we
seek n such that


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz




nx

ny

nz

 =


γnx

γny

γnz

 . (6.10)

We can rewrite this equation as


σxx − γ σxy σxz

σxy σyy − γ σyz

σxz σyz σzz − γ




nx

ny

nz

 = 0. (6.11)

This traction γ and matching normal vector n will be one of the three principal stresses
and principal stress directions, respectively.

There are three properties (invariants) of the stress tensor that do not change under co-
ordinate rotation. The invariants are found by first developing the characteristic equa-
tion from the determinant of the following equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σxx − γ σxy σxz

σxy σyy − γ σyz

σxz σyz σzz − γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.12)

which becomes
γ3 − Iγ2 + IIγ − III = 0 (6.13)

where the stress invariants are

I = σii

II = 1
2

(
σiiσj j − σi jσi j

)
= σxxσyy + σyyσzz + σxxσzz − σ

2
xy − σ

2
yz − σ

2
xz

III =
∣∣∣σi j

∣∣∣
(6.14)
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the trace I, the sum of minors II, and the determinant of the stress tensor III. The
first invariant is related to the mean normal stress or pressure P = −I/3. The second
invariant is related to shear stress and thus is commonly used as the Von Mises failure
criteria. We will not consider the third invariant further.

Exercise 6.1. Use symbolic algebra in matlab to take the determinant of the char-
acteristic equation (6.12). Identify the first and second invariants in the third-order
polynomial and check that they match the invariants in equation (6.14).

The principal stress system is important in geophysics and geology. Owing to the
presence of the free surface, the stress field close to the Earth’s surface is expected to
have one principal stress vertical and hence two horizontal principal stresses. Also, in
the Earth, we sometimes subtract the pressure from the stress tensor. In this case, it
is called deviatoric stress. In the principal stress system, the pressure and maximum
shear stress are given by

P = −
1
3

(σ1 + σ2 + σ3)

τ =
1
2

(σ1 − σ3) .
(6.15)

6.5 Principal Stress and Strain

The stress versus strain relation is far simpler in the principal coordinate system
σ1

σ2

σ3

 =


λ + 2µ λ λ

λ λ + 2µ λ

λ λ λ + 2µ




ε1

ε2

ε3

 (6.16)

where ε1, ε2, and ε3 are the principal strains. Next, we can use this relationship to
develop three important parameters: Poisson’s ratio ν, Young’s modulus E, and bulk
modulus K.

First, consider the case of uniaxial stress where σ2 = σ3 = 0. This represents ap-
plication of an end load to an elastic beam fastened to a wall. The second equation
for σ2 is

0 = λε1 + (λ + 2µ) ε2 + λε3. (6.17)

Because of symmetry, we know ε2 = ε3, so we arrive at a relationship between ε2
and ε1:

ε2 =
−λ

2 (λ + µ)
ε1 = −νε1 (6.18)
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where ν is Poisson’s ratio. Next, we can use this relationship between strains in the
first equation to provide a relationship between σ1 and ε1.

σ1 = (λ + 2µ) ε1 +
−λ2

λ + µ
ε1

σ1 =
(λ + 2µ) (λ + µ) − λ2

λ + µ
ε1

σ1 =
µ (3λ + 2µ)
λ + µ

ε1

σ1 = Eε1

(6.19)

where E is Young’s modulus.

Next we consider the case of uniform pressure. In this case, the change in pressure
∆P = − (σ1 + σ2 + σ3) /3 is related to a change in volume ∆V = (ε1 + ε2 + ε3). Using
the stress–strain relation, we find

∆P = −
(
λ + 2

3µ
)
∆V

∆P = −K∆V

(6.20)

where K is the bulk modulus. One can invert this stress versus strain relationship
(equation (6.16)) to obtain a strain versus stress relationship. We’ll also assume that
the principal coordinates are aligned with the x, y, and z axes.

ε1

ε2

ε3

 =
1
E


1 −ν −ν

−ν 1 −ν

−ν −ν 1




σ1

σ2

σ3

 (6.21)

Exercise 6.2. Use symbolic algebra in matlab to invert the stress versus strain rela-
tionship (equation (6.16)) to obtain the relationship between strain and stress (equa-
tion (6.21)). Show that the product of these two matrices is the identity matrix.

Now we have arrived at equations (3.31), (3.32), and (3.33) in Geodynamics (Turcotte
and Schubert, 2014). Before moving onto the flexure problem, we consider the case
of a thin elastic plate. “Thin plate” means that there are no variations in the vertical
displacement field as a function of depth in the plate, so we can make the approximation
σzz = σ3 = 0. Under this approximation, we have the following:

εxx = 1
E

(
σxx − vσyy

)
εyy = 1

E

(
σyy − vσxx

)
εzz = −ν

E

(
σxx + σyy

) (6.22)
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These equations are the starting point for the development of the relationship be-
tween bending moment and curvature provided in Geodynamics (Turcotte and Schu-
bert, 2014, Section 3.9).

6.6 Exercises

Exercise 6.3. Use the thin plate equations (equation (6.22)) to develop a linear relation-
ship between moment and curvature. What are the important parameters that control
the flexural rigidity? It will be helpful to study T&S (Turcotte and Schubert, 2014,
Section 3.9).



Chapter 7

Crustal Structure, Isostasy,
Swell Push, and Rheology

7.1 Introduction

This chapter covers four topics. First the basic structure of the oceanic and continental
crust is provided. The emphasis is on layer thickness and densities, and there is little
discussion of composition. The second and third topics are the vertical and horizontal
force balances due to variation in crustal thickness. The vertical force balance, isostasy,
provides a remarkably accurate description of variations in crustal thickness based on a
knowledge of the topography. The horizontal force balance provides a lower bound on
the force needed to maintain topographic variations on the Earth. The basic question
is: “What keeps mountain ranges from spreading laterally under their own weight?”

The fourth topic is the rheology of the lithosphere (Brace and Kohlstedt, 1980). How
does the lithosphere strain in response to applied deviatoric stress? The uppermost part
of the lithosphere is cold, so frictional sliding along optimally oriented, pre-existing
faults governs the strength. At greater depth, the rocks can yield by nonlinear flow
mechanisms. The overall strength-versus-depth profile is called the yield strength en-
velope (YSE). The integrated yield strength transmits the global plate tectonic stress.
Moreover, the driving forces of plate tectonics cannot exceed the integrated lithospheric
strength. This provides an important constraint on the geodynamics of oceans and con-
tinents.

The yield-strength-envelope formulation will also be used in the chapter on flexure.
It provides an explanation for the increase in the thickness of the elastic layer as the
lithosphere ages and cools. In addition, it is used to understand the depth of oceanic
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trenches. The first moment of the yield strength versus depth provides an upper bound
on the magnitude of the bending moment that the lithosphere can maintain. This model
strength estimate can be checked by measuring the bending moment of the trench/outer
rise topography. There is remarkably good agreement, assuming mantle dynamics does
not play a large role in the support of subduction zone topography. Throughout these
two chapters, the deviatoric stress levels are typically 100–300 MPa, since this is the
level of stress needed to maintain the topographic features on the Earth. In the follow-
ing chapters on earthquakes, the magnitudes of stresses are typically less than 10 MPa.
Part of this order-of-magnitude stress reduction is due to the fact that many earthquakes
are shallow. However, there is still a major unresolved issue of why the crust appears
weak in regard to earthquakes and strong in regard to topography and flexure. Since
this is a major unresolved issue, it is a good topic for research.

7.2 Oceanic Crustal Structure

The basic structure of the oceanic crust has been established through seismic refrac-
tion and reflection experiments, seafloor dredging/drilling, gravity/magnetics model-
ing, and studies of ophiolites (Ryan, 1994). Figure 7.1 from Kent et al. (1993) illus-
trates the current model of crustal generation at a fast-spreading ridge. Partial melt
that forms by pressure release in the uppermost mantle (∼40 km depth) percolates to a
depth of about 2000 m beneath the ridge, where it accumulates to form a thin magma
lens. Beneath the lens is a mush zone which develops into a 3500 m thick gabbro layer
by some complicated ductile flow. Above the lens, sheeted dikes (∼1400 m thick) are
injected into the widening crack at the ridge axis. Part of this volcanism is extruded
into the seafloor as pillow basalts. The pillow basalts and sheeted dikes cool rapidly
as cool seawater percolates to a depth of at least 2000 m. This process forms the basic
crustal layers seen by reflection and refraction seismology methods (Table 7.1).

oceanic density compressional thickness
crust (kg m−3) velocity (km s−1) (km)

seawater 1025 1.5 2–6

sediment >2300 >1.65 0–20

basalt 2700 5.0 2

gabbro 2800 6.8 4

mantle 3325 8.15 —
peridotite

Table 7.1: Structure of oceanic crust. The total crustal thickness is 5–7 km (Chen,
1992) and older crust is slightly thicker (Van Avendonk et al., 2017).
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Figure 7.1: Model of crustal structure derived from reflection and refraction seismology
(Kent et al., 1993).

Some key points about the oceanic crust:

• The Mohorovicic Discontinunity (Moho) is defined as the seismic velocity jump
from 6.8 km s−1 to greater than 8 km s−1.

• The Moho corresponds to a change in composition and density. For thick conti-
nental crust, it also corresponds to a change in strength.

• The oceanic crustal thickness is remarkably uniform throughout the ocean basins.
While the average crustal thickness does not depend on spreading rate, the local
variations in thickness are greater for the slow-spreading crust (<70 mm/yr full
rate). There are thickness variations along a ridge segment bounded by trans-
form faults; the crust is generally thinner near the end of a spreading segment
and thicker toward the center of the spreading segment.
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7.3 Continental Crustal Structure

The basic structure of the continental crust has also been established through seismic
refraction and reflection experiments, sampling and drilling, gravity/magnetics mod-
eling, and studies of exposed crustal sequences. Of course, the continental crust is
highly variable in thickness, velocity, density, and composition. Table 7.2 represents
an average crustal model for elevations close to sea level.

continental density compressional thickness
crust (kg m−3) velocity (km s−1) (km)

sediment >2300 >5.0 0–20

upper crust 2800 6.3 15

lower crust 2900 6.8 20

mantle 3320 8.1 —
peridotite

Table 7.2: Structure of continental crust. Total crustal thickness is 34 km for zero
elevation.

7.4 Vertical Force Balance: Isostasy

As discussed in Chapter 1, one of the most important and defining features of the Earth
is the bimodal histogram of topography (Figure 1.2). The tallest peak in the histogram
represents continental crust having elevations close to sea level. A second broader peak
represents the oceanic crust having elevations between about −6000 m and −3000 m
with a median depth of −4093 m. This bimodal histogram can be largely explained
by simple Airy isostasy, where the lithostatic pressure at the base of the lithosphere is
constant over the Earth.

A diagram of the Airy compensation model is shown in Figure 7.2 (Schubert and
Sandwell, 1989). A uniform density crust is divided into five layers, which float on
the higher density mantle. A major assumption of this model is that the mantle beneath
the crustal plateau has no lateral density variations. To understand how the thickness of
each layer is calculated, first consider a plateau on the seafloor where all of the topog-
raphy lies below sea level. By definition, the thicknesses of layers 1 and 5 are zero. The
topography of the plateau above the normal seafloor depth (h2) is isostatically compen-
sated by a crustal root with a thickness of h4. Isostatic balance means the pressure at
the base of the crustal root is the same as the pressure at the same depth beneath normal
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Figure 7.2: Airy compensation model used to determine crustal thickness and crustal
volume. The uniform density crust (ρc = 2800 kg m−3) is divided into five layers
which float on the higher density mantle (ρm = 3200 kg m−3). The seawater has a
density ρw, of 1025 kg m−3. Layer 1 lies above sea level, layer 2 lies between sea level
and the normal seafloor depth (base depth) zb, layer 3 corresponds to the thickness of
normal oceanic crust, layer 4 is the compensating root for layer 2, and layer 5 is the
compensating root for layer 1.

oceanic crust. The balance is

g (h2 ρc + h3 ρc + h4 ρc) = g (h2 ρw + h3 ρc + h4 ρm) . (7.1)

This can be simplified to an equation where the root thickness is related to the elevation:

h4 =
(ρc − ρw)
(ρm − ρc)

h2 (7.2)

The densities determine the ratio of root thickness to elevation; for typical values pro-
vided in Figure 7.2, this ratio is 4.4. The overall crustal thickness is the sum of the
three layers

ht = h3 + h2

[
1 +

(ρc − ρw)
(ρm − ρc)

]
. (7.3)

Exercise 7.1.
(a) Develop a formula for the total crustal thickness when the top of the plateau is at
sea level. Use the densities provided in Figure 7.2, a normal oceanic crustal thickness
of 6.5 km, and a normal seafloor depth of 4.1 km.
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(b) Calculate the thickness of this plateau at sea level.

(c) How does this compare with a typical value for continental crustal thickness at
sea level?

This simple Airy isostasy model provides a first-order explanation for spatial variations
in crustal thickness observed using seismic refraction measurements in both the oceans
(Figure 7.3) and continents (Figure 7.4). For a continent elevation of 5 km, such as the
Tibetan plateau, this simple model predicts the crust is 70 km thick—which is in fair
agreement with the seismic measurements.

The scatter in the seismic thickness with respect to the estimates from Airy isostasy
(Figure 7.4) can be caused by three factors. First, there may be significant lateral
variations in crustal density (i.e., Pratt compensation). Second, there may be density
variations in the mantle lithosphere caused by thermal or compositional variations. The
most prominent example is the elevation of the seafloor spreading ridges (−2500 m)
above the average basin depth (−4100 m) caused by thermal isostasy of the cooling
oceanic lithosphere (Chapter 5). Finally, the assumption of constant pressure at the
base of the lithosphere could be incorrect, because of pressure variations due to mantle
flow (i.e., dynamic topography). While these processes are important, Airy isostasy
provides a first-order explanation for the bimodal elevation of the Earth.

Figure 7.3: Seismic refraction measurements of crustal thickness versus elevation
above base depth for two continental submarine plateaus (Lord Howe Rise and Mas-
carene Plateau) and two oceanic plateaus (Ontong-Java and Shatsky Rise) (Schubert
and Sandwell, 1989). Predictions of the Airy compensation model are shown for crustal
densities ranging from 2700 to 2900 kg m−3 and a mantle density of 3200 kg m−3.
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Figure 7.4: Seismic refraction measurements of crustal thickness versus elevation
(Schubert and Sandwell, 1989). Measurements were selected from continental ar-
eas. Antarctica and Greenland data were not used. The best-fitting Airy compensation
model (solid curve) has a zero-elevation crustal thickness of 34 km. The RMS scatter
about the model is 9.09 km.

7.5 Horizontal Force Balance: Swell Push Force

One important question that arises is what the magnitude of the stress in the lithosphere
needs to be to maintain large-scale plateaus and roots (Flesch et al., 2001). This can be
considered as a minimum deviatoric stress, and it places constraints on the long-term
strength of the crust—especially the lower crust. Consider isostatically compensated
topography as shown in Figure 7.5.

While this diagram is related to a specific Airy-type compensation mechanism, the in-
tegral relation, presented next, is quite general. To calculate the total outward force Fs

due to this isostatically compensated plateau, we integrate the difference in pressure be-
tween column (1) and column (2) over depth, to the depth of compensation −L, where
the pressure difference is zero:

Fs =

0∫
−L

∆P(z) dz (7.4)

Integrate by parts:

Fs = ∆P(z) z
∣∣∣0
−L −

0∫
−L

∂∆P(z)
∂z

z dz (7.5)
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Figure 7.5: (left) Airy-compensated plateau. Pressure at depth −L is constant. (center)
Pressure versus depth for columns (1) and (2). (right) Pressure difference versus depth
(1) minus (2).

Note the first term on the right is zero because of isostasy. The second term can be
written in terms of the density by noting that the vertical gradient in the pressure dif-
ference is

∂∆P(z)
∂z

= −g∆ρ(z). (7.6)

The result is

Fs = g

0∫
−L

∆ρ(z) z dz. (7.7)

The swell push force depends on two factors: (1) the magnitude of the depth-integrated
surface density contrast, which is equal and opposite to the magnitude of the depth-
integrated compensation, and (2) the distance between the surface and compensating
density. A larger distance between the topography and its compensation increases the
swell push force.

Swell push force can be computed for a variety of isostatic configurations; we con-
sider three here. The first case is the calculation of the average crustal stress needed
to maintain the elevation of Tibet with respect to the elevation of India. This is left
as an exercise (Exercise 7.5); however, we provide the answer of 98 MPa to entice
you to do the problem. The important conclusion is that the lower crust must have a
strength greater than 98 MPa, or the high elevation of Tibet would rapidly collapse by
lateral spreading. Of course, the ongoing collision of India with Asia helps to provide
some dynamic support. Nevertheless, there are mountainous areas not having dynamic
support that can maintain their high elevation, so the lower crust must be quite strong.

The second case is the calculation of the minimum ice strength needed to maintain the
configuration of a floating ice shelf. This is also left as an exercise (Exercise 7.6). A
prominent example of ice sheet failure is the collapse of the Larsen B ice shelf in 2002.
Prior to collapse, the ice shelf was size of Rhode Island. The entire collapse occurred
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in a couple of months, leaving behind thousands of large ice fragments. A team of
collaborating investigators have developed a theory of why the ice disintegrates. The
theory is based on the presence of ponded melt water on the ice shelf surface in late
summer, as the climate has warmed in the area. Meltwater acts to enhance fracturing
of the shelf, thus reducing its cohesive strength.

The third case is the so-called ridge push force. The name is a bit confusing, because
the force is zero at the ridge axis and increases with the age of the lithosphere. It
is really a gravitational sliding force and is commonly termed gravitational potential
energy or GPE. For half-space cooling, the seafloor depth increases as the square root
of age. The depth of compensation also increases as the square root of age, so the
ridge push force increases linearly with age. To calculate the ridge push force, we
first construct a density structure following the development in Section 5.4 on thermal
subsidence. Figure 7.6 shows this density structure where the temperature T from the
cooling half space model (equation 5.23) is

−z

d(t)

t

Δρ = (ρw −  ρm)

Δρ = αρm[Tm − T(z , t ) ]

Figure 7.6

T (z, t) = (Tm − To) erf
(

z
2
√
κt

)
+ To. (7.8)

The depth versus age is provided in equation 5.41 and is

d(t) =
2ρm α (Tm − To)

(ρm − ρw)

(
κt
π

)1/2
. (7.9)

The swell push force is

F =

0∫
−d(t)

g (ρw − ρm) z dz +

−d(t)∫
−∞

gα ρm [Tm − T (z − d, t)] (z − d) dz. (7.10)
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The first integral becomes

(1) = g (ρw − ρm) z2

2

∣∣∣∣∣0
−d(t)

=
g
2

(ρm − ρw) d2 (t) . (7.11)

For the second integral, let z′ = d (t) − z, so the integral becomes

(2) = gα (Tm − To)

∞∫
0

erfc
(

z′

2
√
κt

)
z′ dz′. (7.12)

Now let η = z′

2
√
κt

, so the integral becomes

(2) = gα (Tm − To) 4κt

∞∫
0

erfc (η) η dη. (7.13)

Now integrate by parts:

∞∫
0

erfc (η) η dη = erfc (η)
η2

2

∣∣∣∣∣∣∞
0

+
1
√
π

∞∫
0

η2e−η
2

dη (7.14)

The first term on the right side is zero, while the second term is 1
4 , so the second integral

is simply
(2) = gα ρm (Tm − To) κt. (7.15)

The final result is

F = gαρm (Tm − To) κ
[
1 +

2αρm (Tm − To)
π (ρm − ρw)

]
t. (7.16)

Now let’s put in some numbers. The ridge push force at an age of 100 Ma is 3.2 ×
1012 N m−1. The lithosphere is approximately 100 km thick at that age, so the average
ridge push stress is 32 MPa.

7.6 Rheology of the Lithosphere

As discussed in the introduction to this chapter, the finite strength of the lithosphere has
a dominant effect on plate boundary deformation, intraplate deformation, and litho-
spheric flexure. For example, the distribution of shallow earthquakes (Figure 1.4) is
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very different between the oceans and continents. In areas of thin oceanic crust (6–7
km), earthquakes primarily occur in narrow zones following the spreading ridges, trans-
form faults, and subduction zones. In contrast, areas of thicker continental crust (∼35
km) have more diffuse patterns of earthquakes occurring within the broader continen-
tal deformation zones. Moreover, we will see in the next two chapters that lithospheric
flexure produced by relatively small loads from volcanic growth results in primarily
elastic strains in the flexed plate. However, the large amplitude plate bending at ocean
trenches results in strains that are well beyond the elastic limits resulting in large nor-
mal faults on the outer trench wall and very high plate curvatures suggestive of a thinner
than expected elastic lithosphere. These processes are well explained by considering
the finite strength of the lithosphere that depends on lithostatic pressure, temperature,
rock type, and strain rate.

7.6.1 Overview

A schematic diagram of these processes is shown in Figure 7.7. Pressure increases
with depth as ρgz (Figure 7.7a). According to Byerlee (1978) the maximum shear
stress that can be maintained in the upper lithosphere is controlled by frictional sliding
on optimally oriented, pre-existing faults. Experimental results show sliding friction
f is largely independent of rock type so the maximum stress increases linearly with
depth (Figure 7.7b) due to the linear increase in normal stress with depth. As discussed
in previous chapters, temperature also increases with depth (Figure 7.7c) depending
on factors such as plate age, asymptotic plate thickness, and radiogenic heat sources
mostly in the continental crust. As the temperature increases, the lower lithosphere will
undergo ductile flow. Using typical geological strain rates of 10−17 s−1 to 10−14 s−1, lab-
oratory experiments for a variety of rock types can be used to constrain the maximum
shear stress versus depth in the ductile deformation zone (Figure 7.7d). In response to
applied end load or bending moment, the weaker of the two mechanisms will domi-
nate (Figure 7.7e). The maximum frictional sliding strength depends on whether the
horizontal external stress is extensional (+) or compressional (−). The overall plot of
maximum stress versus in extension and compression is called a yield strength enve-
lope (YSE). The transition from frictional sliding (brittle) to ductile flow occurs in a
poorly defined brittle-ductile transition zone (Kohlstedt et al., 1995). There are many
excellent papers on the yield strength envelope. This section follows from four studies
– Byerlee (1978), Brace and Kohlstedt (1980), Kohlstedt et al. (1995), and Jaeger et al.
(2009). We also repeat several of the analyses and figures provided in the book Isostasy
and Flexure of the Lithosphere by Watts (2001).
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Figure 7.7: Schematic diagram of the components of the yield strength envelope model.
(a) Pressure increases with depth. (b) Stress needed to cause frictional sliding on a fault
is approximately the coefficient of friction times the lithostatic pressure. (c) Temper-
ature increase with depth. (d) Stress needed to activate ductile flow decreases with
increasing temperature. (e) Yield strength versus depth for extension and compression
where one principal stress is vertical and a second principal stress is horizontal.
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7.6.2 Frictional Sliding on Faults

At depths greater than a few kilometers in the Earth, the cohesive strength of rock is
relatively low compared with the overburden pressure ρgz. Over geological timescale,
the crust and lithosphere undergo significant deformation creating faults and fractures
on many surfaces and in many directions. A classic paper by Byerlee (1978) proposes
that fault motion (seismic or aseismic) always occurs on pre-existing faults. Therefore,
understanding frictional sliding between rocks at high lithostatic pressure is important
for understanding the strength of the upper brittle lithosphere. In that study Byerlee
compiled results from rock friction experiments in the intermediate pressure range of
30–2000 MPa corresponding to depths in the Earth of 1–70 km (Figure 7.8). The
lithostatic pressure applies a normal stress σn perpendicular to the fault plane. The
experiments then measure the amount of shear stress τ needed to cause frictional slip.
The ratio of shear stress to normal stress is approximately the coefficient of friction.
The experimental data show that the relationship is largely independent of rock type
and has the functional form

τ =


0.85σn σn < 200 MPa

50 MPa + 0.6σn σn > 200 MPa.
(7.17)

We will refer to this as Byerlee’s law. Note that in these experiments the coefficient
of friction is ∼0.6 to 0.85. For a vertical strike-slip fault in the crust of density ρc, the
normal stress is equal to the lithostatic pressure ρcgz. However, if the fault is filled
with water at hydrostatic pressure, then the outward pressure of the water reduces the
normal stress such that σn = (ρc − ρw) gz. For example, the shear stress needed to
activate a strike-slip fault at 10 km depth in the crust under hydrostatic conditions is
quite large ∼100 MPa. Later in Chapter 11 we will discuss the implications of this
stress for heating of the fault zone over many earthquake cycles.

To develop the frictional sliding part of the yield strength envelope consider a layer
of rock where one of the principal stresses σ3 is vertical and the other is horizontal
and extensional σ1 > σ3 as shown in Figure 7.9. We assume that the layer is exten-
sively fractured, so frictional sliding can occur on faults in any orientation θ+π/2 with
respect to the x-axis. Given this configuration, we ask the questions what stress differ-
ence is needed to induce sliding on an optimally oriented fault and what is that fault
orientation?
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Figure 7.8: Frictional strength for a wide variety of rocks plotted as a function of
normal stress (modified from Byerlee (1978)).
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Figure 7.9: Layer of rock subjected to vertical lithostatic stress and extensional tectonic
stress. Sliding will occur on an optimally oriented fault plane at angle θ with respect to
the vertical.
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In the previous chapter on elasticity, we discussed stress and strain in three dimensions
as well as the development of a principal stress coordinate system where shear stresses
are zero. Here we perform a stress tensor transformation in two dimensions by coun-
terclockwise rotation through an angle θ. In the 2-D x − z principal coordinate system,
the stress tensor is simply

 σ1 0

0 σ3

 . (7.18)

Transformation to the x′ − z′ coordinate system involves a rotation

R =

 cos θ sin θ

− sin θ cos θ

 . (7.19)

The tensor rotation is

σ′ = RσRT (7.20)

where

σ′ =

 σ
′
xx σ′xz

σ′xz σ′zz

 . (7.21)

Exercise 7.2. Show that the components of the stress tensor in the rotated coordinate
system are

σ′xx = σ1cos2θ + σ3sin2θ

σ′zz = σ1sin2θ + σ3cos2θ

σ′xz = (σ3 − σ1) sin θ cos θ

. (7.22)

Next consider the shear stress and normal stress on a plane perpendicular to the x′− axis.
This will be the optimally oriented fault plane where the frictional sliding will occur.
In this case τ = σ′xy so
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τ =
(σ3 − σ1)

2
sin 2θ (7.23)

where we have used the trigonometric identity 2 sin θ cos θ = sin 2θ.

Exercise 7.3. Show that the normal stress is given by

σn =
− (σ3 + σ1)

2
+

(σ3 − σ1)
2

cos 2θ (7.24)

You will need the trigonometric identity cos 2θ = cos2θ − sin2θ. The negative sign
comes from the definition of the normal stress which is positive in compression whereas
the stress convention used in this book is positive in extension.

Next note that Byerlee’s law has the following form

τ = S o + fσn (7.25)

where S o is the cohesion of the rock and f is the coefficient of friction. We seek the
angle θ that has the minimum shear stress to cause sliding on the fault. Equating the
Byerlee shear stress with the shear stress in the rotated coordinate system we have

(σ3 − σ1) sin 2θ = 2S o − f (σ3 + σ1) + f (σ3 − σ1) cos 2θ (7.26)

or

(σ3 − σ1) (sin 2θ − f cos 2θ) = 2S o − f (σ3 + σ3) . (7.27)

Exercise 7.4. Use the computer algebra capabilities of matlab or another computer
algebra program to show that the optimal angle is given by

tan 2θ =
1
f

(7.28)

and

σ1 = σ3 + 2 (S o + fσ3)
[(

1 + f 2
)1/2

+ f
]
. (7.29)
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A plot of the shear stress τ versus normal stress σn as a function of the dip angle of the
normal fault θ is shown as a Mohr circle in Figure 7.10. Also shown is Byerlee’s law.
The point where these functions intersect is the minimum stress needed to activate slip
on the optimally oriented fault.

1 + 3

2

1

3

2
= f n

n

Figure 7.10: Mohr diagram showing the intersection point of Byerlee’s law ( f = 0.6)
with a Mohr circle.

We can express Byerlee’s law in terms of the principal stresses to arrive at

σ1 = 4.67σ3 σ3 < 113 MPa θ = 24.8

σ1 = 3.12σ3 + 176 MPa σ3 > 113 MPa θ = 29.5
. (7.30)

Now there are two cases to consider for the orientation of the principal stresses – hor-
izontal extension and horizontal compression. For the extensional case the smaller
principal stress is vertical so σ3 = σv = ρgz. The differential stress, horizontal minus
vertical is

(σh − σv) = 0.786ρgz ρgz < 530 MPa θ = 24.8

(σh − σv) = 0.679ρgz + 56.7 MPa ρgz > 530 MPa θ = 29.5
. (7.31)

Finally, we consider the compressional case where the largest principal stress is vertical
so σ1 = σv = ρgz. The differential stress, vertical minus horizontal is
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(σv − σh) = 3.67ρgz ρgz < 113 MPa θ = 65.2

(σv − σh) = 2.12ρgz + 176 MPa ρgz > 113 MPa θ = 60.5
. (7.32)

Yield strength corresponding to frictional sliding on optimally oriented faults for ex-
tension and compression are plotted in Figure 7.11. The optimally-oriented faults are
about three times stronger in compression than in extension. Including water at hydro-
static pressure in the faults reduced the normal stress and thus the yield strength.

Note that this theory provides the dip of an optimally oriented extensional (normal)
fault of between 60.5 and 65.5◦ from a horizontal plane. When discussing outer rise
normal faults in Chapter 9, the best fitting coefficient of friction is ∼0.3 corresponding
to a fault dip of 53◦. An idealized frictionless normal fault would have a dip angle of
45◦.

7.6.3 Ductile Deformation

As temperature increases with depth, rocks begin to undergo ductile flow in response
to differential stress. Below the brittle-ductile transition, the stress needed to cause
ductile flow becomes less than the stress needed to cause frictional sliding. The stress
needed to produce ductile flow is sensitive to temperature, differential stress, mineral
composition, grain size, water content, and strain rate and is relatively insensitive to
pressure. Geological strain rates vary from 10−17 s−1 to 10−14 s−1. Temperatures vary
from 0 ◦C to the melting temperature of olivine ∼1400 ◦C. Differential stresses of
interest in geodynamics are typically greater than 10 MPa and less than 200 MPa. Un-
der these conditions the dominant ductile deformation mechanism is dislocation creep.
The flow law commonly used to describe dislocation flow in crystalline materials is
a thermally activated power-law relation between strain rate ε̇ and differential stress
(σ1 − σ3). The most commonly used relationship has the following form

ε̇ = A(σ1 − σ3)n exp
(

RT
Q

)
(7.33)

where the parameters are
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ε̇ strain rate 10−15 s−1

A material constant Pa−n s−1

(σ1 − σ3) differential stress Pa

n stress exponent 2 − 3

Q activation energy J mol−1

R gas constant 8.314 J mol−1 K−1

T absolute temperature K

. (7.34)

For this flow law, strain rate increases exponentially with increasing temperature and
as a power of the differential stress. To further develop the yield strength envelope, this
equation can be inverted for differential stress as

(σ1 − σ3) =

(
ε̇

A

)1/n
exp

( Q
nRT

)
. (7.35)

There are three laboratory-derived material constants that depend on rock type and
grain size. For our simplified analysis we will just consider rock types related to the
mantle (olivine) and end member continental crustal rocks ranging from wet granite to
dry orthopyroxene (Table 7.3)

rock n A Q (J mol−1)

granite (wet) 1.9 7.9 × 10−16 1.41 × 105

orthopyroxene (dry) 2.4 1.2 × 10−16 2.93 × 105

olivine 3.0 7.0 × 10−14 5.23 × 105

Table 7.3: Material parameters for dislocation creep.

The overall yield strength versus depth including ductile flow is shown in Figure 7.11
for a geotherm corresponding to 100 Ma of cooling. Ocean lithosphere has crustal
thickness of 6–7 km so the frictional sliding yield mechanism dominates through the
crust and into the upper mantle. The solid curves show yield stress for frictional sliding
of faults containing water at hydrostatic pressure while the dashed curves correspond
to dry faults. The lithosphere is much stronger in compression than extension because
when the horizontal compression exceeds the lithostatic pressure the normal stress is
increased. Similarly, extension causes unclamping of the faults so they can slide with
less differential stress.
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The yield strength versus depth for continental lithosphere is more complex. For a
typical crustal thickness of 35 km, the lower crust deforms by ductile flow and it is
highly dependent on the rock type, water content, and grain size. For this relatively
cold, 100 Ma geotherm, the crust consisting of dry orthopyroxene has a weak basal
crustal layer between depths of 30 and 35 km. In contrast, if the crust consists of
wet granite, it will be weak in the depth range 10–35 km. Regardless of the rock
type, the vertically integrated strength of continental lithosphere is always less than
oceanic lithosphere of the same geotherm. This has several important implications for
geodynamics:

1. Given the same horizontal driving force applied to a plate containing continental
and oceanic crust, the continental lithosphere will deform first. This is evident
in earthquake patterns where seismicity primarily occurs at the boundaries of the
ocean lithosphere but is more diffuse in the continental plates.

2. Continental lithosphere having thick crust of say 50 km will be much weaker than
continental lithosphere having normal 35 km crust. As proposed by Vink et al.
(1984), continental rifts will prefer to propagate through thicker crust associated
with mountains. This could help explain Wilson Cycle where continental rifting
preferentially occurs at suture zones.

3. Finally, as we will see in flexural analyses, the effective elastic thickness of con-
tinental lithosphere is less than the effective elastic thickness for the ocean litho-
sphere for a similar geotherm.
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Figure 7.11: Yield strength versus depth for oceanic (left) and continental (right) litho-
sphere having a geotherm corresponding to 100 Ma old oceanic lithosphere according
to the plate cooling model discussed in Chapter 5.
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7.6.4 Strength vs. Age

To further illustrate the effects of temperature and crustal thickness on the strength of
the lithosphere, we have calculated YSE models for lithosphere having cooling ages
between 4 and 256 Ma (Figure 7.12). The ocean lithosphere has yield strength that
increases with age. The overall thickness-integrated strength in extension increases
almost linearly with age out to about 70 Ma where it begins to flatten owing to the
finite-thickness of the plate cooling model. The strength versus age for continental
lithosphere (dry orthopyroxene) is more complicated owing to the ductile yielding of
the lower crust. As discussed previously, continental lithosphere is always weaker than
oceanic lithosphere for the same thermal structure. Moreover, the strength depends
on crustal thickness. For a 50 Ma geotherm, continental lithosphere is about half the
strength of ocean lithosphere. At 100 Ma the continental lithosphere with 50 km crust
is still half the strength of oceanic lithosphere. For very cold lithosphere, the conti-
nents and oceans have about equal strength. Finally, it is interesting to compare the
integrated strength of the oceanic lithosphere with the plate driving forces. At 100
Ma, the integrated strength is 75 × 1012 N m−1 while the ridge push force is much
smaller at 3.2 × 1012 N m−1. In the last chapter we estimate the slab pull force at about
13−37×1012 N m−1 at 80 Ma. Therefore the strength of the oceanic lithosphere usually
exceeds the driving forces so the plates remain largely undeformed.
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Figure 7.12: Oceanic (solid) and continental (dashed) yield strength envelope models
as a function of cooling age based on the plate cooling model. (upper) Yield strength
versus depth in extension (positive) and compression (negative). (lower) Integrated
yield strength for oceanic (solid) and continental lithosphere having normal crustal
thickness (dashed) and 50 km thick crust (short dash). Note that for the same geotherm,
continental lithosphere is always weaker than oceanic lithosphere.

7.7 Exercises

Exercise 7.5. What is the average crustal stress needed to maintain the elevation of
Tibet (5 km) with respect to the elevation of India (0 km− sea level). Use the crust and
mantle densities of 2800 kg m−3 and 3200 kg m−3, respectively. Assume the crustal
thickness under India is 30 km.
(a) Use Airy isostasy to solve for the crustal thickness of Tibet.

(b) Calculate the outward driving force using equation (7.7).

(c) Calculate the average stress as the ratio of driving force to total crustal thickness.
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Exercise 7.6. An ice sheet of thickness D and density ρi = 960 kg m−3 is floating on
an ocean of density ρw = 1025 kg m−3 under the force of gravity g. Assume the ice
sheet is thin relative to its horizontal dimensions. See Figure 7.13.

ρiρw ρw

ρw

-h

-D

P ∆P

g

Figure 7.13

(a) Sketch the pressure versus depth for the ice and water, as well as the pressure
difference versus depth.

(b) Derive an expression for the freeboard (i.e., height above sea level) of the ice sheet.

(c) Derive an expression for the outward driving force per unit length into the page
caused by this density configuration

Fs =

0∫
−D

∆P (z) dz

Check your results in a limiting case.



Chapter 8

Flexure of the Lithosphere

This chapter is basically a supplement to Geodynamics (Turcotte and Schubert, 2014,
Chapter 3). The results of the first derivation are the same as Geodynamics, equation
(3.130), but rather than guessing the general solution, the solution is developed using
Fourier transforms. The approach is similar to the solutions of the marine magnetic
anomaly problem, the lithospheric heat conduction problem, the strike-slip fault flexure
problem, and the flat-Earth gravity problem. In all these cases, we use the Cauchy
integral theorem to perform the inverse Fourier transform. Later we’ll combine this
flexure solution with the gravity solution to develop the gravity-to-topography transfer
function. Moreover, one can take this approach further, to develop a Green’s function
relating temperature, heat flow, topography, and gravity to a point heat source (e.g.,
Sandwell, 1982). In addition to the constant flexural rigidity solution found in the
literature, we develop an iterative solution to flexure with spatially variable rigidity.

Before going over these notes, read Geodynamics, Section 3.9, on the development of
moment versus curvature for a thin elastic plate.

The loading problem is illustrated in Figure 8.1. We start with a simple line source, but
the solution method also applies to a point source. Of course, the point source Green’s
function can be convolved with an arbitrary load distribution to make the solution com-
pletely general; we’ll do this later. The vertical force balance for flexure of a thin elastic
plate floating on the mantle is described by the following differential equation.

d2

dx2

(
D(x) d2w

dx2

)
flexural

resistance

+ F d2w
dx2

end
load

+ ∆ρgw

restoring
force

= q(x)

vertical
load

(8.1)

116
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FF

x
w(x)

q(x)

Figure 8.1: Thin elastic plate subjected to vertical load q(x) and end load F. The plate
responds with a vertical displacement w(x).

The parameters are defined in Table 8.1.

Parameter Definition Value/Unit

w(x) deflection of plate
(positive down)

m

D(x) =
Eh(x)3

12
(
1 − ν2) flexural rigidity N m

h elastic plate thickness m

F end load N m−1

q vertical load N m−2

∆ρ density contrast
(ρm − ρw) for ocean

2200 kg m−3

g acceleration of gravity 9.82 m s−2

E Young’s modulus 6.5 × 1010 Pa

v Poisson’s ratio 0.25

Table 8.1
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8.1 Constant Flexural Rigidity, Line Load, No End Load

Under these assumptions, the differential equation and boundary conditions become

D d4w
dx4 + ∆ρgw = Voδ(x)

lim
|x|→∞

w(x) = 0 and lim
|x|→∞

dw
dx

= 0.
(8.2)

Take the Fourier transform of the differential equation, where the forward and inverse
transforms are now defined as

F(k) =

∞∫
−∞

f (x) e−ikx dx f (x) =
1

2π

∞∫
−∞

F(k) eikx dk (8.3)

where the wavenumber is now 2π/λ instead of the usual 1/λ. The derivative property
is now = [dw/ dx] = ik= [w]. The Fourier transform of the differential equation is

Dk4 W(k) + ∆ρgW(k) = Vo (8.4)

and the solution for plate deflection is simply

W(k) =

[
k4 +

4
α4

]−1 Vo

D
(8.5)

where the flexural parameter α is (see (Turcotte and Schubert, 2014, equation (3.127)))

α4 =
4D
∆ρg

. (8.6)

Now take the inverse Fourier transform of equation (8.5).

w(x) =
Vo

2πD

∞∫
−∞

eikx(
k4 + 4

α4

) dk (8.7)

As in the other solutions, we find the poles in the denominator of equation (8.7) and
integrate around the poles.(

k4 +
4
α4

)
=

(
k2 +

2i
α2

) (
k2 −

2i
α2

)
(
k4 +

4
α4

)
=

(
k −

1 + i
α

) (
k −
−1 + i
α

) (
k −

1 − i
α

) (
k −
−1 − i
α

) (8.8)

See also Figure 8.2.

First consider the case for x > 0. To match the boundary conditions at infinity, we want
Im(k) > 0. Thus, we close the integration in the upper half of the plane and apply the
Cauchy residue theorem ∮

f (z)
z − zo

dz = i2π f (zo). (8.9)
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(1+ i ) /α

Im k

Re k

Figure 8.2: Location of poles in the complex plane. The integration path from −∞ to∞
can be closed in the upper or lower hemisphere.

The relevant poles are
k =

1 + i
α

and k =
−1 + i
α

. (8.10)

The solution is

w(x) =
Vo

2πD
2πi

 α3ei( 1+i
α )x

(1 + i + 1 − i) (1 + i − 1 + i) (1 + i + 1 + i)

+
α3ei( −1+i

α )x

(−1 + i − 1 − i) (−1 + i − 1 + i) (−1 + i + 1 + i)

 .
(8.11)

After some simplification, this becomes

w(x) =
Voα

3

8D
e−x/α

[
eix/α

(1 + i)
+

e−ix/α

(1 − i)

]
. (8.12)

This can be rewritten in terms of cos(x/α) and sin(x/α). Also, we know that the solu-
tion should be symmetric about x = 0. The final result for positive x matches (Turcotte
and Schubert, 2014, equation (3.130)).

w(x) =
Voα

3

8D
e−x/α [cos(x/α) + sin(x/α)] (8.13)

The important parameters and length scales in this solution are:

α flexural parameter
√

2πα flexural wavelength

xo = 3πα/4 distance to the first zero crossing.
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For the case of a broken plate the solution is

w(x) =
Voα

3

4D
e−x/αcos(x/α). (8.14)

This is also the form used to model plate bending at a subduction zone. The general
solution to this 2-D flexure problem has four terms:

w (x) = Ae−x/α sin (x/α)+ Be−x/α cos (x/α)+Cex/α sin (x/α)+Dex/α cos (x/α) . (8.15)

When solving for flexure in a plate with two or more step variations in flexural rigidity
such as fracture zone flexure (Exercise 9.5), one needs all four terms.

Figure 8.3 shows the solution for the continuous plate where the maximum flexure is
normalized to one. The solution for a broken plate is shown in Figure 8.4. Note that for
the same downward force, the amplitude of the broken plate is twice the amplitude of
the continuous plate. We will also see this in the next section where we use a variability
rigidity formulation to simulate a broken plate.

(a)

(b)

Figure 8.3: Deflection of a thin elastic plate under a line load. From Geodynamics (Tur-
cotte and Schubert, 2014).
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(a)

(b)

Figure 8.4: Deflection of a broken thin elastic plate under a line load. From Geody-
namics (Turcotte and Schubert, 2014).

8.2 Variable Flexural Rigidity, Arbitrary Line Load,
No End Load

For this case, we need to solve a linear differential equation, but with a variable coeffi-
cient. This will involve an iteration scheme in the Fourier transform domain where the
first iteration is basically equation (8.5) above. See the original derivation in Sandwell
(1984). The differential equation and boundary conditions are

d2

dx2

(
D(x) d2w(x)

dx2

)
+ ∆ρgw(x) = q(x)

lim
|x|→∞

w(x) = 0 and lim
|x|→∞

dw
dx

= 0
(8.16)

where D(x) is now the spatially variable flexural rigidity, w(x) is the deflection of the
plate, and q(x) is the applied load. It is assumed that D and w are band-limited func-
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tions, so that their Fourier transforms exist. The functions D and w can be written as

D(x) =
1

2π

∞∫
−∞

D(s)eisx ds

w(x) =
1

2π

∞∫
−∞

W(r)eirx dr.

(8.17)

Upon substitution of these expressions for D and w into the first term of equation (8.16)
and differentiating under the integral, the following is obtained.

1
(2π)2

∞∫
−∞

∞∫
−∞

(r + s)2r2D(s) W(r) ei(s+r)x dr ds + ∆ρgw(x) = q(x) (8.18)

The Fourier transform of equation (8.18) is

1
(2π)2

∞∫
−∞

∞∫
−∞

(r + s)2r2D(s)W(r)

∞∫
−∞

ei(s+r−k)x dx dr ds + ∆ρgW(k) = Q(k). (8.19)

By making use of the definition of the delta function

1
2π

∞∫
−∞

ei(s+r−k)x dx = δ
[
r − (k − s)

]
(8.20)

performing the integral with respect to r, and using the band-limited property of D(s)
(i.e., D(s) = 0|s| > β), equation (8.19) reduces to a Fredholm integral equation,

k2

2π

β∫
−β

D(s) W(k − s)(k − s)2 ds + ∆ρgW(k) = Q(k). (8.21)

Notice that if the flexural rigidity is constant, D(x) = Do, then D(s) = 2πDo δ(s). For
this case, the solution for the plate deflection for an arbitrary load is

W(k) =
[
Do k4 + ∆ρg

]−1
Q(k). (8.22)

Now consider the more general case of spatially variable flexural rigidity

D(s) = D′(s) + 2πDoδ(s). (8.23)

Inserting equation (8.23) into equation (8.21) and rearranging terms yields

W(k) =
[
Dok4 + ∆ρg

]−1

 Q(k) − k2

2π

β∫
−β

D′(s)W(k − s)(k − s)2 ds

 . (8.24)
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The plate deflection W(k) appears on both sides of equation (8.24), so there is no closed
form solution for W(k). However, if the variations in flexural rigidity D′ are small
compared with the mean value of flexural rigidity Do, then this equation can be solved
by successive approximation. The original derivation in Sandwell (1984) provides the
necessary requirement for convergence, but a numerical illustration is also useful. This
variable-rigidity flexure approach has also been extended to 3-D (Garcia et al., 2014).

Figure 8.5 is a numerical example of flexure of a plate with a sharp reduction in plate
thickness at the origin. The upper curve compares the flexure of a continuous plate
(solid curve, analytic solution of equation (8.13)) to the Fourier transform solution of
equation (8.2) (dashed curve). The lower plot is a comparison of the analytic solution to
flexure of a broken plate (solid curve, (Turcotte and Schubert, 2014, equation (3.140)))
to the numerical iterative solution of equation (8.24) (dashed curve). For this case, the
thickness of the plate at the origin was reduced by 95%. This approximates the broken
plate solution.
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Figure 8.5: (upper) Flexure of a plate with constant flexural rigidity. The Fourier trans-
form (dashed) and the analytic solution (e−x/α (cos x/α + sin x/α)) show good agree-
ment. (lower) Flexure of a broken plate. The iterative Fourier transform solution
(dashed) and analytic solution (2e−x/α cos x/α) show good agreement.
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8.3 Stability of Thin Elastic Plate under End Load

Consider the original differential equation (8.1) and now assume constant flexural rigid-
ity with a delta function line load and uniform compressive end load F. The line load
by itself will cause flexure of the plate, as given in equation (8.13). For sufficiently
large end load, this initial deflection will become amplified and the plate will buckle.
Here we develop formulas for the critical end load when the amplification becomes
unbounded. In addition, the buckling will occur at a particular wavelength λc. Under
these assumptions, the differential equation becomes

D d4w
dx4 + F d2w

dx2 + ∆ρgw(x) = Vo δ(x). (8.25)

The Fourier transform of the differential equation is

Dk4 W(k) − Fk2 W(k) + ∆ρ gW(k) = Vo (8.26)

and the solution for plate deflection is

W (k) = Vo

[
Dk4 − Fk2 + ∆ρg

]−1
. (8.27)

The deflection of the plate is singular when the denominator goes to zero. We note that
the denominator is a polynomial, so we can use the quadratic formula to search for the
zeros of this equation. We can write this as a quadratic equation in k2.

k2 =
F ±

√
F2 − 4D∆ρg

2D
(8.28)

We know the wavenumber must be a real number and this only occurs when

F >
√

4D∆ρg. (8.29)

When F is equal to this critical value, we call this the critical end load Fc. The wave-
length when this occurs is the critical wavelength given by

λc = 2π
[

D
∆ρg

]1/4
(8.30)

where D is the flexural rigidity given by

D =
Eh3

12
(
1 − ν2)

and h is the elastic plate thickness. Note this wavelength λc is also equal to the flexural
wavelength discussed in Section 8.1.
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Figure 8.6: (solid) Normalized flexure of a continuous plate under a line load. (dashed)
Normalized flexure with line load and end load. The plate begins to buckle at the
flexural wavelength.

An example of the flexure due to a line load on a thin elastic plate is shown in Fig-
ure 8.6. When no end load is applied, the flexure follows the analytic solution for a
continuous plate given in equation (8.13). When an end load is applied the plate begins
to buckle. This example has an end load F = 0.9Fc.

Next, consider an example of buckling of oceanic lithosphere that is 50 km thick. The
density contrast ∆ρ = (ρm − ρw) and other parameters are given in Table 8.1. The
parameters of interest are the average stress at the ends of the plate σ = Fc/h and
the buckling wavelength λc. For this case, the values are 4.9 GPa and 475 km. From
the analysis of the yield strength envelope, it is clear that this level of stress cannot
be sustained by even the strongest oceanic lithosphere. Therefore, the elastic buckling
model is not relevant for the Earth. One must consider the inelastic properties of the
lithosphere to understand the response to large end loads.

8.4 Exercises

Exercise 8.1. Continental yield strength envelope model. The continental yield strength
has been described as a jelly sandwich consisting of a weak layer (jelly) between two
strong layers (bread). The flexural rigidity of a single strong layer is

D =
Eh3

12
(
1 − ν2) . (8.31)

(a) What is the flexural rigidity of two strong layers, each of thickness h/2, that are not
bonded along their common interface?
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(b) What is the effective elastic thickness for this layered case (bottom diagram in
Figure 8.7)?

h

h/2

Figure 8.7: (solid) (top) Single plate of thickness h. (bottom) Two plates each of thick-
ness h/2 are not bonded at their interface, so they act independently under a bending
moment.

Exercise 8.2. Write a matlab program to generate the two flexure curves in Figure 8.6.
Start with the code used in Exercise 2.9.

Exercise 8.3. (a) Consider an ice shelf of thickness h (150 m) and density ρi (980 kg
m−3) floating on an ocean of density ρw (1025 kg m−3). The ice starts at a cold uniform
temperature of To (-22 ◦C) as it flows out onto the ocean and then is warmed at its base
to a temperature of seawater Tw (-2 ◦C). The ice has enough time to equilibrate so the
geotherm is approximately linear with depth and is

T (z) = (Tw − To)
z
h

+ To. (8.32)

Show that the thermal bending moment is

MT =
γE (Tw − To)

12
h2 (8.33)

where E (1.6 × 109 Pa) is Young’s modulus and γ (5.5 × 10−5 ◦C−1) is the linear coef-
ficient of thermal expansion. Assume that the depth-integrated end load is zero.

(b) Derive the following formula for the deflection of the plate as a function of distance
from the edge of the ice shelf. Hint see equation (3.151) in Geodynamics.

w (x) =
α2MT

2D
e−(x/α) [cos (x/α) − sin (x/α)] . (8.34)

c) Plot the deflection of the plate as a function of distance from the edge of the ice
shelf. How does this compare with the topography of the rampart and moat shown in
Figure 2 of Scambos et al. (2005)?



Chapter 9

Flexure Examples

This chapter provides practical examples of flexural models applied to structures in the
lithospheres of Earth and Venus. The models are all basically solutions to the thin-
plate flexure equation, with a variety of surface loads, sub-surface loads, and boundary
conditions. Both gravity and topography data are used to constrain the models. We’ll
see in a Chapter 17 that gravity data provide important constraints on the topography
of the Moho. Figures and captions from various sources are provided on the follow-
ing pages. The excellent book by Watts (2001) provides a much more thorough and
extensive survey of oceanic and continental flexures.

The features discussed below include:

Seamounts undersea volcanoes loading the oceanic lithosphere

Trenches plate bending at subduction zones on Earth and Venus

Fracture Zones flexure that accumulates due to the differential subsidence across an
oceanic fracture zone.

In addition, there are nine exercises at the end of the chapter to explore a wider variety
of published flexure models including ice shelves and rift flank uplifts. Students can
select a topic of interest, reproduce the published results, and provide a critical analysis
of each paper.

127
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9.1 Seamounts

Seamounts are undersea volcanoes found mainly in the deep ocean. They were orig-
inally defined by Menard (1964) as “isolated elevation from the seafloor with a cir-
cular or elliptical plan, at least 1 km of relief, comparatively steep slopes and a rela-
tively small summit area”. They are produced in four tectonic settings: near mid-ocean
spreading ridges; in plate interiors over upwelling mantle plumes (hotspots); in areas
of intraplate extension; and in island-arc convergent settings (Wessel, 2001). Although
they represent a tiny fraction of the volume of the oceanic crust, they are scientifically
important for a number of reasons: the geochemistry of seamounts provides a window
into the upper mantle; the loading of seamounts on the lithosphere provides estimates
of lithospheric thickness and rheology; ocean currents/tides are impeded by seamounts
causing ocean mixing and upwelling; and seamounts provide habitats for a variety of
sea life (Mountains in the Sea (Staudigel et al., 2010)). Since only about 20% of the
seafloor has been mapped with multibeam echo sounders, only a fraction of seamounts
have been identified. Here we focus on understanding the thickness and rheology of the
lithosphere using relatively large seamounts as impulsive sources of flexure. The litho-
spheric cooling models, discussed in previous chapters, predict that seamount-induced
flexure will reflect the elastic thickness of the lithosphere at the time the seamount
formed (e.g. Watts, 1978).

In Chapter 8 we calculated the flexure due to a line load on a thin elastic plate. Of
course, this line load is not well suited to a seamount, which is more like a point
load. We will see in Chapters 16 and 17 that flexure and gravity models are easily
calculated for loads of arbitrary shape using Fourier transform methods. The approach
is to take a 2-D Fourier transform of the load (i.e., bathymetry), use the thin elastic
plate flexure equation (17.5) to compute the topography of the Moho; then use the
solution to Poisson’s equation (16.33) to calculate the gravity anomaly produced by
both the topography and Moho interfaces. The model gravity can be compared with
the observed gravity to find parameters that provide the smallest misfit. The main
unknown parameters are the elastic thickness and the crustal density.

As an example, we model flexure caused by large seamounts of the Foundation seamount
chain in the South Pacific (Figure 9.1). This area of seafloor has complete multibeam
bathymetry coverage so the bathymetry and gravity data sets are independent. The
gravity modeling is performed with Generic Mapping Tools (GMT) (Wessel et al.,
2019). The topography and gravity data are from matching global grids having 1
minute spatial resolution (Tozer et al., 2019; Sandwell et al., 2019). The computer
scripts to make the computations follow in Table 9.1. The analysis starts with a to-
pography grid that has boundaries that extend > 300 km beyond all sides of the grid
shown in Figure 9.1. This extension is needed to avoid Fourier edge effects, and also
include wavelengths much longer than the expected flexural wavelength. The isostatic
parameters of a smaller area or individual seamount can be estimated by selecting a
sub-area to evaluate the rms misfit between the observed and model gravity.
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Figure 9.1: Gravity/bathymetry flexure model of the Foundation seamounts.
(a) Bathymetry of the eastern section of the Foundation seamounts closest to the Pacific
Antarctic ridge on seafloor younger than 3 Ma. (b) Free-air gravity anomaly derived
from satellite altimetry. (c) Moho topography based on bathymetric loading of a thin
elastic plate (h = 2500 m, ρc = 2750 kg m−3, ρm = 3300 kg m−3) (d) Model gravity
based on gravity contributions from the bathymetry and Moho. (e) Rms misfit between
observed and model gravity with mean removed versus elastic thickness and crustal
density. (f) Difference between observed and model gravity. Modeling was done using
Generic Mapping Tools (GMT) (Wessel et al., 2019).
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9.1.1 Elastic Thickness Versus Age

Flexural analyses have been performed by numerous investigators at hundreds of lo-
cations around the oceans. Compilations such as shown in Figure 9.2 are used to bet-
ter understand the thickness and strength of the cooling oceanic lithosphere. Flexural
analyses at spreading ridges generally find low elastic thickness associated with hot
and young lithosphere. Many seamount flexure studies show an increase in the elastic
plate thickness with the age of the lithosphere at the time of loading. The base of the
elastic later has a temperature between 300 and 600◦C. However, some seamounts in
French Polynesia have anomalously low elastic thickness that is not well understood
in terms of simple plate cooling. Plate bending at ocean trenches provides very clear
flexural signals but their elastic thickness versus age is highly scattered. One factor not
accounted for in these flexural studies is the possible non-linear relationship between
bending moment and curvature. The simplest linear models have a single slope (i.e.,
the flexural rigidity D) to the moment vs. curvature relationship as described in Chap-
ter 8. However, this simple relationship breaks down when the plates are bent beyond
their elastic limit. We’ll explore these non-linear effects in the next section on trench
flexure where the plates are bent at angles up to 10 degrees prior to subduction.

Figure 9.2: Elastic thickness versus the age of the lithosphere at the time of loading
compiled by Watts (2001)
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foundations.csh

# compare observed and model gravity in the area of the Foundation seamounts

# gather the global grids of topography and gravity anomaly

wget https://topex.ucsd.edu/pub/global_topo_1min/topo_23.1.nc

wget https://topex.ucsd.edu/pub/global_grav_1min/grav_31.1.nc

# specify and cut the full and rms regions

set region = "-R-120/-106/-42/-32"

set rms_region = "-R-114.4/-112/-37.5/-36.3"

gmt grdcut topo_20.1.nc -Gtopo.grd $region

gmt grdcut grav_29.1.nc -Ggrav.grd $region

# compute the optimal model

set rhoc = "2750"

set Te = "2500"

isostatic.csh topo.grd 1025 $rhoc 3300 $Te 6500 g_iso.grd

# cut to the rms region

gmt grdcut g_iso.grd $rms_region -Gg_iso_cut.grd

gmt grdcut grav.grd $rms_region -Ggrav_cut.grd

# subtract the isostatic anomaly from the gravity and compute stdev

gmt grdmath grav_cut.grd g_iso_cut.grd SUB = g_diff.grd

gmt grdinfo -L2 g_diff.grd | grep stdev

# clean up

rm topo.grd grav.grd g_diff.grd g_iso.grd

isostatic.csh

# script to compute a flexural isostatic correction for topography

if ($#argv < 7) then

echo " "

echo "Usage: isostatic.csh topo.grd rhow rhoc rhom Te Dc g_iso.grd"

echo " "

echo "Example: isostatic.csh topo.grd 1025 2700 3300 5000 7000 g_iso.grd"

echo " "

exit 1

endif

alias MATH ’set \!:1 = ‘echo "\!:3-$" | bc -l‘’

# set the densities and elastic thickness

set RW = $2

set RC = $3

set RM = $4

set TE = $5

MATH RCRW = $RC - $RW

# compute the mean ocean depth and moho depth

set DT = ‘gmt grdinfo -L2 $1 | grep mean | awk ’{if($3 < 0) print(-$3); else print (100)}’‘

MATH DM = $6 + $DT

# compute the gravity from the topography using 4 terms in the Parker expansion

gmt gravfft $1 -D$RCRW -E4 -Gg_topo.grd

# compute the gravity due to the compensation and the moho topography

gmt gravfft $1 -T$TE/$RC/$RM/$RW+m -E1 -Z$DM -Gg_comp.grd

# add the two contributions

gmt grdmath g_topo.grd g_comp.grd ADD = sum.grd

# filter the model to match the spectrum of the data

gmt grdfilter sum.grd -Fg14 -D2 -G$7

# cleanup

rm g_topo.grd g_comp.grd sum.grd

Table 9.1: GMT computer script and data used to compute gravity/topography flexure
models anywhere on the Earth.
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9.2 Trenches

Deep ocean trenches are the locations where the ocean lithosphere is bent downward
beginning its subduction into the mantle. This bending produces very large topography
and gravity anomalies (Figure 9.3) so these are excellent locations to study lithospheric
flexure (Figure 9.4). In addition, since the flexure is occurring now, we know the age
of the lithosphere when it was flexed.

In this section we show examples of combined topography and gravity flexure analyses
at numerous trenches (Figure 9.5). As discussed above, the elastic thickness derived
from trench data does not show a clear correlation with lithospheric age. We also
highlight the fractures and normal faults that occur on the outer trench wall. Both
observations illustrate that the lithosphere is bent beyond its elastic limit at trenches.
This is not unexpected since the bending is permanent and continues deeper into the
Earth reaching dip angles of 45 degrees or more from the horizontal.
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Figure 9.3: Gravity anomaly of the Aleutian Trench (100 mGal contour interval). The
deepest part of the trench has large negative anomalies (−200 mGal). The outer rise
south of the trench has smaller positive anomalies (20–40 mGal). Note the extinct
trench marked by a green arrow has a large gravity anomaly demonstrating that trench
flexures reflect bending of an elastic plate rather than a viscous plate since the viscous
flexure would decay in a few million years.
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Figure 9.4: Schematic representation of topography and gravity at an ocean trench.
The model parameters include the elastic thickness h, the first zero crossing outboard
of the trench x0, the width of the outer rise πα, the mean depth far from the trench d0,
the regional gravity far from the trench g0, and the density of the lithosphere ρm (Levitt
and Sandwell, 1995).
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Figure 9.5: Topography and gravity data for 14 of 117 profiles modeled in the Levitt
and Sandwell (1995) study. Profiles are shifted vertically for presentation. Data are
shown as tiny crosses. Solid lines correspond to the best fit model using both topogra-
phy and gravity and dashed lines correspond to the best fit model using just topography
(left) or gravity (right).
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9.2.1 Moment Saturation at Trenches and Outer Rise Normal Faults

The elastic thickness versus age derived from seamount and trench flexure shows con-
siderable scatter (Figure 9.2) suggesting that the elastic thickness is highly variable
with age. Another interpretation, shown in Figure 9.6, is that the elastic thickness mea-
sured by flexure h′ represents the elastic core of the plate which is always less than the
thickness h predicted from the plate cooling model (McNutt and Menard, 1978). This
happens because the upper part of the plate undergoes brittle fracture and the lower
part of the plate deforms plastically. Rather than use this effective elastic thickness as
a measure of plate strength, it is better to use the maximum flexural bending moment
since it accounts for these nonlinear effects from yielding. We call this the saturation
bending moment Ms and it is the integral of the yield stress σY (z) shown as the thick
solid line in Figure 9.6(b) times the distance from the neutral surface.

Ms =

h/2∫
−h/2

σY (z)z dz (9.1)

The bending moment at a trench cannot exceed this saturation bending moment. (Note
that the depth to the neutral surface should be adjusted to ensure that the overall end
load on the plate is zero.)



CHAPTER 9. FLEXURE EXAMPLES 136

h

h h’

Figure 9.6: (a) Stress versus depth in a bent thin elastic plate has extension near the
surface and compression at depth. (b) Stresses cannot exceed the yield strength of the
plate resulting in brittle fracture near the surface and ductile flow at depth. The elastic
core is thinner than the original elastic thickness because of yielding. Modified from
Watts (2001).

One can directly measure the bending moment at a trench axis and adjust the rheology
model of the lithosphere to make sure it does not exceed the saturation moment. If
we assume that the flexural topography at a trench is entirely supported by a bending
moment, then the moment can be measured as shown in Figure 9.7. The moment is
simply the topographic restoring stress g∆ρw(x) times the moment arm (x − xo) inte-
grated from the trench axis to infinity

M = g∆ρ

∞∫
x1

w (x) (x − xo) dx ≤ Ms (9.2)
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In theory one could measure this moment directly from the topography but it is difficult
to select the zero level. A small error in the zero level results in a very large error in
the moment because there will be non-zero topography when the moment arm is large.

x

x

x
w o1

M

Figure 9.7: Flexural topography caused by a bending moment applied to the subducted
lithosphere.

A more robust approach to measuring the maximum moment at the trench axis is to first
fit a flexure model to bathymetry and then use that model to calculate the maximum
bending moment at the trench axis (Levitt and Sandwell, 1995). Gravity anomaly data
are also used in the fitting (Figures 9.4 and 9.5) to help constrain both the shape of the
flexure and also the zero level of the topography far from the trench. Note that gravity
is less noisy than bathymetry because of the attenuation of the short wavelengths by
upward continuation from the ocean floor to the ocean surface. Recent results are
shown in Figure 9.8 for 24 trench flexure areas around the Pacific ocean basin (Garcia
et al., 2019). The observed maximum bending moment increases by more than a factor
of 10 between ages of 20 and 140 Ma. Also shown is the saturation bending moment
which is calculated using a YSE formulation from Goetze and Evans (1979) but using
parameter values from Mueller and Phillips (1995) combined with the temperatures
from the plate cooling model (Parsons and Sclater, 1977, Pacific model). The upper
brittle layer is relatively weak with a 0.3 coefficient of friction and hydrostatic pore
pressure. The observed bending moment is close to the saturation bending moment
so the elastic core is close to zero thickness. This explains why the effective elastic
thickness from trench flexure studies is generally smaller than the expected mechanical
thickness of the plate (e.g., depth to 600–800 ◦C isotherm).
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Figure 9.8: (upper) Bending moment versus curvature for a yield strength envelope
model having a 0.3 coefficient of friction with hydrostatic pore pressure and a ductile
flow law. The temperature versus depth is based on the Parsons and Sclater (1977)
plate cooling model at and age of 60 Ma. At low curvature (< 10−8) there is a linear
relation between moment and curvature having a slope equal to the flexural rigidity
corresponding to the mechanical thickness of the plate. As the curvature increases, the
moment versus curvature flattens and eventually saturates. (lower) Maximum bending
moment at the trench axis versus age for 24 trenches in the Pacific basin (modified
from Garcia et al., 2019). The thick grey curve shows the maximum bending that can
be sustained as a function of age. Note that all of these subducting plates are nearly
moment saturated.

As shown in Figures 9.8, the plate is nearly moment saturated at the trench axis, so
the upper part of the plate, where strength is controlled by brittle fracturing, should
have faults that extend from the surface to nearly half the plate thickness. With a few
assumptions we can use the model to predict the vertical offset on the outer rise faults.
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The model for the outer rise fractures is shown in Figures 9.9. The plate of initial
thickness h has a curvature of ∂2w/∂x2 where x is along the direction of maximum
curvature. The amount of strain ε is related to the curvature and the distance from
the neutral surface by ε = −z∂2w/∂x2 (Turcotte and Schubert, 2014). The strain is
purely elastic near the neutral surface, but there is brittle deformation from the surface
down to a depth d. We assume that this yielding region is incompressible, so that
horizontal extension in the upper brittle layer is accommodated by vertical deformation.
The deformation will appear on the surface as down-dropped blocks. The average
vertical offset on the surface is then equal to the horizontal strain integrated through
the thickness of the upper deformed layer. The result is

∆h =
1
2
∂2w
∂x2 d (h − d) . (9.3)

For a plate having an initial 50 km thickness, a faulting depth of 20 km, and a typical
magnitude of curvature of 4 × 10−7m−1, the vertical relief will be 120 m. If the ratio
of undisturbed surface (horst) to down-dropped blocks (graben) is 1/2, then the vertical
relief will be 240 m.

z

d

h

x

Figure 9.9: Schematic diagram showing a plate of thickness h that is bent beyond its
elastic limit. According to the YSE formulation, fractures will extend to a depth d.
We assume that the upper zone of inelastic deformation is incompressible (stippled).
The depth-averaged extension in that zone is accommodated by faulting and graben
formation on the surface (modified from Garcia et al., 2019).

We can compare this model for the formation of horst and graben topography on the
outer trench walls where there is high resolution multibeam sonar data. Examples are
shown in Figures 9.10 and 9.11 for the Tonga and Japan Trenches, respectively. The
horst and graben topography grows toward the trench axis to an amplitude of about
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400 m, in basic agreement with the model prediction. However, this simple model
predicts larger topography than is observed and the onset of the observed horst and
graben topography is closer to the trench than the model predicts. These misfits could
be due to a number of processes such as thermoelastic pre-stress (Garcia et al., 2019),
and elastic processes that would reduce the amplitude of the model which assumes
incompressible material.
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Figure 9.10: Outer rise fractures in NE Japan: (upper) Residual bathymetry across the
seaward wall of the trench and outer rise. The dashed grey lines traverse the top of horst
blocks and the base of grabens. The distance between these surfaces is used to estimate
the depth of grabens. The dotted grey line is equidistant between the top (horst) and
bottom (graben) surfaces and is used to estimate the proportion of horsts and grabens.
Estimated fault throw for the YSE model described above (thick grey curve) has more
amplitude than the observations. (lower) Residual swath bathymetry. The dashed grey
and solid black lines mark the trench axis and the location of the profile, respectively
(modified from Garcia et al., 2019).
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Figure 9.11: High resolution multibeam bathymetry data reveal the development of
horst and graben structures on the outer trench wall of the Tonga Trench (Massell,
2002). Seaward of these fractures the abyssal hill fabric runs in an east–west direction
which is perpendicular to the bending fractures.

9.2.2 Venus Trench

In the final example of this trench section we explore these same flexure, fracture, and
moment saturation concepts for features on the planet Venus. We observe several fea-
tures on Venus having arcuate planform with horizontal dimensions similar to trenches
on the Earth (Figures 9.12 and 9.13) (e.g., (Schubert and Sandwell, 1995)). Moreover,
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these trench features have arcuate fractures similar to the horst and graben structures
on the seaward walls of Earth trenches (Figure 9.14). While this suggests there has
been lithospheric subduction on Venus, we do not have the confirming evidence such
as Benioff zones showing subduction of lithosphere to at least 700 km into the Earth’s
mantle. Moreover, the total length of trench-like features on Venus is only 30% of the
length of the trenches on Earth. Also, if subduction is prevalent today on Venus there
should be significant evidence for lithospheric spreading or widespread lithospheric ex-
tension. Nevertheless, the topography and gravity of these features is highly suggestive
of subduction on Venus and this hypothesis could possibly be tested with an additional
spacecraft survey of topography and surface change.
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Figure 9.12: (upper) Shaded bathymetry map of the Sandwich trench, South Atlantic.
(lower) Shaded topography of Latona Corona, Venus. The maps are plotted at the
same horizontal and vertical scale (Sandwell and Schubert, 1992). Profiles A–A′ and
B–B′ are profiles shown in Figure 9.13. The white box outlines the high resolution
topography shown in Figure 9.14.
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Figure 9.13: Profiles across the Sandwich Trench (A–A′) and Latona Corona (B–
B′) show similar flexural wavelength and amplitude (Sandwell and Schubert, 1992).
Dashed curves are fits of flexure models.
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Figure 9.14: Topography (200 m contour interval) of a segment of southern Latona
Corona superimposed on a Magellan SAR image reveals the relationship between
circumferential fractures and the major ridges, trenches, and scarps (Schubert and
Sandwell, 1995). These fractures on the outer trench wall are similar to the fractures
seen outboard of the Tonga trench in Figure 9.11, suggesting that they formed when
the lithosphere outboard of Latona Corona was flexed beyond its elastic limit.

9.3 Fracture Zone

A fracture zone is a scar in the lithosphere produced by a transform fault as shown in
Figure 9.15. The transform fault has active strike-slip motion between the two ridges
but the two plates begin to move at the same rate outboard of the ridge-transform inter-
section (RTI). At the RTI, the lithosphere on the young side A is hot and weak while the
lithosphere on the old side A′ has cooled and strengthened. When the two sides begin
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to move at the same rate they fuse, forming a single strong fracture zone. The young
side is cooling and subsiding faster than the older side and if they remain bonded, the
initial depth difference at the RTI may be frozen in place. To maintain the initial depth
offset at the RTI, and also to accommodate the shrinking depth difference across the
FZ, the plates must flex. The thermal evolution problem was given as an exercise in
Chapter 5. In this section we show a schematic of the evolution of a fracture zone (Fig-
ure 9.15 and provide comparisons of the thermal subsidence/flexure model predictions
with bathymetry profiles across the Mendocino and Pioneer FZ’s (Figure 9.16). The
solution to the flexure model is given as an exercise at the end of this chapter. Several
studies have pointed out that the plates may have partial slip when the differential sub-
sidence rate is high just outboard of the RTI, so this is an area of active research that
will require detailed multibeam sonar surveys of more fracture zones.
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Fig. 1. Evolution of a fracture zone. (Top) Spreading ridges 
offset by a transform fault. The age offset across the FZ is te, - 
(Center) The h's are the differences in ocean floor depth between 
locations far to either side of the FZ. The initial height of the scarp at 
the FZ is hA. If the FZ does not slip, the scarp height must remain 
constant. The constancy of scarp height and the decrease in h with 
age cause the lithosphere in the vicinity of the FZ to bend. The 
flexural amplitude/ie is the difference between hA and he. Similarly, 
•ic = hA I hE. (Bottom) Sketch of bathymetry along profiles A-A', 
B-B', and C-C' illustrating the lithospheric flexure described above. 

and the vertical offset of distant ocean floor. Therefore the 
only adjustable model parameter is the stress relaxation 
temperature Te which defines the base of the elastic layer. 
We will show that good fits between the observed and 
predicted bathymetric profiles are obtained by varying this 
single parameter. These good fits also confirm the absence of 
vertical slip on the fossil fault planes of the Mendocino and 
Pioneer FZ's. 

The temperature dependence of he turns out to be an 
essential feature of the model; without it, flexure could not 
reproduce the curvature in the bathymetric profiles. There- 
fore this is independent evidence for the temperature depen- 
dence of he. The flexure models also yield estimates of the 
maximum bending stresses and average shear stresses in the 
lithosphere. We compare these with the magnitudes of the 
stresses caused by plate bending at ocean trenches. Finally, 
we calculate the flexure caused by horizontal conduction of 
heat across a FZ and demonstrate that it has a relatively 
small effect upon the bathymetry. 

DATA 

The Mendocino and Pioneer FZ's in the North Pacific 
were chosen to test our model of flexure at fracture zones 
primarily because they have a combined age offset of about 
30 Myr and should therefore show large flexural amplitudes. 
The study region (Figure 2) was limited to the area between 

the Juan de Fuca ridge and 150øW because it contains 
identified magnetic anomalies [Atwater and Menard, 1970]. 
These anomalies were dated by using the magnetic time 
scale of Ness et al. [1980]. The Mendocino FZ has an age 
offset which varies between 30 Myr at 128øW and 25 Myr at 
140øW. To the west of 140øW, the Mendocino divides and the 
age offset gradually shifts from the northern branch to the 
southern branch. However, only the total age offset across 
both FZ's is known, since the lithosphere between these two 
FZ's does not contain identified magnetic anomalies. The 
Pioneer FZ runs subparallel to the Mendocino FZ and has an 
age offset which varies between 8 Myr at its eastern end and 
4 Myr at 104øW. 

Five N-S trending bathymetric profiles crossing both FZ's 
were chosen for this study and are shown in Figure 2. A few 
other continuous N-S profiles are available; however, these 
additional profiles lie within 100 km of the five we have 
chosen, and they therefore contain redundant information. 
The depths along each of the profiles were obtained from the 
sounding charts used to construct the 'Bathymetry of the 
Northeast Pacific' contour map [Mammerickx and Smith, 
1981]. The spacings between soundings varied from 1 to 2 
min of latitude. Because of this rather coarse sampling the 
shortest wavelength topography is aliased, but the longer 
wavelength topographic features are unaffected. 

The bathymetry along each of the profiles A-E in Figure 2 
is shown in Figure 3 together with the ages of each litho- 
spheric segment. The dashed lines are the bathymetric 
profiles predicted by the depth-age relation (equation (1) of 
the following section) and the parameter values in Table 1. 
The predicted depths are in approximate agreement with the 
data for locations more than 1 ø (111 km) away from each of 
the FZ's (marked by arrows in Figure 3). However, in the 
vicinity of each FZ there are large systematic differences 
between the predicted and observed depths. In each case, 
the ocean floor is anomalously shallow on the younger side 
of the F•, while on the older side it is generally deeper than 
expected. We will show that the depth anomalies in Figure 3 
are a consequence of lithospheric flexure. 

MOn•L 

As the oceanic lithosphere ages, it cools and subsides 
according to the depth-age relation [Parker and Oldenburg, 
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1GO ø 1500 1400 130 ø 12( 

Fig. 2. Map of the northwest Pacific showing the locations of 
the five bathymetric profiles A-E crossing the Mendocino and 
Pioneer FZ's. The Mendocino FZ divides into north and south 
branches west of 140øW. Modified from Mamrnerickx [1982]. 

Figure 9.15: Evolution of a fracture zone (Sandwell and Schubert, 1982a). (Top)
Spreading ridges offset by a transform fault. The age of offset across the FZ is tB′ − tB.
(Center) The h’s are the differences in ocean floor depth between locations far to either
side of the FZ. The initial height of the scarp at the FZ is hA. If the FZ does not slip, the
scarp height must remain constant. The constancy of scarp height and the decrease in h
with age cause the lithosphere in the vicinity of the FZ to bend. The flexural amplitude
δB is the difference between hA and hB. Similarly, δc = hA − hC . (Bottom) Sketch of
bathymetry along profiles A–A′, B–B′, and C–C′ illustrating the lithospheric flexure
described above.
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Figure 9.16: Comparisons between theoretical bathymetric profiles computed from
flexure models assuming no slip on the FZs (dashed lines) and the observed bathymetric
profiles A–E (solid lines) (Sandwell and Schubert, 1982a). The asymmetric flexure
predicted by the model across each FZ is a consequence of the increase in flexural
wavelength with age. The apparent tilt in the bathymetry between the Pioneer and
Mendocino FZs occurs because the flexural wavelength is greater than their separation
distance.
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9.4 Exercises

Exercise 9.1. Show that Equation 9.2 is true by integrating the solution for the trench
flexure case, equation (3.142) in Geodynamics.

w (x) = woe−x/α cos
x
α

(9.4)

Compare this with the moment computed from the curvature

M (x) = D
∂2w
∂x2 . (9.5)

You will need the relationship between α and D given in Equation 8.6.

Exercise 9.2. Ice Shelf Flexure Discuss the tidal flexure model and derive equation
(3) in the paper by Vaughan (1995). Generate the curve shown in Figure 5. Explain the
overall findings of the paper.

Exercise 9.3. Seamount Flexure Discuss the seamount loading flexure model and
derive equation (11) of Banks et al. (1977). How would one calculate a model for a
load of arbitrary shape? Use GMT or matlab to generate the flexure for a Gaussian-
shaped seamount.

Exercise 9.4. Trench Flexure Discuss the trench flexure problem and derive the so-
lution given in equation (2) of Caldwell et al. (1976). Reproduce the graphs shown in
Figure 3. Explain the overall findings of the paper.

Exercise 9.5. Fracture Zone Flexure Discuss the fracture zone flexure problem and
derive the solution given in equation (11) of Sandwell and Schubert (1982a). Calculate
the topography and stress across a single fracture zone with different flexural rigidities
on either side (simple case, no time dependence, no lateral heat conduction). Explain
the overall findings of the paper.

Exercise 9.6. Flexure on Venus - Discuss the Venus Flexure problem and why it is
important. Derive equation (2) in Johnson and Sandwell (1994). Derive equation (10)
from equations (7) and (8). When might it be more appropriate to use a ring load rather
than a bar load. Explain the overall findings of the paper in terms of the geothermal
gradient on Venus.

Exercise 9.7. Outer Rise Yield Strength Discuss why it is important to consider
the finite yield strength of the lithosphere when modeling flexure at subduction zones.
Discuss equations (3) and (12) in McNutt and Menard (1982). Discuss the difference
between the effective elastic thickness and the mechanical thickness.

Exercise 9.8. Rift Flank Uplift Why do the flanks of rifts go up? Reproduce Figure
3 in Brown and Phillips (1999). Discuss the equation (11) and Figure 5 in Weissel and
Karner (1989).
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Exercise 9.9. Lake Loading Discuss the lake loading flexure problem and its effect on
the San Andreas Fault. Derive equations (2) and (3) in Luttrell et al. (2007). Reproduce
the thin-plate plots in Figure 4. Explain the overall findings of the paper.



Chapter 10

Elastic Solutions
for Strike-Slip Faulting

(References: Weertman and Weertman, 1966; Savage and Burford, 1973; Cohen, 1999)

This chapter provides the mathematical development for the deformation and strain
pattern due to an infinitely long, strike-slip fault in an elastic half space. The notes
are similar to Sections 8.6–8.9 in Geodynamics (Turcotte and Schubert, 2014). While
we follow the overall theme of Chapter 8, we’ll deviate in two respects. First we’ll
use a coordinate system with the z-axis pointed upward, to be consistent with the other
chapters on gravity, magnetics, and heat flow. Second we’ll develop the solution from
first principles using the Fourier transform approach. This approach does not explicitly
use dislocations (e.g. Segall, 2010) but simulates dislocations using body force couples
following Steketee (1958) and Burridge and Knopoff (1964).

10.1 Interseismic Strain Buildup

The first objective is to derive an expression for the surface displacement v(x) and
surface strain δv/δx for the model shown in Figure 10.1. A constant velocity V is
applied at an elastic half space. There is a fault in the half space with locked and
creeping sections.

151
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creeping

y

x

z

locked

−V/2 V/2

Figure 10.1

The approach will be as follows:

1. Develop the force balance from basic principles.

2. Establish the line-source Green’s function for an elastic full space.

3. Establish the screw-dislocation Green’s function for an elastic full space.

4. Use the method of images to construct a half-space solution.

5. Integrate the line sources to develop the solutions found in the literature.

6. Compute the geodetic moment accumulation rate for an arbitrary slip distribution.

7. Use the inclined fault plane model.

8. Look at matlab examples.

10.1.1 Force Balance

Consider the forces acting on the infinitely long (y-direction) square rod depicted in
Figure 10.2. The body force per unit volume of rod must be balanced by tractions on
the sides of the rod.
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Figure 10.2

The equation for this force balance is[
τxy (x + δx) − τxy (x)

]
δy δz +

[
τzy (z + δz) − τzy (z)

]
δx δy = b (x, z) δz δy δz (10.1)

where τxy and τzy are the shear tractions on the side and top of the box, respectively,
and b(x, y) is the body force that depends only on x and z. Dividing through by δx δy δz
and taking the limit as all three go to zero, we arrive at

∂τxy

∂x
+
∂τzy

∂z
= b (x, z) . (10.2)

Given the following relationship between stress and displacement, the differential equa-
tion reduces to Poisson’s equation

τxy = µ
∂v
∂x

τzy = µ
∂v
∂z

(10.3)

∂2v
∂x2 +

∂2v
∂z2 = 1

µ
b (x, z) (10.4)

where µ is the shear modulus and v is the displacement in the y-direction.



CHAPTER 10. ELASTIC SOLUTIONS FOR STRIKE-SLIP FAULTING 154

10.1.2 Line-Source Green’s Function

We can generate the solution to an arbitrary source distribution by first developing the
line-source Green’s function. Consider a line source at a depth of −a. The differential
equation is

∂2v
∂x2 +

∂2v
∂z2 = A

µ
δ(x) δ(z + a) (10.5)

where A is the source strength having units of force/length, or force/length/time if this
will represent an interseismic velocity. The boundary conditions for this second-order,
partial differential equation are that v must vanish as both |x| and |z| go to infinity. The
two-dimensional forward and inverse Fourier transforms are defined as

F (k) =

∞∫
−∞

∞∫
−∞

f (x) e−i2π(k·x)d2x

f (x) =

∞∫
−∞

∞∫
−∞

F(k) ei2π(k·x)d2k

(10.6)

where k = (kx, ky) and x = (x, y). Take the two-dimensional Fourier transform of the
differential equation (10.5)

− (2π)2
(
k2

x + k2
z

)
V(k) = A

µ
ei2πkza (10.7)

so the solution in the Fourier domain is

V(k) =
−Aei2πkza

µ(2π)2
(
k2

x + k2
z

) . (10.8)

Now we need to take the inverse Fourier transform with respect to kz and make sure the
solution goes to zero as |z| goes to infinity. The integral is

V(kx, z) =
−A

µ(2π)2

∞∫
−∞

ei2πkz(z+a)(
k2

x + k2
z

) dkz. (10.9)

First consider the case kx > 0, z + a > 0. We can factor the denominator and recognize
that the integrand will vanish for large positive z if we close the contour in the upper
hemisphere.

V(kx, z) =
−A

µ(2π)2

∮
ei2πkz(z+a)(

kz + ikx

) (
kz − ikx

) dkz (10.10)

See Figure 10.3.
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Figure 10.3

From the Cauchy integral formula, we know that for any analytic function the following
holds for a counterclockwise path surrounding the pole.∮

f (z)
z − zo

dz = i2π f (zo) (10.11)

In this case with the pole at ikx, the result is simply

V(kx, z) =
−i2πA
µ4π2

e−2πkx(z+a)

i2kx
=
−A
2µ

e−2πkx(z+a)

2πkx
. (10.12)

Next consider kx < 0, z + a > 0. In this case, we must close the integration path in the
lower hemisphere to satisfy the boundary conditions; during the integration the only
contribution will be from the −ikx pole. The overall result is to replace kx by |kx|.

V(kx, z) =
−A
2µ

e−2π|kx |(z+a)

2π
∣∣∣kx

∣∣∣ (10.13)

Note this is exactly the same functional form as the heat flow solution in Chapter 2.
The Green’s function is the inverse cosine transform of equation (10.13), or ln(r2). The
final result is

v(x, z) =
−A
4πµ

ln
[
x2 + (z + a)2

]
. (10.14)

10.1.3 Screw Dislocation for Line Source Green’s Function

In order to produce a fault plane with strike-slip displacement, we need to construct a
line-source screw dislocation. This can be accomplished by abutting equal but opposite
line source dislocations, as shown in Figure 10.4.
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line screw

Figure 10.4

A simple way of constructing the screw source is to take the derivative of the line source
Green’s function in a direction normal to the fault plane. So, we need to develop the
Green’s function for the following differential equation.

∇2vscrew = δ(z + a)
[
δ(x + dx) − δ(x)

] /
dx = δ(z + a) ∂

∂x
δ(x) (10.15)

To do this, we take the derivative of the line source Green’s function in equation (10.14).

vscrew(x, z) =
−A
4πµ

∂

∂x
ln

[
x2 + (z + a)2

]
=
−Ax
2πµ

[
x2 + (z + a)2

]−1
(10.16)

So the Green’s function for a line-source screw dislocation at depth is

vscrew(x, z) =
−A
2πµ

x[
x2 + (z + a)2

] . (10.17)

10.1.4 Surface Boundary Condition: Method of Images

The surface boundary condition is that the shear stress τzy must be equal to zero, but the
full-space result provides a non-zero result. This boundary condition will be satisfied if
we place an image source at z = a. When the combined source and image are evaluated
at the surface z = 0, the result is to double the strength of the Green’s function.

v(x, z) =
−A
2πµ

x
{[

x2 + (z + a)2
]−1

+
[
x2 + (z − a)2

]−1
}

v(x, 0) =
−A
πµ

x[
x2 + a2]

(10.18)

10.1.5 Vertical Integration of Line Source to Create a Fault Plane

The final step in the development is to integrate the line-source screw dislocation over
depth. We consider three cases:
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1. Deep slip to represent interseismic deformation above a locked fault.

2. Shallow slip to represent shallow creep.

3. Shallow slip on a stress-free crack to represent an earthquake.

Case 1 First consider a fault that is free-slip between a depth −D and infinity. This is
the solution considered by Savage (1990). See Figure 10.5.

y

x

z

−V/2 V/2

−D

Figure 10.5

The integral of the line source Green’s function is

v(x) =
−A
πµ

−D∫
−∞

x
x2 + z2 dz. (10.19)

To integrate 10.19, make the following substitution.

η = −xz−1 so dη = xz−2 dz (10.20)

The integral becomes

v(x) =
−A
πµ

x/D∫
0

1
1 + η2 dη =

−A
πµ

tan−1
( x

D

)
. (10.21)
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We know that v(±∞) = +V/2, so A = −Vµ. Note that A has units of force per unit
area times a velocity. This corresponds to a moment rate per area of fault. The familiar
results for displacement and shear stress are

v(x) = V
π

tan−1 x
D

τxy =
µV
πD

1

1 +
(

x
D

)2 .

(10.22)

Consider the extreme cases of a completely unlocked fault such that D = 0. The
displacement field will be a step function and the stress will be everywhere zero except
at the origin, where it will be infinite.

Case 2 Next consider a fault that is free-slip between the surface and a depth −d. In
this case the integral is

v(x) =
V
π

0∫
−x/d

1
1 + η2 dη =

V
π

tan−1 η
∣∣∣∣∞
−x/d

. (10.23)

There are two cases depending on whether x is positive or negative.

v(x) =
V
π

(
π

2
− tan−1 x

d

)
x > 0

v(x) =
V
π

(
−π

2
− tan−1 x

d

)
x < 0

(10.24)

By combining these, the displacement and shear stress are

v(x) = V
[
H(x) − 1

2

]
−

V
π

tan−1 x
d

τxy = µV

δ(x) −
1
πd

1

1 +
( x

d

)2

 .
(10.25)

If the fault is completely unlocked so that as d goes to infinity, the displacement be-
comes a step and the shear stress is infinite at the origin, in agreement with our concepts
of a free-slipping fault.

Case 3 The third case considered also has shallow slip between depth −d and the
surface. However, in this case we consider a so-called crack model, where the slip
versus depth function results in zero stress on the fault. This derivation will lead to
the crack solution given in Geodynamics, equation (8.110). The Case 2 solution has
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uniform slip with depth. This leads to a stress singularity at the base of the fault. In
contrast, the model in Geodynamics has a stress-free crack imbedded in a pre-stressed
elastic half space. Using the Green’s function developed above, it can be shown that
the two solutions are in fundamental agreement. The only difference is related to the
slip-versus-depth function.

From the dislocation theory developed in equation (10.19), the y-displacement as a
function of distance from the fault is given by

ν (x) =
1
π

0∫
−d

s(z)x
x2 + z2 dz (10.26)

where z is depth, x is distance from the fault, s (z) is the slip versus depth, and v (x)
is the displacement. Now consider the two slip versus depth functions between the
surface and −d.

s1 = S

s2 = S
(
1 − z2/d2

)1/2 (10.27)

The first slip function is constant with depth, while the second corresponds to the stress-
free crack and has the form provided in Geodynamics, equation (8.93). Using the
approach described above, the integral of the constant slip with depth s1 is

v (x) =
S
π

(
x
|x|

π

2
− tan x

d

)
. (10.28)

The integral of the slip function for the crack model s2 is given by

v (x) =
S
π

x

0∫
−d

(
1 − z2/d2

)1/2

x2 + z2 dz =
S
π

x

d∫
0

(
1 − z2/d2

)1/2

x2 + z2 dz. (10.29)

Now we let x′ = x/d and z′ = z/d, so the integral becomes

v
(
x′
)

=
S
π

x′
1∫

0

(
1 − z′2

)1/2

x′2 + z′2
dz. (10.30)

This integral can be performed in matlab using the following code with the sym-
bolic toolbox.

clear

syms x positive

syms z

arg=sqrt(1-z*z)/(x*x+z*z);

int(arg,z,0,1)
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Note that the integrand contains x′2, so the results for positive and negative x′ are
identical. Therefore in the integrated result, the x′ should be replaced by |x′|. The
result is

v
(
x′
)

=
S
π

x′
π

2 |x′|

[(
1 + x′2

)1/2
−

∣∣∣x′∣∣∣] . (10.31)

Finally, substitute for x′ and we arrive at

v (x) =
x
|x|

S
2

[(
1 +

x2

d2

)1/2
−
|x|
d

]
. (10.32)

This matches equation (8.110) in Geodynamics.

One can now make a direct comparison between the displacement versus distance for
the two slip functions, to note their similarities and differences. However, realize that
the arctangent slip function will have a larger seismic moment (i.e., slip integrated over
depth) than the crack model slip function. The magnitude of the difference is found
by integrating the slip versus depth for the two cases. For the arctangent function the
integrated slip is simply S d. For the crack model the integrated slip is

Sd

1∫
0

(1 − z2)
1/2

dz = Sd π
4
. (10.33)

Figure 10.6 compares the two displacement functions when the depth of faulting for
the arctangent model is reduced by π/4, so the moments are matched; at this scale the
plots are nearly identical. This illustrates the fact that measurements of displacement
versus distance across a fault are not very sensitive to the shape of the slip versus
depth function, although they do provide an important constraint on the overall seismic
moment. In the next section, we highlight the issue that geodetic measurements of
surface displacement are relatively insensitive to the shape of the slip (versus depth
function), but provide a good estimate of the overall seismic moment.
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Figure 10.6

10.2 Geodetic Moment Accumulation Rate

The geodetic moment accumulation rate M per unit length of fault L is given by the
well known formula

M
L

= µS D (10.34)

where D is the thickness of the locked zone and S is the slip deficit rate or backslip
rate used in block models. This is the standard formula provided in all the seismology
textbooks, although they usually consider the co-seismic moment release due to co-
seismic slip. Here we are considering the gradual accumulation of geodetic moment
during the interseismic period. These moments must balance over many earthquake
cycles. In the general case where the slip rate s varies with depth z, the moment rate M
is given by

M
L

= µ

0∫
−Dm

s (z) dz. (10.35)

where Dm is the maximum slip depth. The objective of the following analysis is to
show that the total moment rate per unit length of fault can be measured directly from
geodetic data; no slip vs. depth model is needed. The only assumptions are that the
strike-slip fault is 2-D and the Earth behaves as an elastic half space. From the disloca-
tion theory developed in equation (10.26), the y-velocity as a function of distance from
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the fault is given by

ν (x) =
1
π

0∫
−Dm

s(z)x
x2 + z2 dz. (10.36)

See also Figure 10.7.
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Figure 10.7: Schematic of surface velocity due to uniform backslip rate over a depth D.

Next we guess that the integral of the displacement rate times distance from the x-origin
is a proxy for the moment accumulation rate. We call this proxy Q and later show how
it is related to the moment rate M. We integrate to an upper limit W and then take the
limit as W → ∞.

Q = lim
W→∞

 1
W

W∫
0

xν (x) dx

 = lim
W→∞

 1
πW

W∫
0

0∫
−Dm

s(z) x2

x2 + z2 dz dx

 (10.37)

After rearranging the order of integration, one finds

Q =
1
π

0∫
−Dm

s(z) lim
W→∞

 1
W

W∫
0

x2

x2 + z2 dx

 dz. (10.38)
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The integral over x can be done analytically.

1
W

W∫
0

x2

x2 + z2 dx =
x

W
−

z
W

tan−1 x
z

∣∣∣∣W
o

= 1 − z
W

tan−1 W
z

(10.39)

In the limit as W → ∞, the second term on the right side is zero, because z has an upper
bound of Dm; so the total integral is simply 1. Overall, we find this proxy is

Q =
1
π

0∫
−Dm

s(z) dz. (10.40)

Comparing equation (10.37) with equation (10.40), it is clear that the geodetic moment
can be directly related to the integral of the displacement times the distance from the
origin. Note we have extended the integral to both sides of the fault to enable the use
of geodetic measurements on both sides.

M
L

= lim
W→∞

µπW
W∫
−W

xν (x) dx

 (10.41)

As a check, we can insert equation (10.36) into equation (10.41) and make sure we
arrive at equation (10.35).

M
L

= lim
W→∞

µπW
W∫
−W

x

1
π

0∫
−Dm

s (z) x
x2 + z2 dz

 dx


= µ

0∫
−Dm

s (z)

 lim
W→∞

1
W

W∫
−W

x2

x2 + z2 dx

 dz

(10.42)

We perform the integral over x first and multiply by 2 after changing the limits, because
the integrand is symmetric about x = 0.

2

W∫
0

x2

x2 + z2 dx = 2
(
x − z tan−1 x

z

) ∣∣∣∣∣W
0

(10.43)

In the limit as W → ∞, the final result is

lim
W→∞

2
W

(
W − z tan−1 W

z

)
= 2, for zmax = Dm � W. (10.44)

The moment accumulation rate is

M
L

= 2µ

0∫
−Dm

s (z) dz. (10.45)
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This agrees with our original estimate of moment, except for a factor of 2. The cor-
rected formula for the moment accumulation rate is

M
L

= lim
W→∞

µπ

2W

W∫
−W

xν (x) dx. (10.46)

The main utility of this formula is to demonstrate that geodetic measurements of y-dis-
placement rate across an infinitely long strike slip fault provides a direct estimate of
the geodetic moment rate. It is unnecessary to attempt the unstable inverse problem to
calculate slip versus depth and then integrate this function.

10.3 Inclined Fault Plane

Now consider a model where the fault plane is not perpendicular to the free surface of
the Earth as shown in Figure 10.8. The angle α between the vertical and the fault plane
will introduce an asymmetry in the model. To develop this solution, we’ll start with the
surface displacement due to a screw dislocation. We’ll integrate over depth and rotate
from the inclined frame into the horizontal frame. Finally, we’ll introduce the image
source to reconcile the free surface boundary condition.

From equation (10.17), we have

v(x′, z′) =
−A
2πµ

x′[
x′2 + (z′ + a)2

] . (10.47)

The rotation from the x, z frame to the x′, z′ frame is

x′ = x cosα + z sinα
z′ = −x sinα + z cosα.

(10.48)

Also note that D = D′ cosα. As before, consider free slip between a depth of −D′ and
minus infinity.

v(x′, z′) =
V
2π

−D′∫
−∞

x′

x2 + (z′ + a′)2 da′ (10.49)

Let η = z′ + a′, so dη = da′.

v(x′, z′) =
V
2π

−z′−D′∫
−∞

x′

x′2 + η2 dη (10.50)
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We have performed this integration before (equations (10.19)–(10.20)), so it is not
repeated here. The result is

v(x′, z′) =
V
2π

tan−1
(

x′

D′ + z′

)
. (10.51)

To match the surface boundary condition, we introduce an image source extending
from +D′ to infinity, but along an image fault inclined at an angle of −α with respect
to the vertical. The displacement from the image is

vimage(x
′

, z
′

) =
V
2π

tan−1
(

x
′

D′ − z′

)
. (10.52)

Finally, combining the source and the image and substituting x and z we find

v(x, z) =
V
2π

{
tan−1

(
x cosα + z sinα

D′ − x sinα + z cosα

)
+ tan−1

(
x cosα − z sinα

D′ − x sinα − z cosα

)}
. (10.53)

Now calculate the displacement at z = 0 and substitute D′ = D/cosα.

v(x) = V
π

tan−1
(

x cos2 α

D − x sinα cosα

)
(10.54)

This dipping fault case has two differences from the vertical strike-slip fault case. First,
the displacement pattern is shifted along the x-axis by an amount D tanα. Therefore,
one can identify a dipping fault by recognizing that the position of the fault based on
geodetic measurements is shifted from the position of the fault trace based on field
geology.
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The second difference is that the solution given in equation (10.54) does not match the
far-field boundary conditions of ±V/2. The hanging wall has more displacement than
the foot wall. In the extreme case of a near horizontal fault plane, the hanging wall has
the full displacement +V , while the foot wall has none. This is to be expected, because
the model is driven by a force couple. One can “correct” this asymmetry by subtracting
a constant α from the arctangent in equation (10.54). It is left as an exercise for the
reader to show the final solution is

v(x) =
V
π

[
tan−1

(
x cos2 α

D − x sinα cosα

)
− α

]
. (10.55)

We see that for α = 0, this matches the previous solution, equation (10.22). Also, we
can superimpose several of these solutions to simulate any combination of shallow and
deep slip. The stress is the shear modulus times the x-derivative of the displacement.
After a little algebra one finds

τxy =
µV
πDα

[
1 +

(
x cos2 α

Dα

)2]−1

.
[
cos2 α +

x cos3 α sinα
Dα

]
(10.56)

where Dα = D − x sinα cosα.

10.4 Matlab Examples

The first example is a matlab program to calculate the strain and displacement fields
due to a vertical strike-slip fault with free-slip on both shallow and deep fault planes.

%

% program to generate displacement and strain for a screw

% dislocation. fault slip occurs both shallow and deep.

%

clear

clf

hold off

%

V=-.01;

D=12000.;

d=800.;

d0=200;

x = -40000:8:40000;

xp = x/1000.;

%

% this first model has shallow creep between depths of d0 and d

%

v1 = (V/pi)*(atan(x/d0)-atan(x/d));

dv1 = (V/(pi*d0))*1./(1.+(x/d0).ˆ2) - (V/(pi*d))*1./(1.+(x/d).ˆ2);
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%

% this second model has free-slip for depths greater than D.

%

v2 = (V/pi)*atan(x/D);

dv2 = (V/(pi*D))*1./(1.+(x/D).ˆ2);

%

subplot(2,1,2);plot(xp,(v1+v2)*1000,xp,v2*1000,’:’);

xlabel(’distance (km)’);

ylabel(’displacement (mm/a)’)

subplot(2,1,1);plot(xp,1.e6*(dv1+dv2),xp,1.e6*dv2,’:’);

ylabel(’strain (microradian/a)’); axis([-40,40,-3,1])

See Figure 10.9
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Figure 10.9

The second example is a matlab program to illustrate the effect of fault dip that simply
shifts the arctangent function by an amount D tanα. In this example, the shift is 6.9 km.
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%

% Compute the displacement due to a dipping fault using equation (34).

% Note the function atan2() must be used.

%

V=-10;

alph=30*pi/180.;

D=12;

x=-40:40;

%

%

cosa=cos(alph);

sina=sin(alph);

num=x.*cosa*cosa;

dem=D-x.*sina*cosa;

vel0=V*atan2(x,D)/pi;

vel1=V*(atan2(num,dem)/pi-alph/pi);

subplot(2,1,1);plot(x,vel0,x,vel1,’--’);

xlabel(’distance (km)’);ylabel(’displacement (mm/a)’);

title(’dipping 30 degrees in positive x-direction’)

grid

%

See Figure 10.10.
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10.5 Exercises: Response of an Elastic Half Space to a
3-D Vector Body Force

This exercise illustrates the power and flexibility of the Fourier transform approach
to solving complicated linear partial differential equations. We wish to calculate the
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displacement vector u (x, y, z) on the surface or inside of the Earth due to a vector body
force at depth. This solution can be used to construct a variety of models such as
fault slip of arbitrary complexity (e.g. Smith and Sandwell, 2003). We start with the
equations that relate stress to body forces, stress to strain, and strain to displacement.

σi j, j = −bi (10.57)

σi j = δi jλεkk + 2µεi j (10.58)

εi j =
1
2

(
ui, j + u j,i

)
(10.59)

Substitute equation 10.59 into equation 10.58.

σi j = δi jλuk,k + µ
(
ui, j + u j,i

)
(10.60)

Substitute equation 10.60 into equation 10.57

δi jλuk,k j + µ
(
ui, j j + u j,i j

)
= −bi (10.61)

and rewrite as

(λ + µ) uk,ki + µui,kk = −bi. (10.62)

Equation 10.62 can be written as three partial differential equations.

µ∇2u + (λ + µ)
[
∂2u
∂x2 + ∂2v

∂y∂x + ∂2w
∂z∂x

]
= −bx

µ∇2v + (λ + µ)
[
∂2u
∂x∂y + ∂2v

∂y2 + ∂2w
∂z∂y

]
= −by

µ∇2w + (λ + µ)
[
∂2u
∂x∂z + ∂2v

∂y∂z + ∂2w
∂z2

]
= −bz

(10.63)

Next introduce a vector body force at x = y = 0, z = a. To satisfy the boundary
condition of zero shear traction at the surface, an image source is also applied at x =

y = 0, z = −a (Figure 10.11). Equation 10.64 describes this point body force at the
source and image locations, where F =

(
Fx, Fy, Fz

)
is a vector force with units of force.

b (x, y, z) = Fδ (x) δ (y) δ (z − a) + Fδ (x) δ (y) δ (z + a) (10.64)
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Figure 10.11: Coordinate system with point vector body forces at a and −a.

Exercise 10.1. It is left as an exercise to take the 3-D Fourier transform of equa-
tions 10.63 and 10.64 to reduce the partial differential equations to a set of linear al-
gebraic equations. Several of the properties of Fourier transforms, given in Chapter 2,
will be helpful. The result is

(λ + µ)


k2

x +
µk2

(λ+µ) kykx kzkx

kxky k2
y +

µk2

(λ+µ) kzky

kxkz kykz k2
z +

µk2

(λ+µ)




U(k)

V(k)

W(k)

 =
e−i2πkza + ei2πkza

4π2


Fx

Fy

Fz


(10.65)

where k =
(
kx, ky, kz

)
and k2 = k · k.

Exercise 10.2. Invert the linear system of equations to isolate the 3-D displacement
vector solution for U (k), V (k), and W (k). This can be done using the symbolic algebra
capabilities of matlab or another computer algebra package.


U(k)

V(k)

W(k)

 =
(λ + µ)

(
e−i2πkza + ei2πkza

)
µ (λ + 2µ) 4π2k4


(
k2

y + k2
z

)
+

µk2

(λ+µ) −kykx −kzkx

−kxky

(
k2

x + k2
z

)
+

µk2

(λ+µ) −kzky

−kxkz −kykz

(
k2

x + k2
y

)
+

µk2

(λ+µ)




Fx

Fy

Fz


(10.66)

One can check the inversion using the following matlab symbolic code.

%
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% MATLAB routine to check the solution in the kx, ky, kz domain.

%

pi = sym(’pi’);

kx=sym(’kx’);

ky=sym(’ky’);

kz=sym(’kz’);

% elastic constants

la=sym(’la’);

mu=sym(’mu’);

lam=la+mu;

% combinations of wavenumbers

c=sym(’c’);

c=(kx*kx+ky*ky+kz*kz);

% forward matrix

A=[kx*kx+mu*c/lam,ky*kx, kz*kx;

kx*ky,ky*ky+mu*c/lam,kz*ky;

kx*kz,ky*kz,kz*kz+mu*c/lam];

% solution in Fourier domain, inverse matrix

B=[c*mu/lam+ky*ky+kz*kz,-kx*ky,-kx*kz;

-kx*ky,c*mu/lam+kx*kx+kz*kz,-kz*ky;

-kx*kz,-ky*kz, c*mu/lam+kx*kx+ky*ky];

% normalize

A=A*lam;

B=B*lam/(mu*(la+2*mu)*c*c);

% multiply to get the identity matrix

C=B*A;

simplify(C)

ans =

[ 1, 0, 0]

[ 0, 1, 0]

[ 0, 0, 1]

The next step is to perform the inverse Fourier transform with respect to kz of each of
the three terms for each of the three displacement component for both the source and
the image. There are 12 different integrations to be performed although they are all very
similar. For example, the following is the inverse transform for the V (k) displacement
driven by the Fx component of body force (source not image).

[V (kh, z) = −Fx
(λ + u)
µ (λ + 2u)

kxky

4π2

∞∫
−∞

ei2πkz(z−a)

(kz + i |kh|)2(kz − i |kh|)2 dkz (10.67)

where kh =
(
kx, ky

)
is the horizontal wavenumber and |kh| =

(
k2

x + k2
y

)1/2
. The denomi-

nator has four poles in the complex plane, two at −i |kh| and two at i |kh| .
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Exercise 10.3. Use the Cauchy residue theorem, for the case of repeated poles, and
the boundary condition that the displacement must vanish as z→ ∞ to derive the V (k)
displacement.

V (kh, z) = −Fx
(λ + u)
µ (λ + 2u)

kxky

2π

[
1 + 2π |kh|

4|kh|
3

]
e−2π|kh |(z−a) (10.68)

There are a number of additional steps needed to develop a full algorithm for comput-
ing displacements due to double-couple fault sources. These are published in Smith
and Sandwell (2003). The astute reader will notice that while the introduction of an
image body force achieves the zero shear stress boundary condition, the normal stress
at the surface is not zero. This boundary condition can be corrected by applying an
equal but opposite vertical stress following Steketee (1958). Also, for purely vertical
faults, the body force can be analytically integrated over depth. The final step is a
numerical implementation for a complicated fault model. This involves making 2-D
grids of each of the three components of the body force. The forces in these grids can
be arranged to create single or double couples in an arbitrarily complex pattern. For a
more complete description, see Smith and Sandwell (2003). These three force grids are
Fourier transformed and multiplied by the elements of the Earth response (e.g., equa-
tion (10.68)), The results are summed and inverse transformed to calculate the vector
displacement as well as all the stress components through differentiation. The main
advantages of this approach are computational efficiency and the ability to construct
very complex fault systems. An example of the Coulomb stress accumulation rate on
the San Andreas Fault system is shown in Figure 10.12. Note this analysis was ex-
tended to include a uniform-thickness elastic plate over a viscoelastic half space (Smith
and Sandwell, 2004). The computer code for creating these 3-D, time-dependent fault
models can be found at: github.com/dsandwell/fftfault.

github.com/dsandwell/fftfault
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Figure 10.12: (left) Coulomb stress accumulation rate of the SAFS, evaluated at half of
the locking depth projected into pole of rotation coordinate system (Wdowinski et al.,
2007). (right) Present-day (calendar year 2007) Coulomb stress accumulation based on
stress accumulation and contributions from 75 historical and prehistorical earthquake
ruptures. Black lines are faults where force double couples are applied and imbedded
in a 1 km by 1 km grid. Modified from Smith-Konter and Sandwell (2009).



Chapter 11

Heat Flow Paradox

11.1 Heat Flow Paradox

The heat flow paradox relates the expected frictional heating on a strike-slip fault, such
as the San Andreas Fault, to the measurements of surface heat flow above the fault
(e.g. Lachenbruch and Sass, 1980). A straightforward calculation, using a reasonable
coefficient of friction for the fault, predicts measurably high heat flow above the fault
that is not observed. Is the lack of a heat flow anomaly evidence that faults are very
weak or is the heat flow anomaly erased by hydrothermal circulation in the crust? In
this chapter we develop a simple heat conduction model, following Lachenbruch and
Sass (1980), to explore this paradox.

The seismogenic zone extends from the surface to a depth of about 12 km. According
to Byerlee’s law (Byerlee, 1978), the shear stress on the fault should be some fraction
of the lithostatic stress.

τ(z) = f ( ρc − ρw) gz (11.1)

f static coefficient of friction ∼0.60

ρc crustal density 2600 kg m−3

ρw water density 1000 kg m−3

g acceleration of gravity 9.8 m s−2

D depth of seismogenic zone 12 km

174
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This assumes that water percolates to 12 km depths to lower friction on the fault. We
can compute the average shear stress on the fault.

τ =
1
D

D∫
o

f ( ρc − ρw) gz dz = 1
2 f ( ρc − ρw) gD = 56 MPa (11.2)

The observed stress drop during an earthquake ranges from 0.1 to 10 MPa, with a
typical value of 5 MPa, which is about 10 times smaller than the average stress from
Byerlee’s law (Byerlee, 1978). This implies that only a fraction of the total stress is
released during an earthquake. The average stress during the earthquake times the
earthquake displacement produces energy both as seismic radiation (small fraction)
and as heat (large fraction). If this heat energy is averaged over many earthquake
cycles, then this average heat/area generated on the fault plane will appear as a heat
flow anomaly on the surface having a similar heat/area as along the fault.

z

x

y

Q(x,z)=V τ(z) (x)

−V/2 V/2

Figure 11.1

To calculate this heat anomaly for a variety of frictional heating models, first consider
a line source of heat. (See Figure 11.1.) The differential equation and boundary condi-
tions for a unit-amplitude, line source at depth −a is

∇2T =
1
k

Q(x, z) =
1
k
δ(x) δ(z + a) (11.3)

T (x, 0) = 0

lim
|z|→∞

T (x, z) = 0

lim
|x|→∞

T (x, z) = 0
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where T is the temperature anomaly, k is the thermal conductivity (3.3 W m−1 K−1)
and Q is the heat generation in W m−3. Note this is the same differential equation as
equation (10.5). The only difference is the surface boundary condition. The strike-
slip fault problem has vanishing shear stress at the surface (i.e., the vertical derivative
of displacement v is zero), so we introduced a positive image source to force the dis-
placement field to be symmetric about z = 0. In this heat flow case, we have vanishing
temperature anomaly at the surface, so we introduce a negative line heat source at z = a
to form an anti-symmetric temperature function. The solution to the full-space problem
is identical to equation (10.14). Note this problem was also solved in Section 2.6.

T (x, z) =
−1
2πk

ln
[
x2 + (z + a)2

]1/2
(11.4)

After including the image source, the result is

T (x, z) =
−1
2πk

{
ln

[
x2 + (z + a)2

]1/2
− ln

[
x2 + (z − a)2

]1/2
}
. (11.5)

The quantity of interest is the surface heat flow versus distance from the fault.

q(x, z) = −k δT
δz

=
1

2π
δ

δz

{
ln

[
x2 + (z + a)2

]1/2
− ln

[
x2 + (z − a)2

]1/2
}

(11.6)

After a little algebra, one arrives at the heat flow.

q(x, z) =
1

2π

{
(z + a)

x2 + (z + a)2 −
(z − a)

x2 + (z − a)2

}
(11.7)

Thus, the surface heat flow for a line source of unit strength at depth a is

q(x) =
1
π

a
x2 + a2 . (11.8)

For an arbitrary shear stress distribution with depth τ(z), the surface heat flow is

q(x) =
V
π

0∫
−∞

z τ(z)
x2 + z2 dz. (11.9)

Now let’s assume that the stress follows equation (11.1), Byerlee’s law (i.e., high stress
and high heat flow). Also allow hydrothermal circulation to extend from the surface to
some depth d, which effectively removes all the heat produced between the surface and
that depth. The integration is

q(x) =
f ( ρc − ρw) gV

π

−d∫
−D

z2

x2 + z2 dz. (11.10)

This integral is done with help from the table of integrals.∫
x2

a + bx2 dx =
x
b
−

a
b

∫
1

a + bx2 dx (11.11)
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After some algebra, one arrives at the following analytic formula for the heat flow.

q(x) =
f (ρc − ρw)gV

π

{
(D − d) +

(
x tan−1 d

x
− x tan−1 D

x

)}
(11.12)

It is interesting to compare this heat flux to the heat flux at a mid-ocean ridge for the
same total opening rate V (see Figure 11.2). The formula is

q(x) = k(Tm − To) (2πκx/V)−1/2 . (11.13)

11.1.1 Matlab Example

The following matlab program simulates a high-stress fault (i.e., Byerlee’s law) extend-
ing to a depth of 12 km and sliding at a rate of 30 mm/yr. Two cases are considered;
the first case (the solid curve in Figure 11.2) has hydrothermal heat removal extending
to a depth of 1 km, while the second case (the dotted curve in the same figure) has heat
removal to a depth of 5 km. These models are compared with the heat flow measure-
ments across the San Andreas Fault (Lachenbruch and Sass, 1980). It is clear that the
shallow heat removal model is inconsistent with the data. However, the deep heat re-
moval model is not precluded by the observations, especially if the background level of
the model heat flow is allowed to vary from the spatial average. One argument against
hydrothermal removal of heat is the absence of hot springs along the fault with suffi-
cient vigor to remove this heat. Hydrothermal circulation is the dominant heat removal
mechanism at the mid-ocean ridges and hydrothermal vents are common. However, as
shown in Figure 11.2, the heat generation along a strike-slip fault is two to three orders
of magnitude less than a mid-ocean ridge, so it is not clear that the same mechanism
should operate at a fault. Even if heat loss is concentrated in small areas, it may be
difficult to detect at the surface.

%

% program to calculate the surface heat flux due to frictional

% heating on a strike-slip fault

D=12;

d1=1; d5=5;

rc=2600; rw=1000; g=9.8;

V=.03/3.15e7; f=.60;

q0=1.e6*f*(rc-rw)*g*V/pi;

%

% calculate the heat flow for the two models of shallow

% and deep heat removal

x=-60:.1:60;

q1=q0*((D-d1)+x.*atan(d1./x)-x.*atan(D./x));

q5=q0*((D-d5)+x.*atan(d5./x)-x.*atan(D./x));

% plot the results
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plot(x,q1+73,x,q5+73,’:’);

xlabel(’distance (km)’);

ylabel(’heat flow (mWm-2)’)

axis([-40,40,0,120]);
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Figure 11.2: (upper) Heat flow measurements across the San Andreas Fault (Lachen-
bruch and Sass, 1980) compared with model predictions. The solid curve is heat flow
with shallow hydrothermal circulation while the dashed curve has hydrothermal heat
removal to 5 km depth. (lower) Comparison of the heat flow generated on a strike-slip
fault to heat flow at a mid ocean ridge showing it is at least 100 times smaller.

11.2 Seismic Moment Paradox

The seismic moment paradox described next is really part of the heat-flow paradox, ex-
cept that it is expressed in a different way. As discussed in Chapter 7, and in Brace and
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Kohlstedt (1980), measurements of stress difference in the uppermost crust to depths
of several kilometers are consistent with a yield strength model following Byerlee’s
law. The static frictional resistance to sliding is a fraction f (0.6) of the overburden
pressure of ∆ρgz. This leads to a fault strength of 100 MPa at a depth of only 10 km.
We also found that these high stresses are required to support the 5000 m elevation of
Tibet relative to India. This isostatic model is the minimum stress needed to support
topography, so it is clear that high stresses exist at shallow depths in the crust. Before
comparing the tectonic stress with the earthquake stress drop, it is useful to compare
moment release from a large earthquake with the theoretical maximum moment that a
Byerlee-strength fault can sustain without slipping.

11.2.1 Seismic Moment Released During an Earthquake

The moment released during an earthquake is given by

Ms = µLD∆y. (11.14)

See Figure 11.3.

−D

x

z

yL{

Figure 11.3

We will use the 1992 Landers M7.2 earthquake as an example. The parameters given
in the Table 11.1 result in a moment of 9.8×1019N m or a moment per unit fault length
of 1.4 × 1015N.

The Landers earthquake moment matches the published value and the recurrence inter-
val of ∆y/V = 3000 years seems reasonable for a fault out in the Mojave desert away
from the San Andreas Fault. So everything seems consistent. Next, let’s assume that
the stress on the fault, as a function of depth, matches Byerlee’s law for the case of hy-
drostatic pore pressure. We’ll compare this saturation moment and recurrence interval
with the observations from earthquakes.
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f static coefficient of friction ∼0.60

ρc crustal density 2600 kg m−3

ρw water density 1000 kg m−3

g acceleration of gravity 9.8 m s−2

µ shear modulus 2.6 × 1010 Pa

L length of rupture 70 km

D depth of rupture 12 km

∆y rupture offset 4.5 m

V plate velocity 0.0015 m/yr

t earthquake recurrence interval

Table 11.1

11.2.2 Tectonic Saturation Moment

Assume that the simple half-space solution (developed above) provides the stress and
strain field for a fault locked from the surface to a depth D. Further, assume that the
maximum stress that can be maintained on a fault is given by Byerlee’s law,

τ(z) = f
[
− (ρc − ρw) gz + τn

]
(11.15)

where τn is the additional tectonic normal stress applied to the fault plane. The tectonic
moment per unit length is given by

MT /L = ∆y

0∫
−D

µ(z) dz. (11.16)

What is µ(z)? This is the effective shear modulus needed to keep the stress below the
upper bound provided by Byerlee’s law, so

µ(z) =
τ(z)
ε(z)

where ε(z) =
∂v(x, z)
∂x

. (11.17)

Now assume that v(x, z) is provided by the interseismic strain solution developed in the
previous chapter (equation (10.18)). It is left as an exercise to finish the problem. You
will find that ε(z) is proportional to ∆y, so this factor cancels in equation (11.16). The
final result is

MT

L
= fπD2

 (
ρc − ρw

)
gD

4
+

2
3
τn

 . (11.18)

Using the values in Table 11.1 and for zero normal stress, we find the saturation mo-
ment per unit length is 1.3 × 1016 N. Again, this is 10 times larger than the moment
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per length for the Landers earthquake. Given the fault parameters above, this moment
implies a potential seismic offset of 45 m and a recurrence time of 30,000 years—a
giant earthquake indeed!

There are only two ways to understand this dilemma:

1. Faults are somehow lubricated ( f∼0.05), so the average stress on the fault is
10–20 times smaller than predicted by Byerlee’s law. In this case, one has the
difficulty of maintaining the elevation of the topography in California. For ex-
ample, San Jacinto Mountain, which is less than 25 km from the San Andreas
Fault, has a relief of about 3000 m, which implies stresses of 80 MPa (16 times
the stress drop in an earthquake).

2. Faults are strong as predicted by Byerlee’s Law. In this case, faults are always
very close to failure and each earthquake relieves only a small fraction (∼10%)
of the tectonic stress. As we saw in the last section, this model implies a large
amount of energy dissipation along the fault; friction from both aseismic creep
and seismic rupture will generate heat. It has been proposed that perhaps during
the earthquake, the coefficient of friction drops from 0.60 to, say, 0.05, to tem-
porarily disable the heat generation. However, it seems that such a slippery fault
would release all of the elastic energy during an earthquake (∼45 m of offset).
Another possibility is that heat is generated, but a large fraction of the heat is ad-
vected to the surface by circulation of water in the upper couple km of crust. The
unfortunate implication of this high-stress model is that since faults are always
close to failure, it will be almost impossible to predict earthquakes.

11.3 Exercises

Exercise 11.1.
(a) Provide an approximate formula for the magnitude of the shear stress that is

needed to induce slip on a dry fault at 10 km depth in continental crust (density
2800 kg m−3). Which parameter is least well known and what is a possible range
for this parameter?

(b) Suppose the crust is saturated with water to 10 km depth. How does this change
the stress magnitude?

Exercise 11.2. Derive equation 11.18.



Chapter 12

The Gravity Field of the Earth,
Part 1

12.1 Introduction

Chapters 12 through 15 cover physical geodesy, the shape of the Earth and its gravity
field. This is electrostatic theory applied to the Earth. Unlike electrostatics, geodesy is
a nightmare of unusual equations, unusual notation, and confusing conventions. Here
we attempt to simplify and condense physical geodesy by focusing on concepts that
are central to the field of geodynamics and tectonics. Chapter 5 of Geodynamics (Tur-
cotte and Schubert, 2014) covers much of this topic but at a lower mathematical level.
For a much more complete discussion of potential theory applied to the Earth, we rec-
ommend the excellent book by Blakely (1995). Following Blakely (1995) and Parker
(1973), most of the Cartesian calculations are performed in the Fourier transform do-
main which greatly simplifies operations such as upward and downward continuation
as well as modeling of complex density interfaces. Satellite radar altimetry has revolu-
tionized our understanding of the gravity field, tectonics, and topography of the oceans
so we focus on methods of processing and gridding these data in Chapter 15.

The things that make physical geodesy messy include:

• Earth rotation;

• latitude is measured from the equator instead of the pole;

• latitude is not the angle from the equator, but is referred to the ellipsoid;

• elevation is measured from a theoretical surface called the geoid;

• spherical harmonics are defined differently from standard usage;

182
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• anomalies are defined with respect to an ellipsoid having parameters that are
constantly being updated;

• there are many types of anomalies related to various derivatives of the potential;
and

• MKS units are not commonly used in the literature.

In the next couple of chapters, we will try to present this material with as much sim-
plification as possible. Part of the reason for the mess is that prior to the launch of
artificial satellites, measurements of elevation and gravitational acceleration were all
done on the surface of the Earth (land or sea). Since the shape of the Earth is linked to
variations in gravitational potential, measurements of acceleration were linked to po-
sition measurements both physically and in the mathematics. Satellite measurements
are made in space well above the complications of the surface of the Earth, so most
of these problems disappear. Here are the two most important issues related to old-
style geodesy.

12.1.1 Elevation

Prior to satellites and the global positioning system (GPS), elevation was measured
with respect to sea level which is approximately an equipotential surface called the
geoid. The result is called orthometric height. See Figure 12.1.

orthometric

geometric

spheroid

geoid

land surface

sea surface

Figure 12.1

Indeed, elevation is still defined in this way. However, most measurements are made
with GPS. The pre-satellite approach to measuring elevation is called leveling.

Pre-satellite measuring:

1. Start at sea level and call this zero elevation. (If there were no winds, currents,
and tides, then the ocean surface would be an equipotential surface and all shore-
lines would be at exactly the same potential.)
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2. Sight a line inland perpendicular to a plumb line. Note that this plumb line will
be perpendicular to the equipotential surface and thus is not pointed toward the
geocenter.

3. Measure the height difference and then move the setup inland and repeat the
measurements until you reach the next shoreline. If all measurements are correct,
you will be back to zero elevation assuming the ocean surface is an equipotential
surface.

With artificial satellites, measuring geometric height is easier—especially if one is far
from a coastline.

Measuring with artificial satellites:

1. Calculate the x, y, z position of each GPS satellite in the constellation using a
global tracking network.

2. Measure the travel time to four or more satellites, three for position and one for
clock error.

3. Establish your x, y, z position and convert this to geometric height above the
spheroid, which we’ll define below.

4. Go to a table of geoid height and subtract the local geoid height to get the ortho-
metric height used by all surveyors and mappers.

Orthometric heights are useful because water flows downhill in this system, while it
does not always flow downhill in the geometric height system. Of course the problem
with orthometric heights is that they are very difficult to measure, or one must have a
precise measurement of geoid height. Let geodesists worry about these issues.

12.1.2 Gravity

The second complication in the pre-satellite geodesy is the measurement of gravity.
Interpretation of surface gravity measurement is either difficult or trivial, depending
whether you are on land or at sea, respectively. Consider the land case illustrated in
Figure 12.2.

Small variations in the acceleration of gravity (<10−6 g) can be measured on the land
surface. The major problem is that when the measurement is made in a valley, there
are masses above the observation plane. Thus, bringing the gravity measurement to
a common level requires knowledge of the mass distribution above the observation
point. This requires knowledge of both the geometric topography and the 3-D density.
We could assume a constant density and use leveling to get the orthometric height, but
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would like to know the gravity on this surface

geoid

land gravity
observations

Figure 12.2

we need to convert to geometric height to do the gravity correction. To calculate the
geometric height, we need to know the geoid. However, the geoid height measurement
comes from the gravity measurement, so there is no exact solution. Of course, one
can make some approximations to get around this dilemma, but it is still a problem,
and this is the fundamental reason why many geodesy books are so complicated. Of
course, if one could make measurements of both the gravity and topography on a plane
(or sphere) above all of the topography, our troubles would be over.

Ocean gravity measurements are much less of a problem, because the ocean surface
is nearly equal to the geoid—so we can simply define the ocean gravity measurement
as free-air gravity. We’ll get back to all of this again later when we discuss flat-Earth
approximations for gravity analysis.

12.2 Global Gravity

This section on global gravity is largely based on four books (Turcotte and Schubert
(2014, Chapter 5, 5.1–5.5 ), Stacey (1977, Chapters 3–4), Jackson (1998, Chapter 3),
Fowler (1990, Chapter 5).) The gravity field of the Earth can be decomposed as fol-
lows:

• the main field due to the total mass of the Earth;

• the second harmonic due to the flattening of the Earth by rotation; and

• anomalies which can be expanded in spherical harmonics or Fourier series.

The combined main field and the second harmonic make up the reference Earth model
(i.e., spheroid, the reference potential, and the reference gravity). Deviations from
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this reference model are called elevation, geoid height, deflections of the vertical, and
gravity anomalies.

12.2.1 Spherical Earth Model

The spherical Earth model is a good point to define some geodetic terms. There are
both fundamental constants and derived quantities. See Table 12.1.

Parameter Description Formula Value/Unit

Re mean radius of Earth — 6371000 m

Me mass of Earth — 5.98 × 1024 kg

G gravitational constant — 6.67 × 10−11 m3 kg−1 s−2

ρ mean density of Earth Me(4/3πR3
e)−1 5520 kg m−3

U mean potential energy
needed to take a unit
mass from the surface of
the Earth and place it at
infinite distance

−GMeR−1
e −6.26 × 107 m2 s−2

g mean acceleration on the
surface of the Earth

−δU/δr = −GMeR−2
e −9.82 m s−2

δg/δr gravity gradient or
free-air correction

δg/δr = −2GMeR−3
e

= −2g/Re

3.086 × 10−6 s−2

Table 12.1

We should say a little more about units. Deviations in acceleration from the reference
model, described next, are measured in units of milligal (1 mGal = 10−3 cm s−2 =

10−5 m s−2 = 10 gravity units (gu)). As noted above, the vertical gravity gradient is
also called the free-air correction, since it is the first term in the Taylor series expansion
for gravity about the radius of the Earth.

g(r) = g(Re) +
∂g
∂r

(r − Re) + · · · (12.1)

Example 12.1. How does one measure the mass of the Earth? The best method is
to time the orbital period of an artificial satellite. Indeed, measurements of all long-
wavelength gravitational deviations from the reference model are best done by satel-
lites. See Figure 12.3.
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r2 = rωs
2 ⇒ GMe = r3ωs

2

(12.2)

The mass is in orbit about the center of the Earth, so the outward centrifugal force
is balanced by the inward gravitational force; this is Kepler’s Third Law. If we mea-
sure the radius of the satellite orbit r and the orbital frequency ωs, we can estimate
GMe. For example, the satellite Geosat has a orbital radius of 7168 km and a period of
6037.55 sec, so GMe is 3.988708 × 1014 m3 s−2. Note that the product GMe is tightly
constrained by the observations, but that the accuracy of the mass of the Earth Me is
related to the accuracy of the measurement of G.

12.2.2 Ellipsoidal Earth Model

The centrifugal effect of the Earth’s rotation causes an equatorial bulge that is the prin-
cipal departure of the Earth from a spherical shape. If the Earth behaved like a fluid and
there were no convective fluid motions, then it would be in hydrostatic equilibrium, and
the Earth would assume the shape of an ellipsoid of revolution also called the spheroid.
See Figure 12.4 and Table 12.2.

The formula for an ellipse in Cartesian coordinates is

x2

a2 +
y2

a2 +
z2

c2 = 1 (12.3)

where the x-axis is in the equatorial plane at zero longitude (Greenwich), the y-axis is
in the equatorial plane and at 90◦E longitude, and the z-axis points along the spin-axis.
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The formula relating x, y, and z to geocentric latitude and longitude is (see Figure 12.5)

x = r cos θ cos φ

y = r cos θ sin φ

z = r sin θ.

(12.4)
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Parameter Description Formula Value/Unit (WGS84)

GMe 3.986004418 × 1014 m3 s−2

a equatorial radius — 6378137 m

c polar radius — 6356752.3 m

ω rotation rate — 7.292115 × 10−5 rad s−1

f flattening f = (a − c)/a 1/298.257223563

θg geographic latitude — —

θ geocentric latitude — —

Table 12.2

Now we can rewrite the formula for the ellipse in polar coordinates and solve for the
radius of the ellipse as a function of geocentric latitude.

r =

(
cos2 θ

a2 +
sin2 θ

c2

)−1/2
� a

(
1 − f sin2 θ

)
(12.5)

Before satellites were available for geodetic work, one would establish geographic lati-
tude by measuring the angle between a local plumb line and an external reference point,
such as the star Polaris. Since the local plumb line is perpendicular to the spheroid (i.e.,
local flattened surface of the Earth), it points to one of the foci of the ellipse. The con-
version between geocentric and geographic latitude is straightforward and its derivation
is left as an exercise. The formulas are

tan θ =
c2

a2 tan θg or tan θ = (1 − f )2 tan θg. (12.6)

Example 12.2. What is the geocentric latitude at a geographic latitude of 45◦? The
answer is θ = 44.8◦, which amounts to a 22 km difference in location!

12.2.3 Flattening of the Earth by Rotation

Suppose the Earth is a rotating, self-gravitating ball of fluid in hydrostatic equilibrium.
Then density will increase with increasing depth and surfaces of constant pressure,
and density will coincide. The surface of the Earth will be one of these equipotential
surfaces; it has a potential Uo

Uo = V(r, θ) − 1
2 ω

2r2 cos2θ (12.7)

where the second term on the right side of equation (12.7) is the change potential due
to the rotation of the Earth at a frequency ω. The potential due to an ellipsoidal Earth
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in a non-rotating frame can be expressed as

V = −
GMe

r

[
1 − J1

a
r

P1(θ) − J2

(a
r

)2
P2(θ) − · · ·

]
. (12.8)

The center of the coordinate system is selected to coincide with the center of mass,
so by definition, J1 is zero. For this model, we keep only J2 (dynamic form factor or
“jay two” = 1.08 × 10−3), so the final reference model is

V = −
GMe

r
+

G Me J2 a2

2r3

(
3 sin2 θ − 1

)
. (12.9)

This parameter J2 is related to the principal moments of inertia of the Earth by Mac-
Cullagh’s formula. For a complete derivation see (Stacey, 1977, Chapter 3). Let C and
A be the moments of inertia about the spin axis and equatorial axis, respectively. For
example,

C =

∫
V

(
x2 + y2

)
dm. (12.10)

After a lot of algebra one can derive a relationship between J2 and the moments of
inertia.

J2 =
C − A
Ma2 (12.11)

In addition, if we know J2, we can approximately determine the flattening. This is done
by inserting equation (12.9) into equation (12.7) and noting that the value of Uo is the
same at the equator and the pole. Solving for the polar and equatorial radii that meet
this constraint, one finds an approximate relationship between J2 and the flattening.

f =
a − c

a
�

3
2

J2 +
1
2

a3ω2

GM
(12.12)

Thus, if we could somehow measure J2, we would know quite a bit about our planet.

12.2.4 Measurement of J2

Just as in the case of measuring the total mass of the Earth, the best way to measure J2
is to monitor the orbit of an artificial satellite. In this case, we measure the precessional
period of the inclined orbit plane. To the second degree, external potential is

V = −
GMe

r
+

GMe J2a2

2r3

(
3 sin2 θ − 1

)
. (12.13)

The force acting on the satellite is −∇V .

g = −
∂V
∂r

r̂ −
1
r
∂V
∂θ
θ̂ −

1
r cos θ

∂V
∂φ
φ̂ (12.14)

If we were out in space, the best way to measure J2 would be to measure the θ̂-component
of the gravity force.

gθ =
1
r
∂V
∂θ

= −
3GMea2J2

r4 sin θ cos θ (12.15)
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This component of force will apply a torque to the orbital angular momentum and it
should be averaged over the orbit. Consider Figure 12.6.

m

g
θ

L

ΔL

i

z

Figure 12.6: Satellite of mass m orbiting the Earth at an inclination i. The orbit has an
angular momentum vector L perpendicular to the orbital plane. The θ component of
the gravity vector applies a torque to the orbit, causing a retrograde precession of the
angular momentum vector and thus a precession of the orbital plane.

For a prograde orbit, the precession ωp is retrograde: the opposite to the Earth’s spin
direction. The complete derivation is found in Stacey (1977, page 76). The result is

ωp

ωs
=
−3a2

2r2 J2 cos i (12.16)

where i is the inclination of the satellite orbit with respect to the equatorial plane, ωs

is the orbit frequency of the satellite, and ωp is the precession frequency of the orbit
plane in inertial space.

Example 12.3. LAGEOS: As an example, the LAGEOS satellite orbits the Earth every
13673.4 seconds, at an average radius of 12,265 km and an inclination of 109.8◦. Given
the parameters in Table 12.3 and that J2 = 1.08 × 10−3, the predicted precession rate is
0.337◦/day. This can be compared with the observed rate of 0.343◦/day. Figure 12.7 is
an illustration of the LAGEOS satellite.

12.2.5 Hydrostatic Flattening

Given the radial density structure, the Earth rotation rate and the assumption of hydro-
static equilibrium, one can calculate the theoretical flattening of the Earth (see Garland
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Description Value

Semimajor axis 12265 km

Eccentricity 0.004

Inclination 109.8◦

Perigee height 5858 km

Apogee height 5958 km

Perigee rate −0.215◦/d

Node rate +0.343◦/d

Semimajor axis decay rate −1.1 mm/d

Orbital acceleration 3 × 10−12 m s−2

Table 12.3: LAGEOS Orbital Parameters

(1977, Appendix 2)). This is called the hydrostatic flattening fh = 1/299.5. From Ta-
ble 12.3, we have the observed flattening f = 1/298.257, so the actual Earth is flatter
than the theoretical Earth. There are two reasons for this. First, the Earth is still re-
covering from the last ice age when the poles were loaded by heavy ice sheets. When
the ice melted, polar dimples remained and the glacial rebound of the viscous mantle
is still incomplete. Second, the mantle is not in hydrostatic equilibrium, because of
mantle convection. Finally, it should be noted that J2 is changing with time due to the
continual post-glacial rebound. This is called jay two dot J̇2 and it can be observed in
satellite orbits as a time variation in the precession rate.
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Fig. 1. Structural detail of LAGEOS satellite. 

ogy, modeling techniques, and computer procedures have im- 
proved the accuracy of site determinations to a few centime- 
ters in all coordinates. Contemporary measurements then are 
in the range where important geodynamic and geodetic obser- 
vations can be made. 

The Crustal Dynamics Project (CDP) of the National Aero- 
nautics and Space Administration has the primary respon- 
sibility for conducting laser ranging measurements on 
LAGEOS. Numerous other domestic and foreign institutions 
are cooperating in data collection, analysis, and interpretation. 
The CDP was formed in 1979 to apply space technology, both 
in the form of satellite laser ranging and very long baseline 
interferometry (see below) to the measurement of tectonic 
plate motions, regional crustal deformations, polar motion 
and earth rotation, and other phenomena associated with 
crustal movements. The CDP is contained with NASA's Geo- 
dynamics Program which has evolved from earlier earth phys- 
ics programs such as the National Geodetic Satellite Program, 
the Earth and Ocean Physics Applications Program, and the 
LAGEOS Project. 

This special issue of JGR presents current scientific findings 
based on analyses of LAGEOS data. It brings together work 
on satellite geodesy, gravity, plate tectonics, polar motion, 
postglacial rebound, length-of-day, angular momentum, earth 
tides, and mantle structure. Before summarizing these reports 
it is appropriate to mention some of the papers that have 
already been published using LAGEOS data. The evolution of 
the LAGEOS orbit and various orbit perturbations have been 

discussed by Smith and Dunn [1980], Afonso et al. [1980], 
Rubincam [1982], Alselmo et al. [1983], and Smith [1983]. 
Features of a special gravity field developed to model the 
LAGEOS orbit, GEM L2, is discussed by Lerch et al. [1982]. 
The use of LAGEOS data to study postglacial rebound has 
been reported by Yoder et al. [ 1983], Rubincam [1984], Peltier 
[1983], and Alexander [1983]. Lerch et al. [1978] have deter- 
mined the geocentric gravitational constant (GM). A number 
of conference proceedings contain LAGEOS results. Many of 
these are referenced in the geodesy portion of the 1979-1982 
U.S. National Report to the International Union of Geodesy 
and Geophysics. 

SUMMARY OF TECHNICAL PAPERS 

For descriptive purpose the papers presented in this special 
issue of the Journal of Geophysical Research can be divided 
into nine interrelated categories that cut across the traditional 
earth sciences disciplines of geodesy and tectonophysics and 
involve (1) reference frames for earth dynamics, (2) station 
coordinates and intersite baselines, (3) gravity fields, (4) polar 
motions, (5) earth rotation, (6) earth tides, (7) orbital pertur- 
bations, (8) mantle structure, and (9) geodetic techniques. In 
the following paragraphs we will discuss each of these topics 
and the papers presented that relate to them. 

The establishment of a geodynamic reference frame is a 
basic step for virtually all LAGEOS analyses. Both the geo- 
detic and geophysical inferences to be drawn from SLR data 
depend on having a well defined coordinate system with a 

Figure 12.7: Structural detail of the LAGEOS satellite (Cohen and Smith, 1985).

12.3 Exercises

Exercise 12.1. Derive equation (12.6) using the ellipsoidal Earth model.

Exercise 12.2. Derive equation (12.12) by following the instructions in the paragraph
preceding this equation. Assume a

c � 1.

Exercise 12.3. Derive equation (12.16). You may need to refer to the book by Stacey
(1977, Chapter 4, page 76).

Exercise 12.4. A sun synchronous orbit has a prograde precession rate of once per
year. This type of orbit is used by optical remote sensing satellites to have the same sun
illumumination for every repeat cycle. Use equation (12.16) to calculate the inclination
of the orbit plane needed to match this rate for a satellite in a circular orbit at 800 km.

Exercise 12.5. Assume the density of the Earth is uniform and the earth is a perfect
sphere.

(a) Develop a formula for the gravitational acceleration as a function of radius inside
the Earth and check the dimensions.

(b) Develop a formula for the pressure at the center of this Earth and check the
dimensions.



Chapter 13

Reference Earth Model: WGS84

This short chapter provides a review of the four parameters that define the reference ge-
ometry and gravity model for the Earth called World Geodetic System 1984 (WGS84).
Based on this reference model, anomalies are defined. These include geoid height,
free-air gravity anomaly, and deflections of the vertical.

13.1 Some Definitions

Radius of spheroid

r(θ) =

(
cos2 θ

a2 +
sin2 θ

c2

)−1/2
� a

(
1 − f sin2 θ

)
(13.1)

Conversion between geocentric θ and geographic θg latitude

tan θ =
c2

a2 tan θg or tan θ = (1 − f )2 tan θg (13.2)

Gravitational potential in frame rotating with the Earth

Uo = −
GMe

r
+

GMe J2a2

2r3

(
3 sin2 θ − 1

)
− 1

2ω
2r2cos2θ (13.3)
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Figure 13.1

Calculation of the second degree harmonic J2 from WGS84 parameters

J2 �
2
3

f − a3ω2

3GMe
(13.4)

Calculation of J2 from the polar C and equatorialA moments of inertia

J2 =
C − A
Mea2 (13.5)

Kepler’s third law relating orbit frequency, ωs, and radius r toMe

ω2
sr3 = GMe (13.6)

Measurement of J2 from orbit frequency ωs radius r, inclination i, and
precession rate ωp

ωp

ωs
=
−3a2

2r2 J2 cos i (13.7)
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Parameter Description Formula Value/Unit

GMe (WGS84) — 3.986004418 × 1014 m3 s−2

Me mass of Earth — 5.98 × 1024 kg

G gravitational constant — 6.67 × 10−11 m3 kg−1 s−2

a equatorial radius
(WGS84)

— 6378137 m

c polar radius (derived) — 6356752.3 m

ω rotation rate
(WGS84)

— 7.292115 × 10−5 rad s−1

f flattening
(WGS84)

f = (a − c)/a 1/298.257223563

J2 dynamic form factor
(derived)

— 1.081874 × 10−3

θg geographic latitude — —

θ geocentric latitude — —

Hydrostatic flattening is less than observed flattening

fH =
1

299.5
< f =

1
298.257

(13.8)

13.2 Disturbing Potential and Geoid Height

To a first approximation, the reference potential Uo is constant over the surface of the
Earth. Now, we are concerned with deviations from this reference potential. This is
called the disturbing potential Φ; over the oceans the anomalous potential results in a
deviation in the surface away from the spheroid

U = Uo + Φ (13.9)

where the reference potential Uo is given in equation (13.3). The geoid is the equipo-
tential surface of the Earth that coincides with the sea surface when it is undisturbed
by winds, tides, or currents. The geoid height N is the height of the geoid above the
spheroid and it is expressed in m. Consider the following mass anomaly in the Earth
and its effect on the ocean surface.
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spheroid(ro)
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N

excess mass

geoid

Figure 13.2

Because of the excess mass, the potential on the spheroid is higher than the reference
level U = Uo + Φ. Thus, the ocean surface must move farther from the center of the
Earth to remain at the reference level Uo. To determine how far it moves, expand the
potential in a Taylor series about the radius of the spheroid at ro.

Uo(r) = U (ro) +
∂U
∂r

(r − ro) + · · · (13.10)

Notice that g = −δU/δr, so we arrive at

U(r) − Uo � g (r − ro)

Φ = gN.
(13.11)

This is Brun’s Formula, which relates the disturbing potential to the geoid height N.

13.3 Reference Gravity and Gravity Anomaly

The reference gravity is the value of total (scalar) acceleration one would measure on
the spheroid assuming no mass anomalies inside of the Earth.

g = −∇Uo = −
∂Uo

∂r
r̂ − 1

r
∂Uo

∂θ
θ̂ −

1
r cos θ

∂Uo

∂φ
φ̂ (13.12)

The total acceleration on the spheroid is

g = −

(∂Uo

∂r

)2
+

(
1
r
∂Uo

∂θ

)21/2

. (13.13)

The second term on the right side of equation (13.13) is negligible, because the normal
to the ellipsoid departs from the radial direction by a small amount, and the square of
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this value is usually unimportant. The result is

g(r, θ) = −
GMe

r2

[
1 − 3 J2 a2

2r2

(
3 sin2 θ − 1

)]
+ ω2 rcos2θ. (13.14)

To calculate the value of gravity anomaly on the spheroid, we substitute

r(θ) = a
(
1 − f sin2θ

)
(13.15)

After substitution, expand the gravity in a binomial series and keep terms of order f ,
but not f 2, and we arrive at the reference gravity on the spheroid.

g(θ) = ge

[
1 +

(
5
2 m − f

)
sin2 θ

]
m =

ω2a2c
GMe

(13.16)

The parameter ge is the value of gravity on the equator and m is approximately equal
to the ratio of centrifugal force at the equator to the gravitational acceleration at the
equator. In practice, geodesists get together at meetings of the International Union
of Geodesy and Geophysics (IUGG) and agree on such things as the parameters of
WGS84. In addition, they define something called the international gravity formula.
This is also called the Somigliana formula in units of m s−2.

go (θ) = 9.780327
(
1 + 5.3024 × 10−3sin2θ − 5.8 × 10−6sin22θ

)
(13.17)

13.4 Free-Air Gravity Anomaly

The free-air gravity anomaly is the negative radial derivative of the disturbing potential,
but it is also evaluated on the geoid. The formula is

∆g = −
∂Φ

∂r
−

2go (θ)
r(θ)

N. (13.18)

13.5 Summary of Anomalies

Disturbing potential Φ

U
total

potential

= Uo

reference
potential

+ Φ

disturbing
potential

(13.19)
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Geoid heightN

N =
Φ

go(θ)
(13.20)

Free-air gravity anomaly

∆g = −
∂Φ

∂r
−

2go (θ)
r(θ)

N (13.21)

Deflection of the vertical The final type of anomaly, not yet discussed, is the deflec-
tion of the vertical. This is the angle between the normal to the geoid (i.e., plumb line)
and the normal to the spheroid. There are two components: north ξ and east η.

ξ = −
1
a
∂N
∂θ

η = −
1

a cos θ
∂N
∂φ

(13.22)



Chapter 14

Laplace’s Equation
in Spherical Coordinates

14.1 Introduction

As discussed in Chapter 12, the gravity field of the Earth can be decomposed into a ref-
erence gravity model (e.g., WGS84), and anomalies which can be expanded in spher-
ical harmonics and/or Fourier series. The spherical harmonic decomposition should
be used for longer wavelength anomalies (i.e., λ > 1000 km). However, for shorter
wavelength anomalies (e.g., λ < 1000 km), the Fourier series representation is more
practical and computationally efficient.

We begin by introducing spherical harmonics and their properties. We explain how
the spherical harmonic decomposition of a function on a sphere is analogous to the
Fourier series decomposition of a 2-D function in Cartesian coordinates. We then use
this spherical harmonic formulation to solve Laplace’s equation. Finally, we describe
how the Earth’s gravity field is represented as spherical harmonic coefficients. This
chapter follows from Jackson (1998, Chapter 3). However, when we apply this math-
ematical development to the Earth, we replace the colatitude measured from the z-
axis—commonly used by mathematicians and physicists—with the geocentric latitude
measured from the equator—commonly used by Earth scientists.

200
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14.2 Spherical Harmonics

The coordinate system used for this presentation of spherical harmonics follows from
the definition used by mathematicians and physicists and is shown in Figure 14.1. Lon-

x

y

z
x

r
θ

φ

Figure 14.1

gitude is measured from the x-axis and colatitude θ is measured from the z-axis. Any
function f (θ, φ) can be expanded in terms of spherical harmonic coefficients as follows

f (θ, φ) =

∞∑
l=0

m=l∑
m=−l

Fm
l Ym

l (θ, φ) (14.1)

where Ym
l (θ, φ) are the spherical harmonic functions , where l is the spherical harmonic

degree and m is the spherical harmonic order. The spherical harmonic coefficients Fm
l

are computed by integrating the function over the sphere as follows

Fm
l =

∫ 2π

0

∫ π

0
f (θ, φ)Ym

l (θ, φ) sin θ dθ dφ (14.2)

where the overbar signifies complex conjugate. The fully normalized spherical har-
monic functions are

Ym
l (θ, φ) =

[
(2l + 1) (l − m)!

4π (l + m)!

]1/2

Pm
l (cos θ) eimφ

Y−m
l (θ, φ) = (−1)m Ym

l (θ, φ)

(14.3)

where Pm
l (cos θ) is the associated Legendre function. Note that eimφ represents the

Fourier series that form a complete basis set of orthonormal functions of order m on
the interval 0 6 φ 6 2π. Also, the functions Pm

l (cos θ) form a complete basis set in the
degree l for each m on the interval 0 6 θ 6 π. Therefore, the Ym

l (θ, φ) functions form a
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complete orthonormal basis on the unit sphere. The orthonormal condition is∫ 2π

0

∫ π

0
Ym′

l′ (θ, φ) Ym
l (θ, φ) sin θ dθ dφ = δl′l δm′m. (14.4)

The completeness relation is
∞∑

l=0

m=l∑
m=−l

Ym
l

(
θ′, φ′

)
Ym

l (θ, φ) = δ
(
φ − φ′

)
δ
(
cos θ − cos θ′

)
. (14.5)

Some examples of spherical harmonic functions are

Y0
0 =

1
√

4π

Y−1
1 =

√
3

8π
sin θe−iφ

Y0
1 =

√
3

4π
cos θ

Y1
1 = −

√
3

8π
sin θeiφ

Y−2
2 =

√
15

32π
sin2 θe−i2φ

Y−1
2 =

√
15
8π

sin θ cos θe−iφ

Y0
2 =

√
5

16π

(
3 cos2θ − 1

)

Y1
2 = −

√
15
8π

sin θ cos θeiφ

Y2
2 =

√
15

32π
sin2 θei2φ .

.

(14.6)

The spherical harmonic order l is similar to the wavenumber in the Fourier series. For
a sphere of radius a the characteristic wavelength of the spherical harmonic function is



CHAPTER 14. LAPLACE’S EQUATION IN SPHERICAL COORDINATES 203

λ =
2πa

(l + 1)
. (14.7)

An examination of these spherical harmonic functions shows that there are always l
nodes around the sphere. There are m nodes in longitude, so there are l − m nodes
in latitude. As discussed above, spherical harmonic decomposition of a function on a
sphere is analogous to Fourier decomposition, as shown in the table below.

Cartesian Coordinates Spherical Coordinates

F(k) =
∞∫
−∞

∞∫
−∞

f (x)e−i2π(k•x) d2x Fm
l =

∫ 2π
0

∫ π

0 f (θ, φ) Ym
l (θ, φ) sin θ dθ dφ

f (x) =
∞∫
−∞

∞∫
−∞

F(k)ei2π(k•x) d2k f (θ, φ) =
∞∑

l=0

m=l∑
m=−l

Fm
l Ym

l (θ, φ)

Re
[
f (x)

]
⇒ F

(
−kx, ky

)
= F

(
kx, ky

)
Re

[
f (θ, φ)

]
⇒ F−m

l = (−1)m Fm
l

The last row of the table shows the Hermitian property of the Fourier transform in
the case where the function is real valued in the space domain. A similar property
holds for spherical harmonic coefficients. In both cases, this property enables one to
skip the computation of half of the coefficients—which saves both computer time and
computer memory.

14.3 Laplace’s Equation

Now we use this spherical harmonic decomposition to solve Laplace’s equation in
spherical coordinates. Similarly, in the following chapter, we will use the Fourier trans-
form to solve Laplace’s equation in Cartesian coordinates. Laplace’s equation is

1
r
∂2

∂r2 (rΦ) +
1

r2 sin θ
∂

∂θ

(
sin θ ∂Φ

∂θ

)
+

1
r2sin2θ

∂2Φ

∂φ2 = 0 (14.8)
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where Φ (r, θ, φ) is the potential, θ is colatitude, and φ is longitude. The boundary
conditions are

lim
r→∞

Φ (r, θ, φ) = 0

Φ (1, θ, φ) = Φo (θ, φ) .
(14.9)

Now we expand the potential function in spherical harmonics

Φ (r, θ, φ) =

∞∑
l=0

m=l∑
m=−l

Φm
l (r) Ym

l (θ, φ). (14.10)

With some work, it is possible to show that Laplace’s equation reduces to

r ∂2

∂r2

(
rΦm

l

)
− l (l + 1) Φm

l = 0. (14.11)

The general solution to this ordinary differential equation is

Φm
l (r) = Am

l r−(l+1) + Bm
l r l. (14.12)

Note that only the first term in this solution satisfies the boundary condition as r goes
to infinity, so the solution is

Φ (r, θ, φ) =

∞∑
l=0

m=l∑
m=−l

Am
l r−(l+1) Ym

l (θ, φ). (14.13)

The solution that satisfies the surface boundary condition is

Φ (r, θ, φ) =

∞∑
l=0

m=l∑
m=−l

Φm
ol r−(l+1) Ym

l (θ, φ) (14.14)

where

Φm
ol =

∫ 2π

0

∫ π

0
Φo (θ, φ) Ym

l (θ, φ) sin θ dθ dφ. (14.15)

This solution is used to calculate the potential anywhere exterior to the sphere using
the following approach.

1. First expand the surface potential in spherical harmonics (equation (14.15)).

2. Then multiply each coefficient by the factor r−(l+1).

3. Finally, sum this product over all l and m (equation (14.13)).
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The factor r−(l+1) is called the upward continuation. It reduces the amplitude of the
potential—especially at large l, which corresponds to short wavelength. For the Carte-
sian coordinate system, the analogous upward continuation factor is e−2π|k|z. In Fig-
ure 14.2, we compare the two upward continuation formulas to establish the wavelength
where the Cartesian formulation can replace the spherical harmonic formulation.
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Figure 14.2: Amplitude gain versus spherical harmonic degree for spherical upward
continuation (solid lines) compared with flat Earth upward continuation (dashed lines),
for three altitudes: 40 km, 400 km, and 4000 km. For these altitudes, the two formulas
show some disagreement for degrees less than 20 (1900 km wavelength), but good
agreement for larger degrees. At degree 40, they are indistinguishable and the flat-
Earth approximation is accurate enough for most applications.

14.4 Earth’s Gravity Field

The spherical harmonic formulation commonly used for the Earth’s gravity field uses
geocentric latitude rather than colatitude. With this change, the fully normalized spher-
ical harmonic function becomes

Ym
l (θ, φ) =

[
(2l + 1) (l − m)!

4π (l + m)!

]1/2

P m
l (sin θ) eimφ (14.16)

where θ now refers to geocentric latitude, and there is a sin θ in the associated Legendre
function instead of a cos θ. As discussed in Chapter 12, the l = 1 spherical harmonic
coefficient is zero, so the disturbing potential becomes

Φ (r, θ, φ) =
−GMe

r

∞∑
l=2

m=l∑
m=0

Am
l

(a
r

)l
Ym

l (θ, φ) (14.17)
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where GMe and a are two components of the WGS84 reference model provided in
Chapter 13. Note that the C0

2 term is sometimes equivalent to the J2 term used in the
reference model 13.3. This formulation has complex valued coefficients Am

l , but it is
customary to use real coefficients Cm

l and S m
l applied to the sine and cosine components

of the complex exponential. Moreover, the standard gravity approach has a different
normalization and uses the fact that the gravity field is real valued to eliminate the need
for negative order coefficients. With these changes, the disturbing potential is

Φ (r, θ, φ) =
−GMe

r

∞∑
l=2

m=l∑
m=0

(a
r

)l
P̃ m

l (sin θ)
[
Cm

l cos (mφ) + S m
l sin (mφ)

]
(14.18)

where this associated Legendre function has a slightly different normalization

P̃ m
l (sin θ) =

[ (
2 − δ0,m

)
(2l + 1) (l − m)!

(l + m)!

]1/2
P m

l (sin θ). (14.19)

One can relate the real valued spherical harmonic coefficients used for Earth gravity
analysis to the complex coefficients used by mathematical physicists as

Am
l =



√
2π

(
Cm

l − iS m
l

)
(−1)m m > 0

√
4πCm

l m = 0

√
2π

(
Cm

l + iS m
l

)
m < 0.

(14.20)

In practice, geodesists have a standard way of distributing the spherical harmonic coef-
ficients. Below are the tide-free coefficients up to degree 6, for the Earth Gravity model
2008 (EGM2008) gravity model, from Pavlis et al. (2012).

degree order Clm Slm sigClm sigSlm
2 0 -0.484165143790815D-03 0.000000000000000D+00 0.7481239490D-11 0.0000000000D+00
2 1 -0.206615509074176D-09 0.138441389137979D-08 0.7063781502D-11 0.7348347201D-11
2 2 0.243938357328313D-05 -0.140027370385934D-05 0.7230231722D-11 0.7425816951D-11
3 0 0.957161207093473D-06 0.000000000000000D+00 0.5731430751D-11 0.0000000000D+00
3 1 0.203046201047864D-05 0.248200415856872D-06 0.5726633183D-11 0.5976692146D-11
3 2 0.904787894809528D-06 -0.619005475177618D-06 0.6374776928D-11 0.6401837794D-11
3 3 0.721321757121568D-06 0.141434926192941D-05 0.6029131793D-11 0.6028311182D-11
4 0 0.539965866638991D-06 0.000000000000000D+00 0.4431111968D-11 0.0000000000D+00
4 1 -0.536157389388867D-06 -0.473567346518086D-06 0.4568074333D-11 0.4684043490D-11
4 2 0.350501623962649D-06 0.662480026275829D-06 0.5307840320D-11 0.5186098530D-11
4 3 0.990856766672321D-06 -0.200956723567452D-06 0.5631952953D-11 0.5620296098D-11
4 4 -0.188519633023033D-06 0.308803882149194D-06 0.5372877167D-11 0.5383247677D-11
5 0 0.686702913736681D-07 0.000000000000000D+00 0.2910198425D-11 0.0000000000D+00
5 1 -0.629211923042529D-07 -0.943698073395769D-07 0.2989077566D-11 0.3143313186D-11
5 2 0.652078043176164D-06 -0.323353192540522D-06 0.3822796143D-11 0.3642768431D-11
5 3 -0.451847152328843D-06 -0.214955408306046D-06 0.4725934077D-11 0.4688985442D-11
5 4 -0.295328761175629D-06 0.498070550102351D-07 0.5332198489D-11 0.5302621028D-11
5 5 0.174811795496002D-06 -0.669379935180165D-06 0.4980396595D-11 0.4981027282D-11
6 0 -0.149953927978527D-06 0.000000000000000D+00 0.2035490195D-11 0.0000000000D+00
6 1 -0.759210081892527D-07 0.265122593213647D-07 0.2085980159D-11 0.2193954647D-11
6 2 0.486488924604690D-07 -0.373789324523752D-06 0.2603949443D-11 0.2466506184D-11
6 3 0.572451611175653D-07 0.895201130010730D-08 0.3380286162D-11 0.3347204566D-11
6 4 -0.860237937191611D-07 -0.471425573429095D-06 0.4535102219D-11 0.4489428324D-11
6 5 -0.267166423703038D-06 -0.536493151500206D-06 0.5097794605D-11 0.5101153019D-11
6 6 0.947068749756882D-08 -0.237382353351005D-06 0.4731651005D-11 0.4728357086D-11
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In summary, one can calculate the gravity field at a radius greater than the equatorial
radius of the Earth. If the calculation is performed in an Earth-fixed coordinate system
rotating with the Earth, then the gravity computed using the WGS84 reference model in
equation (13.3) is added to the disturbing potential computed using spherical harmonic
coefficients; see equation (14.18).

U (r, θ, φ) =
−GMe

r

1 +

∞∑
l=2

m=l∑
m=0

(a
r

)l
P̃ m

l (sin θ)
[
Cm

l cos (mφ) + S m
l sin (mφ)

]
−

1
2
ω2r2cos2θ

(14.21)

There is an excellent web service (icgem.gfz-potsdam.de) where one can select
their favorite gravity model as spherical harmonic coefficients and then compute a wide
variety of gravity products (e.g., geoid height, free-air anomaly, gravity gradient,. . . )
on a grid defined by the user.

14.5 Exercises

Exercise 14.1. Show that equation (14.12) is a solution to the differential equation (14.11).

Exercise 14.2. Write a matlab program to generate Figure 14.2. Also plot the ratio of
the two upward continuation functions to degree 80.

icgem.gfz-potsdam.de


Chapter 15

Laplace’s Equation in
Cartesian Coordinates and
Satellite Altimetry

15.1 Solution to Laplace’s Equation

Variations in the gravitational potential and in the gravitational force are caused by
local variations in the mass distribution in the Earth. As described in Chapter 12 we
decompose the gravity field of the Earth into three fields:

• the main field due to the total mass of the Earth;

• the second harmonic due to the flattening of the Earth by rotation; and

• anomalies which can be expanded in spherical harmonics or Fourier series.

Here we are interested in anomalies due to local structure. Consider a patch on the
Earth having a width and length less than about 1000 km, or 1/40 of the circumference
of the Earth. Within that patch, we are interested in features as small as perhaps 1 km
wavelength. Using a spherical harmonic representation would require 40,000 squared
coefficients! To avoid this enormous computation and still achieve accurate results, we
will treat the Earth as being locally flat. Here is a remove/restore approach that has
worked well in our analysis of gravity and topography:

1. Acquire a spherical harmonic model of the gravitational potential of the Earth
and generate models of the relevant quantities (e.g., geoid height, gravity anomaly,

208
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deflection of the vertical, . . . ) out to harmonic 80. You may want to taper the
harmonics between, say, 60 and 120 to avoid Gibb’s phenomenon; this depends
on the application.

2. Remove that model from the local geoid, gravity, . . . An alternate method is
to remove a trend from the data and then apply some type of window prior to
performing the Fourier analysis. I do not recommend this practice because the
trend being removed will contain a broad spectrum; it is dependent on the size
of the area, and it cannot be restored accurately.

3. Project the residual data onto a Mercator grid so that the cells are approximately
square, and then use the central latitude of the grid to establish the dimensions
of the grid for Fourier analysis.

4. Perform the desired calculation (e.g., upward continuation, gravity/topography
transfer function, . . . ).

5. Restore the appropriate spherical harmonic quantity using the exact model that
was removed originally.

Consider the disturbing potential

U
total

potential

= Uo

reference
potential

+ Φ

disturbing
potential

(15.1)

where, in this case, the reference potential comprises the reference Earth model plus
the reference spherical harmonic model described in Step 1 above. The disturbing
potential satisfies Laplace’s equation for an altitude, z, above the highest mountain in
the area, while it satisfies Poisson’s equation below this level, as shown in Figure 15.1.

Laplace’s equation is a second order partial differential equation in three dimensions.

∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 = 0, z > 0 (15.2)

Six conditions are needed to develop a unique solution. Far from the region, the dis-
turbing potential must go to zero; this accounts for five of the boundary conditions.

lim
|x|→∞

Φ = 0, lim
|y|→∞

Φ = 0, lim
z→∞

Φ = 0 (15.3)

At the surface of the Earth (or at some elevation), one must either prescribe the potential
or the vertical derivative of the potential.

Φ(x, y, 0) = Φo(x, y) (Dirichlet)

∂Φ

∂z
= −∆g(x, y) (Neumann)

(15.4)
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Figure 15.1

To solve this differential equation, we’ll use the 2-D Fourier transform again, where
the forward and inverse transform are

F(k) =

∞∫
−∞

∞∫
−∞

f (x)e−i2π(k·x)d2x

f (x) =

∞∫
−∞

∞∫
−∞

F(k)ei2π(k·x)d2k

(15.5)

where x = (x, y) is the position vector, k = (1/λx, 1/λy) is the wavenumber vector, and
k · x = kxx + kyy. Fourier transformation reduces Laplace’s equation and the surface
boundary to

−4π2
(
k2

x + k2
y

)
Φ(k, z) +

∂2Φ

∂z2 = 0

lim
z→∞

Φ(k, z) = 0, Φ(k, 0) = Φo.

(15.6)

The general solution is

Φ(k, z) = A(k)e2π|k|z + B(k)e−2π|k|z. (15.7)
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To satisfy the boundary condition as z→ ∞, the A(k) term must be zero. To satisfy the
boundary condition on the z = 0 plane, B(k) must be Φ(k, 0). The final result is

Φ(k, z)

potential at
altitude

= Φo(k, 0)

potential at
z = 0

× e−2π|k|z.

upward
continuation

(15.8)

The upward continuation physics, as shown in Figure 15.2, is the same for the po-
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Figure 15.2: Gain of upward continuation kernel as a function of the altitude of the
observation z, divided by the wavelength of the anomaly λ.

tential and all of its derivatives. For example, if one measured gravity anomaly at the
surface of the Earth ∆g(x, 0), then to compute the gravity at an altitude of z, one takes
the Fourier transform of the surface gravity, multiplies it by the upward continuation
kernel, and inverse transforms the result. This exponential decay of the signal with
altitude is a fundamental barrier to recovery of small-scale gravity anomalies from a
measurement made at altitude. Here are two important examples:

1. Marine gravity Consider making marine gravity measurement on a ship which
is 4 km above the topography of the ocean floor. (Most of the short-wavelength
gravity anomalies are generated by the mass variations associated with the to-
pography of the seafloor.) At a wavelength of 8 km, the ocean surface anomaly
will be attenuated by 0.043 from the amplitude of the seafloor anomaly.

2. Satellite gravity The typical altitude of an artificial satellite used to sense vari-
ations in the gravity field is 400 km, so an anomaly having a 100 km wavelength
will be attenuated by a factor of 10−11! This is why radar altimetry (below),
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which measures the geoid height directly on the ocean surface topography, is
so valuable.

15.2 Derivatives of the Gravitational Potential

This solution to Laplace’s equation can be used to construct all of the common deriva-
tives of the potential. Suppose one has a complete survey over a patch on the surface of
the Earth so that a Fourier method can be used to convert between the different repre-
sentations of the gravity field. This is particularly true for computing gravity anomaly
from geoid height or deflection of the vertical. The general relation between the po-
tential in the space domain (at any altitude) and the Fourier transform of the surface
potential is

Φ(x, z) =

∞∫
−∞

∞∫
−∞

Φ(k, 0)e−2π|k|zei2π(k·x)d2k. (15.9)

Table 15.1 uses equation (15.9) and the definitions of the derivatives of the potential
to construct the variety of anomalies. Before examining these relationships, however,
let’s review some of the definitions in relation to what can be measured.

Gravitational Potential

N : Geoid height Since the ocean surface is an equipotential surface, variations in
gravitational potential will produce variations in the sea surface height. This can
be measured by a radar altimeter.

First Derivative of Potential

∆g: Gravity anomaly This is the derivative of the potential with respect to z. It can
be measured by an accelerometer, such as a gravity meter.

η, ξ: Deflection of the vertical These are the derivatives of the potential with respect
to x and y, respectively. They can be measured by recording the tiny angle be-
tween a plumb bob and the vector pointing to the center of the Earth. Over the
ocean, this is most easily measured by taking the along-track derivative of radar
altimeter profiles.
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Second derivative of potential

Gravity gradient This is a symmetric tensor of second partial derivatives of the grav-
itational potential. 

∂2Φ
∂x2

∂2Φ
∂x∂y

∂2Φ
∂x∂z

∂2Φ
∂y2

∂2Φ
∂y∂z

∂2Φ
∂z2


A direct way of making this measurement is to construct a set of accelerome-
ters, each spaced at a distance of ∆ in the x, y, and z directions to measure each
component of gravity gradient. Note that when the gravity gradient measure-
ments are made in free space, the trace of this tensor must be zero by Laplace’s
equation. Below we’ll use Laplace’s equation to develop an alternate method of
measuring ∂2Φ

∂z2 over the ocean using a radar altimeter.

As an exercise, use Laplace’s equation and the various definitions to develop gravity
anomaly from vertical deflection (equation (15.13)) and vertical gravity gradient from
ocean surface curvature (equation (15.14)).

Here is a practical example: Suppose one has measurements of geoid height N(x) over
a large area on the surface of the ocean and wishes to calculate the gravity anomaly,
∆g(x, z) at altitude. The prescription is:

1. Remove an appropriate spherical harmonic model from the geoid.

2. Take the 2-D Fourier transform of N(x).

3. Multiply by g2π |k| e−2π|k|.

4. Take the inverse 2-D Fourier transform.

5. Restore the matching gravity anomaly calculated from the spherical harmonic
model at altitude.



CHAPTER 15. LAPLACE’S EQUATION 214

Ta
bl

e
15

.1
:R

el
at

io
ns

hi
ps

be
tw

ee
n

th
e

va
ri

ou
s

re
pr

es
en

ta
tio

ns
of

th
e

gr
av

ity
fie

ld
in

fr
ee

sp
ac

e.

Sp
ac

e
do

m
ai

n
W

av
en

um
be

r
do

m
ai

n

G
eo

id
he

ig
ht

fr
om

th
e

po
te

nt
ia

l,
B

ru
ns

fo
rm

ul
a

N
(x

)
�

1 g
Φ

(x
,0

)
N

(k
)
�

1 g
Φ

(k
,0

)
(1

5.
10

)

G
ra

vi
ty

an
om

al
y

fr
om

th
e

po
te

nt
ia

l
∆

g(
x,

z)
�
−
∂
Φ ∂
z

(x
,z

)
∆

g(
k,

z)
�

2π
|k
|e
−

2π
|k
|z

Φ
(k
,0

)
(1

5.
11

)

D
efl

ec
tio

n
of

th
e

ve
rt

ic
al

fr
om

th
e

po
te

nt
ia

l(
ea

st
sl

op
e

an
d

no
rt

h
sl

op
e)

η
(x

)
=
−
∂

N ∂
x
�
−

1 g
∂
Φ ∂
x

ξ(
x)

=
−
∂

N ∂
y
�
−

1 g
∂
Φ ∂
y

η
(k

)
�
−

i2
π

k x g
Φ

(k
,0

)

ξ(
k)
�
−

i2
π

k y g
Φ

(k
,0

)
(1

5.
12

)

G
ra

vi
ty

an
om

al
y

fr
om

de
fle

ct
io

n
of

th
e

ve
rt

ic
al

(H
ax

by
et

al
.,

19
83

)

∆
g(

k)
=

ig |k
|

[ k x
η
(k

)+
k y
ξ(

k)
] (1

5.
13

)

Ve
rt

ic
al

gr
av

ity
gr

ad
ie

nt
fr

om
th

e
cu

rv
at

ur
e

of
th

e
oc

ea
n

su
rf

ac
e

∂
∆

g
∂

z
=

g
( ∂2 N
∂

x2
+
∂

2
N

∂
y2

)
(1

5.
14

)



CHAPTER 15. LAPLACE’S EQUATION 215

15.3 Geoid Height, Gravity Anomaly, and Vertical Grav-
ity Gradient from Satellite Altimeter Profiles

As described above, geoid height N(x) and other measurable quantities such as grav-
ity anomaly g(x) are related to the anomalous gravitational potential Φ(x, z) through
Laplace’s equation. It is instructive to go through an example of how measurements of
ocean surface topography from satellite radar altimetry can be used to construct geoid
height, deflection of the vertical, gravity anomaly, and vertical gravity gradient.

The surface of the ocean is displaced both above and below the reference ellipsoidal
shape of the Earth (Figure 15.3). These differences in height arise from variations
in gravitational potential (i.e., geoid height) and oceanographic effects (tides, large-
scale currents, el Niño, eddies, . . . ). Fortunately, the oceanographic effects are small
compared with the permanent gravitational effects, so a radar altimeter can be used to
measure these bumps and dips. At wavelengths less than about 200 km, bumps and
dips in the ocean surface topography reflect the topography of the ocean floor and can
be used to estimate seafloor topography in areas of sparse ship coverage.

Radar altimeters are used to measure the height of the ocean surface above the reference
ellipsoid (i.e., Figure 15.3 the satellite above the ellipsoid H∗ minus the altitude above
the ocean surface H). A GPS, or ground-based tracking system, is used to establish
the position of the radar H∗ (as a function of time) to an accuracy of better than 0.1 m.
The radar emits 1000 pulses per second, using a carrier wavelength of about 2 cm
(Ku-band). These spherical wave fronts reflect from the closest ocean surface (nadir)
and return to the satellite, where the two-way travel times is recorded to an accuracy of
3 nanoseconds (1 m range variations mostly due to ocean waves). Averaging thousands
of pulses reduces the noise to about 30 mm. If one is interested in making an accurate
geoid height map such as shown in Figure 15.5, then many sources of error must be
considered and somehow removed. However, if the final product of interest is one
of the derivatives of the potential, then it is best to take the along-track derivative of
each profile to develop along-track sea surface slope. In this case, the point-to-point
precision of the measurements is the limiting factor.

To avoid a crossover adjustment of the data, ascending and descending satellite altime-
ter profiles are first differentiated in the along-track direction, resulting in geoid slopes
or along-track vertical deflections. These along-track slopes are then combined to pro-
duce east η and north ξ components of vertical deflection. Finally, the east and north
vertical deflections are used to compute both gravity anomaly and vertical gravity gra-
dient. The details for converting along-track slope into east and north components of
deflection of the vertical are provided in Section 15.4 and also in Sandwell and Smith
(1997). You probably don’t need to know these details unless you plan to do research
in marine gravity.
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To compute the gravity anomaly (Figure 15.6) from a dense network of satellite al-
timeter profiles of geoid height (Figure 15.3), one constructs grids of east η and north ξ
vertical deflection (Figures 15.7 and 15.8). The grids are then Fourier transformed and
equation (15.13) is used to compute the gravity anomaly. At this point, one can add the
long wavelength gravity field from the spherical harmonic model to the gridded gravity
values in order to recover the total field; the resulting sum may be compared with grav-
ity measurements made on board ships. A more complete description of gravity field
recovery from satellite altimetry can be found in Hwang and Parsons (1996); Sandwell
and Smith (1997); Rapp and Yi (1997).

There is an important issue for constructing the gravity anomaly from sea surface slope
that is revealed by a simplified version of equation (15.13). Consider a 2-D sea surface
slope and gravity anomaly which depends on x, but not y. The y-component of slope
is zero, so conversion from sea surface slope to gravity anomaly is simply a Hilbert
transform

∆g(kx) = ig sgn(kx)η (kx) . (15.15)

Now it is clear that one µrad of sea surface slope maps into 0.98 mGal of gravity
anomaly and similarly one µrad of slope error will map into ∼1 mGal of gravity
anomaly error. Thus, the accuracy of the gravity field recovery is controlled by the
accuracy of the sea surface slope measurement.
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Figure 15.3: Schematic diagram of a radar altimeter orbiting the Earth at a typical
altitude of 800 km.
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Figure 15.4: Ground tracks for three radar altimeters that have provided gravity cover-
age of the ocean surface. This is a 2000 km by 1500 km area around Hawaii. For most
of its lifetime the Jason-1 altimeter was in an orbit that repeated every 10 days. This
is optimal for observing changes in sea surface height associated with oceanographic
processes but inadequate for gravity field recovery. After the launch of Jason-2 (not
shown) the Jason-1 track was shifted to bisect the coverage. The lower tracks are from
the twin Sentinel-3 satellite altimeters which provide repeat coverage every 27 days.
The center tracks are from the SARAL ALtiKa altimeter which operated in a 35-day
repeat cycle and then was placed in a drifting orbit that achieves excellent coverage for
gravity recovery. To date (2020) there have been nine altimeters with dense geodetic
coverage including Geosat, ERS-1, Envisat, Jason-1/2 (extension of life), CryoSat-2,
SARAL/ALtiKa and Sentinel-3, and HY-2.
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Figure 15.5: Geoid height above the WGS84 ellipsoid in m (1 m contour interval)
from Earth Gravity model 2008 (EGM2008) (Pavlis et al., 2012). The geoid height
is dominated by long wavelengths, so it is difficult to observe the small-scale features
caused by ocean-floor topography. These can be enhanced by computing either the
horizontal derivative (ocean surface slope) or the vertical derivative (gravity anomaly).
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Figure 15.6: Gravity anomaly ∆g(x) derived from east and north components of sea
surface slope using equation (15.13). (20 mGal contour interval.)
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Figure 15.7: East component of sea surface slope η(x) derived from satellite radar
altimeter profiles. Note this component is rather noisy, because the altimeter tracks
(Figure 15.4) run mainly in a N-S direction.
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Figure 15.8: North component of sea surface slope ξ(x) derived from satellite radar
altimeter profiles. Note this component has lower noise, because the altimeter tracks
(Figure 15.4) run mainly in a N-S direction.



CHAPTER 15. LAPLACE’S EQUATION 221

−170° −160° −150°
15°

20°

25°

30°

−60

−50

−40

−30

−20

−10

0

10

20

30

40
Eotvos

Figure 15.9: Vertical gravity gradient δg(x)/δz derived from east and north components
of sea surface slope using equation (15.14). Note this second derivative of the geoid
amplifies the shortest wavelengths (compare with the original geoid (Figure 15.5)).
Noise in the altimeter measurements has been amplified, resulting in an artificial tex-
ture.
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15.4 Vertical Deflections from Along-Track Slopes

15.4.1 Crossover Method

Consider for the moment the intersection point of an ascending and a descending satel-
lite altimeter profile. The derivative of the geoid height N with respect to time t along
the ascending profile is

Ṅa =
∂Na

∂t
=

∂N
∂θ
θ̇a +

∂N
∂φ
φ̇a (15.16)

and along the descending profile is

Ṅd =
∂N
∂θ
θ̇d +

∂N
∂φ
φ̇d (15.17)

where θ is geodetic latitude and φ is longitude. The functions θ and φ are the latitudinal
and longitudinal components of the satellite ground track velocity. It is assumed that
the satellite altimeter has a nearly circular orbit, so that its velocity depends mainly
on latitude; at the crossover point, the following relationships are accurate to better
than 0.1%.

θ̇a = ˙−θd φ̇a = φ̇d (15.18)

The geoid gradient (deflection of the vertical) is obtained by solving equation (15.16)
and equation (15.17), using equation (15.18):

∂N
∂φ

=
1

2φ̇
(Ṅa + Ṅd) (15.19)

∂N
∂θ

=
1

2|θ̇|
(Ṅa − Ṅd). (15.20)

It is evident from this formulation that there are latitudes where either the east or north
component of geoid slope may be poorly determined. For example, at ±72◦ latitude,
the Seasat and Geosat altimeters reach their turning points where the latitudinal veloc-
ity θ goes to zero and thus equation (15.20) becomes singular. In the absence of noise,
this is not a problem, because the ascending and descending profiles are nearly parallel
so their difference goes to zero at the same rate that the latitudinal velocity goes to zero.
Of course in practice, altimeter profiles contain noise such that the north component of
geoid slope will have a signal-to-noise ratio that decreases near ±72◦ latitude. Simi-
larly, for an altimeter in a near polar orbit, the ascending and descending profiles are
nearly anti-parallel at the low latitudes; the east component of geoid slope is poorly
determined and the north component is well determined. The optimal situation occurs
when the tracks are nearly perpendicular so that the east and north components of geoid
slope have the same signal-to-noise ratio.

When two or more satellites with different orbital inclinations are available, the sit-
uation is slightly more complex, but also more stable. Consider the intersection of
four passes as shown in Figure 15.10. The along-track derivative of each pass can be
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1 3

2 4

Figure 15.10

computed from the geoid gradient at the crossover point

Ṅ1

Ṅ2

Ṅ3

Ṅ4


=



θ̇1 φ̇1

θ̇2 φ̇2

θ̇3 φ̇3

θ̇4 φ̇4




∂N
∂θ

∂N
∂φ

 (15.21)

or in matrix notation
Ṅ = Θ ∆N. (15.22)

Since this is an overdetermined system, the four along-track slope measurements can-
not be matched exactly unless the measurements are error-free. In addition, an a priori
estimate of the error in the along-track slope σi, measurements can be used to weight
each equation in equations (15.21) (i.e., divide each of the four equations by σi). The
least squares solution to equation (15.22) is

∆N = (Θt Θ)−1 Θt Ṅ (15.23)

where t and −1 are the transpose and inverse operations, respectively. In this case,
a 2-by-4 system must be solved at each crossover point, although the method is easily
extended to three or more satellites. Later we will assume that every grid cell corre-
sponds to a crossover point of all the satellites considered, so this small system must
be solved many times.

In addition to the estimates of geoid gradient, the covariances of these estimates are
also obtained.

σ
2
θθ σ2

θφ

σ2
φθ σ2

φφ

 = (Θt Θ)−1 (15.24)
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Since Geosat and ERS-1 are high inclination satellites, the estimated uncertainty of the
east component is about 3 times greater than the estimated uncertainty of the north com-
ponent at the equator. At higher latitudes of 60◦–70◦, where the tracks are nearly per-
pendicular, the north and east components are equally well determined. At 72◦ north,
where the Geosat tracks run in a westerly direction, the uncertainty of the east compo-
nent is low and the higher inclination ERS-1 tracks prevent the estimate of the north
component from becoming singular at 72◦.

Finally, the east η and north ξ components of vertical deflection are related to the two
geoid slopes by

η = −
1

a cos θ
∂N
∂φ

(15.25)

ξ = −
1
a
∂N
∂θ

(15.26)

where a is the mean radius of the Earth.

15.4.2 Biharmonic Splines

The approach provided in the previous section only works at crossover points and the
actual spatial distribution of along-track slopes from several satellite altimeters is non-
uniform. A more flexible approach is to find the smoothest surface that is compatible
with all the slope data. Consider N estimates of slope s (xi) with direction ni each
having uncertainty σi where x = (x, y). We wish to find the smoothest surface w (x)
that is consistent with this set of data such that si = (∇w · n)i. We develop a smooth
model using a thin elastic plate that is subjected to vertical point loads. The loads are
located at the locations of the data constraints (knots) and their amplitudes are adjusted
to match the observed slopes (Sandwell, 1987). To suppress overshooting oscillations
a tension can be applied to its perimeter. Wessel and Bercovici (1998) solved this
problem by determining the Green’s function φ (x) for the deflection of a thin elastic
plate in tension. The differential equation is

α2∇4φ (x) − ∇2φ (x) = δ (x) (15.27)

where α is a length scale factor that controls the importance of the tension. High α re-
sults in biharmonic spline interpolation which minimizes the strain energy in the plate
but can produce undesirable oscillations between data points. These can be suppressed
using a singular value decomposition method when solving the linear system of equa-
tions (below). Zero α corresponds to harmonic interpolation, which results in a surface
that has sharp local perturbations at the locations of the data constraints. Thus, the
tension factor controls the shape of the interpolating surface. Through experimentation
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we find good-looking results when the solution is about 0.33 of the way from the bihar-
monic to the harmonic end-member. The Green’s function for this differential operator
is (Wessel and Bercovici, 1998)

φ (x) = Ko

(
|x|
α

)
+ log

(
|x|
α

)
(15.28)

where Ko is the modified Bessel function of the second kind and order zero. In the
special case of zero tension, the Green’s function is (Greenberg, 2015)

φ (x) = |x|2 ln |x| . (15.29)

The smooth surface is a linear combination of these Green’s functions each centered at
the location of the data constraint.

w (x) =

N∑
j=1

c jφ
(
x − xj

)
(15.30)

The coefficients c j represent the strength of each point load applied to the thin elastic
plate. They are found by solving the following linear system of equations.

si = (∇w · n)i =

N∑
j=1

c j∇φ
(
xi − x j

)
· ni (15.31)

If one is also interested in recovering the mean sea surface height (∼geoid height) then
additional height constraints should be added to the linear system of equations

wi =

M∑
j=1

c jφ
(
xi − x j

)
. (15.32)

One issue that must be addressed is the possibility of having multiple constraints in
exactly (or nearly) the same location. This causes the linear system to be exactly sin-
gular (or numerically unstable). Satellite altimeter data commonly have many crossing
profiles so it is possible to have two or even ten slope constraints at nearly the same
location. The solution to this problem is to reduce the number of Green’s functions
(knots) by making sure they are not more closely spaced than some prescribed dis-
tance. That minimum distance should be about a quarter of the shortest wavelength
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that one strives to resolve. When the number of knot locations is less than the number
of data constraints, then the linear system is over-determined and the surface will not
exactly match the slope constraints. Since we only wish to match the slopes to within
the expected uncertainty of each data type, each equation (15.31) and (15.32), should
be divided by the slope and height uncertainty to provide the optimal solution using
a singular value decomposition algorithm. For recovery of the gravity field and its
derivatives, we are not usually interested in the absolute height of the surface but just
the local slope, so our final result is the gradient of the surface. For the zero tension,
biharmonic case, the gradient is

∇φ (x) = x (2 ln |x| + 1) . (15.33)

If we are interested in mean sea surface height (∼geoid height) then equation (15.30)
should be used. While this interpolation theory is elegant and very flexible, it is dif-
ficult to apply to the altimeter interpolation problem because today (2020) there are
over 3 billion observations to grid. Consider gridding just 1000 slopes, the matrix of
the linear system could have 106 elements if all the knot points were retained. In prac-
tice, we make the following compromises in order to grid this large and diverse set
of data. (1) The data are residuals with respect to a model (e.g., EGM2008) so we
can assemble and grid the data in overlapping small areas. (2) To avoid edge effects
the sub areas have 100% overlap and only the inner interpolated cells are retained. (3)
The along-track slope data from each of the ten possible slope directions (i.e. ascending
and descending profiles from five satellite inclinations ERS/Envisat/ALtiKa, GEOSAT,
TOPEX/Jason-1/2, CryoSat-2, and Sentinel-3) and associated uncertainties are binned
onto the regularly spaced, square grid cells (1 minute or smaller), and only the median
slope of each type is retained for fitting. The results of the computations are grids
of residual east and north vertical deflection that are converted to gravity anomalies
and vertical gravity gradient using equations (15.12) and (15.13), respectively. Note
this gridding approach is available in Generic Mapping Tools (GMT) as the function
greenspline and also in matlab as the function griddata.

15.5 Exercises

Exercise 15.1. Use Laplace’s equation and the various definitions to develop gravity
anomaly from vertical deflection (equation (15.13)) and vertical gravity gradient from
ocean surface curvature (equation (15.14)).

Exercise 15.2. Show that equation (15.29) is the Green’s function for the biharmonic
equation by showing the following equation is true ∇4|x|2 ln |x| = 8δ (x).



Chapter 16

Poisson’s Equation in
Cartesian Coordinates

16.1 Solution to Poisson’s Equation

As in Chapter 15 on Laplace’s equation, we are interested in anomalies due to local
structure and will use a flat-Earth approximation. However, unlike Chapter 15, the
emphasis is on generating models of the disturbing potential and its derivatives from a
3-D model of the variations in density and topography of the Earth. In Chapter 17, we’ll
combine this approach to calculating gravity models with the models for isostasy and
flexure, to develop a topography-to-gravity transfer function. Consider the disturbing
potential

U
total

potential

= Uo

reference
potential

+ Φ

disturbing
potential

(16.1)

where, in this case, the reference potential comprises the ellipsoidal reference Earth
model plus the reference spherical harmonic model. The disturbing potential satisfies
Laplace’s equation for an altitude z above the highest mountain in the area, while it
satisfies Poisson’s equation below this level, as shown in Figure 16.1.

First, consider a density model consisting of an infinitesimally thin sheet at a depth zo

having a surface-density of σ(x, y) (units of mass per unit area). Later, we’ll construct
a more complicated 3-D structure from a stack of many layers. Poisson’s equation is
an inhomogeneous second-order partial differential equation in three dimensions.

∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 = −4πGσ(x) δ(z − zo) (16.2)
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x

y

z
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2 = 0

2 = 4 G

Φ(x, y, z) disturbing potential (total-reference)

G gravitational constant

ρ density anomaly (total-reference)

Figure 16.1

Six conditions are needed to develop a unique solution. Far from the region, the dis-
turbing potential must go to zero; this accounts for the five boundary conditions.

lim
|x|→∞

Φ = 0, lim
|y|→∞

Φ = 0, lim
z→∞

Φ = 0 (16.3)

The sixth condition is prescribed by the density model. Fourier transformation reduces
Poisson’s equation and the surface boundary to

−4π2
(
k2

x + k2
y

)
Φ(k, z) +

∂2Φ

∂z2 = −4πGσ(k) δ(z − zo) (16.4)

lim
z→∞

Φ(k, z) = 0. (16.5)

Next, take the Fourier transform with respect to z

π
(
k2

x + k2
y + k2

z

)
Φ(k, kz) = Gσ(k)e−i2πkzzo . (16.6)

We have used the definition of the delta function
∞∫
−∞

δ(z − zo)e−i2πkz dz = e−i2πkzo .

Next, we solve the differential equation for Φ and take the inverse Fourier transform
with respect to kz

Φ(k, z) =
Gσ(k)
π

∞∫
−∞

ei2πkz(z−zo)

k2
z +

(
k2

x + k2
y

) dkz. (16.7)
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Use calculus of residues to do the integration. The denominator can be factored as

k2
z +

(
k2

x + k2
y

)
= (kz + i |k|) (kz − i |k|) (16.8)

where |k| =
(
k2

x + k2
y

) 1
2. If z > zo, then to satisfy the boundary condition as z → ∞, one

must integrate around the i |k|-pole. See Figure 16.2.

i |k |

Im k z

Re k z

− i |k |

Figure 16.2

The result is
∞∫
−∞

ei2πkz(z−zo)

(kz + i |k|) (kz − i |k|)
dkz = 2πi

e−2π|k|(z−zo)

2i |k|
. (16.9)

The solution for the potential for z > zo is

Φ(k, z) = Gσ(k)
e−2π|k|(z−zo)

|k|
. (16.10)

The gravity anomaly is

∆g(k, z) = −
∂Φ

∂z
= 2πGσ(k)e−2π|k|(z−zo). (16.11)

16.2 Gravity Due to Seafloor Topography:
Approximate Formula

Consider topography on the ocean floor t(x) where the maximum amplitude of the
topography is much less than the mean ocean depth s, as shown in Figure 16.3.

Because the topography has low amplitude, we can replace the surface density in equa-
tion (16.11) with the topography times the density contrast across the seafloor.

∆g(k) = 2πG ( ρc − ρw) T (k)e−2π|k|s (16.12)
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Figure 16.3

The result shows that, to a first approximation, the relationship between gravity and
topography is linear and isotropic.

∆g
T

= 2πG ( ρc − ρw) e−2π|k|s (16.13)

At long wavelengths, |k| → 0, so the exponential upward continuation term is 1 and
the gravity/topography ratio is simply the Bouguer correction term.

∆g
T

= 2πG ( ρc − ρw) = 75 mGal/km (16.14)

Suppose the wavelength of the topography is equal to the ocean depth. In this case, the
exponential, upward continuation reduces the gravity measured on the ocean surface
by a factor of e−2π = 0.0017. Because of this upward continuation, topography having
wavelength less than the ocean depth is difficult to observe in the gravity field at the
ocean surface.

16.3 Gravity Anomaly from a 3-D Density Model

Using this formulation, one can stack, or integrate, these surface density layers over
a range of depths to construct the gravity field due to a full 3-D density model. See
Figure 16.4.

Φ(k, z) = G

o∫
−∞

ρ(k, zo)
e−2π|k|(z−zo)

|k|
dzo (16.15)

The equivalent expression in the space domain is

Φ(x, z) =

G

∞∫
−∞

∞∫
−∞

o∫
−∞

ρ (xo, yo, zo)
[
(x − xo)2 + (y − yo)2 + (z − zo)2

]−1/2
dzo dyo dxo. (16.16)
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Figure 16.4

Indeed, this is just a statement of the convolution theorem where

=

[(
x2 + y2 + z2

)−1/2
]

=
e−2π|k|z

|k|
. (16.17)

16.4 Computation of Geoid Height and Gravity Anomaly

Table 16.1 provides the two approaches for calculating geoid height and gravity anomaly
from a 3-D density model. The Fourier approach involves 2-D Fourier transformation

Space Domain Wavenumber Domain

N(x) =
G
g

∞∫
−∞

∞∫
−∞

o∫
−∞

ρ (xo, yo, zo)[
(x − xo)2 + (y − yo)2 + z2

o

]1/2 dzo dyo dxo N(k) =
G
g

o∫
−∞

ρ(k, zo)
e2π|k|zo

|k|
dzo

∆g(x) = G

∞∫
−∞

∞∫
−∞

o∫
−∞

ρ (xo, yo, zo) zo[
(x − xo)2 + (y − yo)2 + z2

o

]3/2 dzo dyo dxo ∆g(k) = 2πG

o∫
−∞

ρ(k, zo)e2π|k|zo dzo

Table 16.1

of each layer, summing (or integrating) the upward-continued contribution from each
layer, and inverse Fourier transformation of the total. The space-domain approach
involves a 3-D convolution of the density model with the 1/r (geoid) or z/r3 (grav-
ity) kernel. For a model with 1024 points in both horizontal directions, the Fourier
approach will be about 50,000 times faster to compute than the space-domain convo-
lution. Moreover, the Fourier approach will have higher numerical accuracy, because
there are fewer additions and subtractions.
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16.5 Gravity Anomaly for a Slab: Bouguer Anomaly

The equation relating gravity to the 3-D density anomaly in the wavenumber domain
can be used to calculate the gravity anomaly due to a slab of thickness H and a den-
sity of ρo. This is used for the Bouguer correction in land gravity surveys. The 3-D
density is

ρ(x, z) =

 ρo −H < z < 0
0 z < −H, z > 0.

(16.18)

The Fourier transform of this density is

ρ(k, z) =

 δ (kx) δ
(
ky

)
ρo −H < z < 0

0 z < −H, z > 0.
(16.19)

The gravity anomaly integral simplifies to

∆g(k) = 2πGρo δ (kx) δ
(
ky

) o∫
−H

e2π|k|zo dzo

= 2πGρoδ (kx) δ
(
ky

) 1
2π |k|

(
1 − e−2π|k|H

)
.

(16.20)

Since only the zero wavenumber component is extracted by the delta function, we
expand equation (16.20) in a Taylor series about |k| and take the limit as |k| → 0.

lim
|k|→0

1
2π |k|

[
1 − 1 + 2π |k|H − (2π |k|H)2

2!
+ · · ·

]
= H (16.21)

The result in the wavenumber domain is

∆g(k) = 2πGρo δ (kx) δ
(
ky

)
H. (16.22)

The inverse Fourier transform provides the gravity field due to an infinite slab.

∆g(x) = 2πGρoH (16.23)

Over the ocean, one measures the total acceleration of gravity and subtracts the In-
ternational Gravity Formula (IGF) to obtain the free-air gravity anomaly. Indeed, the
free-air anomaly is defined on the geoid, which is closely approximated by the ocean
surface. Therefore, no corrections are needed for marine gravity measurements.

In contrast, over the land, one measures total gravitational acceleration at some eleva-
tion h above the geoid; assume this elevation is known from leveling. To reduce these
gravity measurements to the geoid, two corrections are commonly applied:
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1. The free-air correction accounts for the decrease in gravity, because the observa-
tion point is farther from the center of the Earth.

2. The Bouguer correction uses the infinite-slab approximation to account for the
gravitational attraction of the rock between the measurement point and the geoid.
Note that unless the topography is very flat over a large area, this infinite-slab
approximation may not be very accurate, and a more accurate terrain correction
should be applied.

∆gB

Bouguer
gravity

= gt

measured
gravity

− 2πGρoh

slab
correction

-0.1118 mGal m−1

(ρo = 2670 kg m−3)

+
2GMe

R3
e

h
free-air

correction
0.3086 mGal m−1

− γo(θ)

International
Gravity Formula

(16.24)

16.6 Gravity Anomaly from Topography:
Parker’s Exact Formula

In the previous development (Section 16.2), we collapsed the topography t(x) into a thin
sheet with varying surface density. The approximation is accurate when the amplitude
of the topography is less than the upward continuation distance. For example, in the
ocean where the mean seafloor depth is 4 km, the approximation works quite well
for topography that extends 2 km above that depth. However, when the topography
is rugged and approaches the observation plane (e.g., sea surface), a more accurate
treatment is needed. Parker (1973) derived a more accurate formula that results in a
Taylor series expansion in powers of topography.

Consider the exact formula for the disturbing potential Φ (xo, zo) due to a uniform den-
sity slab having a flat bottom and upper surface topography t (x) (see Figure 16.5).

x

y

z

0

zo

t(x)

(x , z )Φ

ρ

oo

Figure 16.5
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This is given by the following 3-D convolution integral

Φ (xo, zo) = ρG

∞∫
−∞

∞∫
−∞

t(x)∫
0

[
(x − xo)2 + (y − yo)2 + (z − zo)2

]−1/2
dz d2x. (16.25)

Take the 2-D Fourier transform of the disturbing potential on the observation plane

= [Φ] = Φ (k, zo) =

ρG

∞∫
−∞

∞∫
−∞

t(x)∫
0

∞∫
−∞

∞∫
−∞

[
(x − xo)2 + (y − yo)2 + (z − zo)2

]−1/2
e−i2π(k·xo)d2xo dz d2x. (16.26)

In Section 16.3, we showed that the 2-D Fourier transform of convolution the inverse
distance Green’s function is given by equation (16.17):

=

[(
x2 + y2 + z2

)−1/2
]

=
e−2π|k|z

|k|
. (16.27)

Also, recall the shift property of the Fourier transform equation (2.23):

=
[
f (x−xo)

]
= e−i2π(k·x)F (k) . (16.28)

Using these tools, we can write the Fourier transform of the disturbing potential as

Φ (k, zo) = ρG

∞∫
−∞

∞∫
−∞

t(x)∫
0

e−2π|k|(zo−z)

|k|
e−i2π(k·x) dz d2x. (16.29)

The integral over z can be performed analytically.

e−2π|k|zo

t(x)∫
0

e2π|k|zdz =
e−2π|k|zo

2π |k|
[
e2π|k|t(x)

− 1
]

(16.30)

We can expand the term in brackets in a Taylor series about |k| = 0.[
1 + 2π |k| t (x) +

|2πk|2

2!
t2 (x) + · · · − 1

]
(16.31)

Now we can rewrite the Fourier transform of the disturbing potential on the plane as

Φ (k, zo) = 2πρGe−2π|k|zo

∞∑
n=1

|2πk|n−2

n!
=

[
tn (x)

]
. (16.32)
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Finally, note that the gravity anomaly is the negative vertical derivative of the potential
∆g = − ∂Φ

∂z , so the result is

∆g (k, zo) = 2πρGe−2π|k|zo

∞∑
n=1

|2πk|n−1

n!
=

[
tn (x)

]
. (16.33)

This exact formula for computing gravity anomaly from topography involves an infinite
series of Fourier transforms of the topography raised to the power n. In the derivation
of the approximate formula for gravity due to seafloor topography (Section 16.2), we
compressed the topography, times the density contract across the seafloor, into surface
density at an average seafloor depth. We see now that this is equivalent to keeping just
the n = 1 term in equation (16.33) to arrive at

∆g (k, zo) = 2πρGe−2π|k|zo T (k) . (16.34)

Parker (1973) proves that this series converges as long as the highest peak in the to-
pography does not extend above the observation plane. Moreover, the convergence of
the series is optimal when the z = 0 level is selected such that it is half way between
the maximum and minimum topography.

One can use this more exact formula for calculating gravity due to flexurally compen-
sated topography, as discussed in the next chapter.

16.7 Exercises

Exercise 16.1. Abyssal hills on the seafloor have a characteristic wavelength of 10 km
and a peak-to-trough amplitude of 500 m.

(a) What is the amplitude of the gravity anomaly on the seafloor assuming the to-
pography (density 2800 kg m−3) can be compressed into a thin sheet?

(b) What is the amplitude of the gravity anomaly at the sea surface where the mean
ocean depth is 3 km?

(c) Over a time period of 50 Ma, the abyssal hills will be carried by plate tectonics
into the deep ocean where the depth is 5 km. What is the new amplitude of the
gravity anomaly?

(d) In addition to a deeper ocean, the topography of the abyssal hills will be covered
with sediment so the seafloor is now flat. What is the new value of the amplitude
of the gravity? (Use a sediment density of 2300 kg m−3.)
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Exercise 16.2. Derive the Bouguer formula (equation 16.23) for the gravity due to
a slab of uniform thickness H and uniform density ρo from the Parker expansion for
gravity due to topography of uniform density (equation (16.33)). Replace t(x) by H
and continue the calculation.



Chapter 17

Gravity/Topography
Transfer Function and
Isostatic Geoid Anomalies

17.1 Introduction

This chapter combines thin-elastic plate flexure theory with the solution to Poisson’s
equation, to develop a linear relationship between gravity and topography. This rela-
tionship can be used in a variety of ways:

1. If both the topography and gravity are measured over an area that is several times
greater than the flexural wavelength, then the gravity/topography relationship (in
the wavenumber domain) can be used to estimate the elastic thickness of the
lithosphere and/or the crustal thickness. There are many good references on this
topic, including: Dorman and Lewis (1972); McKenzie and Bowin (1976); Banks
et al. (1977); Watts (1978); McNutt (1979).

2. At wavelengths greater than the flexural wavelength, where features are isostati-
cally compensated, the geoid/topography ratio can be used to estimate the depth
of compensation of crustal plateaus and the depth of compensation of hot-spot
swells (Haxby and Turcotte, 1978).

3. If the gravity field is known over a large area, but there is rather sparse ship-track
coverage, the topography/gravity transfer function can be used to interpolate the
seafloor depth among the sparse ship soundings (Smith and Sandwell, 1994).

237
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17.2 Flexure Theory

In Chapter 8, we developed an analytic solution for the response of a thin-elastic plate
floating on a fluid mantle that is subjected to a line load. Here we follow the same
approach, but solve the flexure equation for an arbitrary vertical load representing, for
example, the loading of the lithosphere due to the weight of a volcano. This is shown
in Figure 17.1,

           z

                        y

                                                               t(x)                             w

     −s
                                            w(x)                                               c

 −s−d
                                                                                                 m

Figure 17.1

where s is the mean ocean depth (∼4km) and d is the thickness of the crust (∼6km).
The topography of the Moho is equal to the deflection of the elastic plate w(x). The
topography of the seafloor, t(x), has two components: the topographic load, to(x), and
the deflection of the elastic plate w(x):

t(x) = to(x) + w(x) (17.1)

For this calculation, we make the following assumptions: the thickness of the elastic
plate is less than the flexural wavelength; the deflection of the elastic plate is much
less than the flexural wavelength; the flexural rigidity, D, is constant; and there is no
end-load on the plate, so F = 0. The vertical force balance for flexure of a thin elastic
plate floating on the mantle is described by the differential equation

D
(
∂4

∂x4 + 2 ∂4

∂x2∂y2 +
∂4

∂y4

)
w(x) + ( ρm − ρw) gw(x) = − ( ρc − ρw) gto(x) (17.2)

where the parameters are defined in Table 17.1. Note that this is the 2-D flexure equa-
tion similar to the 1-D equation (8.1) and also used in Banks et al. (1977).

Take the 2-D Fourier transform of equation (17.2) to reduce the differential equation to
an algebraic equation

D(2π)4
(
k4

x +2k2
xk2

y +k4
y

)
W(k)+( ρm − ρw) gW(k) = − ( ρc − ρw) g

[
T (k)−W(k)

]
(17.3)
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Parameter Definition Value/Unit

w(x) deflection of plate
(positive up)

m

D = Eh3

12(1−v2) flexural rigidity N m

h elastic plate thickness m

ρw seawater density 1025 kg m−3

ρc crust density 2800 kg m−3

ρm mantle density 3300 kg m−3

g acceleration of gravity 9.82 m s−2

E Young’s modulus 6.5 × 1010 Pa

v Poisson’s ratio 0.25

Table 17.1

where we have used equation (17.1) to replace To(k). With a little algebra and noting
that |k|4 = (k2

x + k2
y )2, this can be rewritten as

D (2π |k|)4 W(k) + ( ρm − ρc) gW(k) = − ( ρc − ρw) gT (k). (17.4)

Now one can solve for the deflection of the elastic plate in terms of the observed
topography.

W(k) =
− ( ρc − ρw)
( ρm − ρc)

[
1 +

D (2π |k|)4

g ( ρm − ρc)

]−1

T (k) (17.5)

This equation is called the isostatic response function because it describes the topog-
raphy of the Moho in terms of the topography of the seafloor. Define the flexural
wavelength as

λ f = 2π
[

D
g
(
ρm − ρc

) ]1/4
=
√

2πα. (17.6)

(Note that α is the flexural parameter from Chapter 8. When the wavelength of the
topography is much greater than the flexural wavelength, then the topography of the
Moho follows the Airy-compensation model; this is compensated topography.

W(k) =
− ( ρc − ρw)
( ρm − ρc)

T (k) (17.7)

In contrast, when the wavelength of the topography is much less than the flexural wave-
length, the topography of the Moho is zero; this is uncompensated topography. The
gravity field of the earth is very sensitive to the degree of compensation, so it is useful
to develop the gravity field for this model.
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17.3 Gravity/Topography Transfer Function

The gravity anomaly for this model is approximated by compressing the topography
into a sheet mass where the surface density is ( ρc − ρw) t(x). Similarly, the Moho
topography is compressed into a sheet mass with surface density ( ρm − ρc) w(x). Fi-
nally, the gravity anomaly in each layer is upward-continued to the ocean surface. See
Figure 17.2.

           z

                        y

    
     −s

xt(x)(ρc − ρw)

w(x)(ρm − ρc)
 −s−d

Figure 17.2

The solution to Poisson’s equation (16.11) provides an approximate method of con-
structing a gravity model for the combined model.

∆g(k) = 2πG ( ρc − ρw) e−2π|k|s T (k) + 2πG ( ρm − ρc) e−2π|k|(s+d) W(k) (17.8)

Using equation (17.5), this can be rewritten in terms of the observed topography.

∆g(k) = 2πG ( ρc − ρw) e−2π|k|s
{

1 −
[
1 +

D (2π |k|)4

g ( ρm − ρc)

]−1
e−2π|k|d

}
T (k) (17.9)

This formulation provides a direct approach to constructing gravity anomaly models
from seafloor topography: i) take the 2-D Fourier transform of the topography; ii) mul-
tiply by the gravity-to-topography transfer function Q(|k|) = ∆g/T , and iii) take the
inverse Fourier transform of the result. The most important parameter is the elastic
plate thickness that is used to estimate the flexural rigidity. Figure 17.3 shows the
gravity/topography transfer function for a range of elastic thicknesses. Since the as-
thenosphere relieves stresses on geological timescales, there is no truly uncompensated
topography. Thus, the gravity anomaly for very large-scale structures, such as conti-
nents and hot-spot swells, is small or zero far from the edges of these features. It is
only the sharp topographic features, such as large seamounts, that will have prominent
gravity expressions.
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Figure 17.3

17.4 Geoid/Topography Transfer Function

Using the formulas for converting between geoid and gravity (derived in Chapter 14
on Laplace’s equation) it is a simple matter to develop the geoid/topography transfer
function

N(k) =
1

2π |k| g ∆g(k)

N(k)
T (k)

=
G ( ρc − ρw)
|k| g e−2π|k|s

{
1 −

[
1 +

D (2π |k|)4

g ( ρm − ρc)

]−1
e−2π|k|d

}
.

(17.10)

This geoid topography transfer function has some interesting properties, as illustrated
in Figure 17.4.

The amplitude of the geoid/topography transfer function is typically 0 to 4 meters per
kilometer. This means that a seamount that is 1 km tall will produce a bump on the
ocean surface that is about 1 meter tall. Since satellite altimeters have accuracy of
better than 0.1 m, such seamounts will be apparent in global geoid height maps. The
shape of the geoid/topography transfer functions also depends on the thickness of the
elastic plate.
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Figure 17.4

There is one important difference between the geoid and the gravity anomaly. At long
wavelengths, the gravity/topography transfer function goes to zero, because the topog-
raphy is isostatically compensated, so the gravity signal from the topography is exactly
cancelled by the gravity signature from the Moho. In contrast, the geoid/topography
transfer function goes to a constant value at long wavelengths. We’ll exploit this long-
wavelength behavior in the next section to develop a very simple approach to construct-
ing geoid height models.

17.5 Isostatic Geoid Anomalies

The book Geodynamics, (Section 5.12) has a nice discussion of isostatic geoid anoma-
lies, including several of the more important applications of this approximation. How-
ever, their derivation is performed in the space domain. The wavenumber domain
derivation is easier to understand and it follows the methods used in this book. In
Chapter 15 on Poisson’s equation, we derived the formula for computing geoid height
from an arbitrary 3-D density model ∆ρ(x, y, z)

N(k) =
G
g

0∫
−∞

∆ρ (k, z)
e2π|k|z

|k|
dz (17.11)

where ∆ρ(k, z) = =2 [
∆ρ(x, z)

]
. See Figure 17.5.

If the topography is isostatically compensated, then

0 =

0∫
−∞

∆ρ(x, z) dz =

0∫
−∞

∆ρ(k, z) dz. (17.12)
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Figure 17.5

Now expand the exponential in equation (17.11) in a Taylor series about zero wavenumber.

N(k) =
G

g |k|

0∫
−∞

∆ρ(k, z)
[
1 + 2π |k| z +

(2π |k| z)2

2!
+ · · ·

]
dz (17.13)

Note that the first term in the brackets represents the integral of the density anomaly
over depth, and that this is zero because of isostasy (equation (17.12)). Next, we as-
sume that the wavelength of the anomaly is much greater than the depth of compensa-
tion λ � z or |k|z � 1. In this long wavelength limit, the third and higher-order terms
are small compared with the second term. The integral simplifies to

N(k) =
2πG

g

0∫
−∞

∆ρ(k, z) z dz. (17.14)

Now take the inverse Fourier transform of equation (17.14)

N(x) =
2πG

g

0∫
−∞

∆ρ(x, z) z dz. (17.15)

This is a remarkable result because this formula provides a way to compute the geoid
height simply by integrating the density anomaly only over depth. This integration
can be done for a variety of models, including Airy compensation, Pratt compensation,
and thermal compensation (i.e., spreading ridge or thermal swell). Several of these
integrals are done in Geodynamics.

17.6 Geoid Height for Plate Cooling Model

In Chapter 5 we calculated the temperature, heat flow, and thermal subsidence for
the plate cooling model. Given this simple formula (17.15) for computing the geoid
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for long-wavelength isostatically compensated topography and the formulas for the
temperature (5.58) and seafloor depth (5.63), we can compute the decrease in geoid
height versus age.

As in the depth-age calculation, we assume that temperature and density are related by
the coefficient of thermal expansion as follows.

ρ (t, z) = ρm {1 + α [Tm − T (t, z)]} (17.16)

Since we are interested in variations in geoid height we subtract the ridge crest density-
depth function from the density structure at all ages.

ρ (t, z) =

 (ρw − ρm) 0 < z < d(t)

αρm [Tm − T (t, z − d (t))] d (t) < z < L + d (t)
(17.17)

Inserting this density/depth function into (17.15) and setting z′ = z/L and d′ = d/L we
find

N (t) =
−2πGL2

g


d′(t)∫
0

(ρw − ρm) z′ dz′−αρm (Tm − To)

1∫
0

1 − z′ −
2
π

∞∑
n=1

sin (nπz′)
n

e−κ(
nπ
L )2t

 z′ dz′

 .
(17.18)

Note that as in the previous integrations for depth and geoid height, we have started the
thermal integration at the seafloor. The second integral is evaluated by interchanging
the order of summation and integration. The interchange is valid for all t > 0; when
t = 0 the series is not uniformly convergent and N (0) is undefined. For greater ages,
the geoid-age relation is

N (t) =
−2πGL2

g

(ρm − ρw)
d′(t)2

2
+ αρm (Tm − To)

1
6

+
2
π2

∞∑
n=1

−1n

n2 e−κ(
nπ
L )2t


 .

(17.19)

Figure 17.6 shows a plot of geoid height versus age for the plate cooling model (solid
curve) and the half-space cooling model (dashed curve). The geoid height decreases
approximately linearly with age for both models while the curve begins to flatten for the
plate model at about 50 Ma. The geoid height is more sensitive than seafloor depth to
the compensation in the lower lithosphere because the geoid is the integral of the den-
sity anomaly times the depth while the seafloor depth is the integrated density anomaly
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Figure 17.6: (upper) Geoid versus age for the plate (PS 125 km) and half space (HS)
cooling models. (lower) Ridge push force for the plate and half space cooling models.

with no depth weighting. While this suggests that geoid height data are more impor-
tant for constraining the details of lithospheric cooling at ages greater than 50 Ma, it is
extremely difficult to extract a unique geoid-age signal from the Earth’s geoid because
the lithospheric contribution to the geoid of about 10 m is dominated by contributions
from deeper sources.

There have been many studies to extract geoid height versus age using marine geoid
data from satellite altimetry. As noted above, the marine geoid is dominated by long
wavelength signals mostly arising from deep in the mantle. To minimize the adverse ef-
fects of the long-wavelength background signal, investigators have used shorter wave-
length geoid signals across large age offset oceanic fracture zones and slower spreading
ridges to estimate the change in geoid height with age offset as a function of age (e.g.,
Figure 17.7 (upper left)). The data are highly scattered due to the inaccurate removal
of the deeper geoid signal. Nevertheless the results are consistent with a plate cooling
model having an asymptotic lithospheric thickness L of between 100 and 125 km.
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Figure 17.7: Estimates of the change in geoid with age averaged over 10 Ma age inter-
vals for the Mendocino FZ, the North Atlantic south of 32 N, the South Atlantic, and
the Southeast Indian Ridge (Sandwell and Schubert, 1982b).

17.7 Isostatic Geoid and the Swell Push Force

The three driving forces of plate tectonics are slab pull, asthenospheric drag, and ridge
push. Ridge push force is the outward force due to isostatically compensated topog-
raphy. This mainly occurs as a gravitational sliding force on the flanks of the seafloor
spreading ridges. However, it is also associated with the outward force due to thick
continental crust or a thermal swell. One of your homework problems was to develop a
general expression for this swell push force for isostatically compensated topography.
Here, we’ll derive this expression again and point out that the force integral is identical
to the integral for computing isostatic geoid anomaly. Therefore, the two are related
and one can use geoid height to measure ridge push force (Parsons and Richter, 1980;
Dalen, 1981; Fleitout and Froidevaux, 1982, 1983).

Consider isostatically compensated topography as shown in Figure 17.8.
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While this diagram is related to a specific Airy-type compensation mechanism, the
integral relation is, in fact, quite general. To calculate the total outward force Fs due to
this isostatically compensated plateau, we integrate the difference in pressure between
column 1 and column 2 over depth, to the depth of compensation −L (i.e., where the
pressure difference is zero):

Fs =

0∫
−L

∆P(z) dz (17.20)

Integrate by parts:

Fs = ∆P(z)z
∣∣∣0
−L −

0∫
−L

∂∆P(z)
∂z

z dz. (17.21)

Note that the first term on the right is zero because of isostasy. The second term can
be written in terms of the density by noting that the vertical gradient in the pressure
difference is

∂∆P(z)
∂z

= −g∆ρ(z). (17.22)

The result is

Fs = g

0∫
−L

∆ρ(z)z dz. (17.23)

Comparing equation (17.15) to equation (17.23), we see the integrals are the same, so
there is a direct relationship between swell push force and geoid height:

Fs =
g2

2πG
N. (17.24)

This formula (17.24) can be used to calculate the ridge push force from the geoid
versus age relation for the plate cooling model (17.19). Similarly the formula (17.24)
can be used to calculate the geoid versus age relation from the ridge push force of the
half-space cooling model derived in Chapter 7, equation (7.16). A plot of ridge push
force versus age for these two models is shown in Figure 17.7 (lower). This is the only
driving force of plate tectonics that can be measured.
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17.8 Exercises

Exercise 17.1. As discussed in Chapter 2, the Fourier transform of the derivative of
a function is equal to i2πk times the Fourier transform of the original function where
k is the wavenumber (1/wavelength), and i is the square root of −1. Show that this
relationship also holds for a discrete time series by carrying out the operations on the
computer. Use the first difference formula to compute the derivative of the geoid height
profile. Also compute the derivative by multiplication in the Fourier domain. Apply a
phase shift to the FFT derivative so it will be aligned with the first difference derivative.
Compare results. Obtain the data at: topex.ucsd.edu/pub/class/geodynamics/
hw1.

Exercise 17.2. Given the relationship between gravity anomaly and topography in the
Fourier transform domain provided in equation (17.9):

(a) Plot this transfer function (i.e., Q(|k|) = ∆g/T ) for wave numbers |k| ranging
from 0 to 10−3 m−1. Use elastic thicknesses of 0 m and 30,000 m. Why does the
transfer function approach zero at high wave numbers? Why does it approach
zero at low wave numbers?

(b) Explain what happens when the elastic thickness is zero and derive the relation-
ship between topography (above the base level) and the total crustal thickness?

(c) Using this transfer function Q(|k|) and the topography given in the computer file
topex.ucsd.edu/pub/class/geodynamics/hw6, calculate a model gravity
anomaly profile for h = 0. The basic procedure is to take the Fourier transform of
the topography, multiply by the transfer function, and inverse Fourier transform
the result.

(d) Compare this model gravity profile with the observed gravity profile. Increase
the elastic thickness until the model gravity profile matches the observed gravity
profile. How does this value of elastic thickness compare with the value found
by Watts (1978)? How old was the lithosphere when this seamount formed?

Exercise 17.3.
(a) Use the formula for the geoid height due to long wavelength isostatically com-

pensated topography equation (17.15) to calculate the geoid height due to the
following density model:

∆ρ = σ [δ (z) − δ (z + a)]

(b) What is the change in geoid height for a topography step of 4 km, a density of
2800 kg m−3, and a compensation depth a of 40 km?

(c) What is the magnitude of the outward swell push force? What is the depth-
averaged stress needed to maintain this topography?

topex.ucsd.edu/pub/class/geodynamics/hw1
topex.ucsd.edu/pub/class/geodynamics/hw1
topex.ucsd.edu/pub/class/geodynamics/hw6


Chapter 18

Postglacial Rebound

18.1 Introduction and Dimensional Analysis

This chapter considers the classic problem of the viscous response of the mantle to
rapid melting of the ice sheets following the last glacial maximum. The approach is
similar to that in Geodynamics (Turcotte and Schubert, 2014, Section 6.10), but is for
an arbitrary-shaped initial topography rather than a single wavelength cosine function.
The initial condition is shown in Figure 18.1.

T(x)
x

z

g
ρ η

Figure 18.1: Viscous half space with an initial surface topography that decays expo-
nentially with time under the restoring force of gravity.

249
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The main parameters are:

T (x) initial topography (m)

η viscosity (Pa s)

ρ density (kg m−3)

g acceleration of gravity (m s−2)

u x-velocity (m s−1)

w z-velocity (m s−1)

Guess at a Solution: Dimensional Analysis

We can make an initial guess at the time evolution of the topography T (t)
assuming a single wavelength λ for the initial surface topography T (0). The
guess is

T (t) = T (0)e−t/τr . (18.1)

The relaxation time should increase as the viscosity increases and decrease
as the restoring force increases, so we put these in the numerator and de-
nominator, respectively: η/ρg. However, the result has dimensions of m s.
To make this into a time we can divide by the wavelength resulting in our
initial guess at the relaxation time τr = η/ρgλ. We’ll compare this with the
relaxation time based on the full derivation.

18.2 Exact Solution

We’ll assume the mantle is incompressible (∇ · ~u = 0) and the model is 2-D, so this
requires that

∂u
∂x

= −
∂w
∂z
. (18.2)

As discussed in Geodynamics, we can define a stream function ψ(x, z) such that

u = −
∂ψ

∂z
, w =

∂ψ

∂x
. (18.3)

This ensures that the material is incompressible.

∂u
∂x

+
∂w
∂z

= −
∂2ψ

∂x ∂z
+

∂2ψ

∂z ∂x
= 0 (18.4)
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The stresses can be related to the stream function as

τxx = 2η∂u
∂x

= −2η ∂2ψ

∂x ∂z

τzz = 2η∂w
∂z

= 2η ∂2ψ

∂z ∂x

τxz = η
(
∂2ψ

∂x2 −
∂2ψ

∂z2

)
.

(18.5)

The force balance equations become (i.e. Geodynamics, equations (6.72) and (6.73)).

η

(
∂3ψ

∂x2 ∂z
+
∂3ψ

∂z3

)
+
∂P
∂x

= 0

η

(
∂3ψ

∂x3 +
∂3ψ

∂z2 ∂x

)
−
∂P
∂z

= 0

(18.6)

Following Geodynamics, we take the derivative of the first equation with respect to z,
the second equation with respect to x, and add them to obtain the biharmonic equation

∂4ψ

∂x4 + 2
∂4ψ

∂z2∂x2 +
∂4ψ

∂z4 = ∇4ψ = 0. (18.7)

The boundary conditions for this problem are that the solution must vanish for large z,
and that the surface shear stress is zero.

lim
z→∞

ψ (x, z) = 0

∂P
∂x

∣∣∣∣
0

= −ρg∂T
∂x

(18.8)

Note that uniform topography does not drive any flow. The flow is driven by the hori-
zontal pressure gradient set up by the topography gradient. Take the Fourier transform
of the biharmonic equation with respect to x to arrive at

(i2πk)4ψ + 2(i2πk)2 ∂2ψ

∂z2 +
∂4ψ

∂z4 = 0. (18.9)

We guess a general solution of the form

ψ (k, z) = A (k) e−2π|k|z + B (k) ze−2π|k|z + C (k) e2π|k|z + D (k) ze2π|k|z. (18.10)

The solution must go to zero for large z, so C = D = 0, and the remaining terms are

ψ (k, z) = (A + Bz) e−2π|k|z. (18.11)
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Next, we use the boundary condition that the shear traction must vanish at the surface.

τxz| 0 = η
(
∂2ψ

∂x2 −
∂2ψ

∂z2

) ∣∣∣∣∣
0

= 0 (18.12)

We need to compute these derivatives:

∂2ψ

∂x2 = −(2πk)2ψ

∂ψ

∂z
= [B − 2π |k| (A + Bz)] e−2π|k|z

and

∂2ψ

∂z2 =
[
−2B (2π |k|) + (2π |k|)2 (A + Bz)

]
e−2π|k|z

(18.13)

The boundary condition becomes

τxz

η

∣∣∣∣∣
0

= −2(2π |k|)2A + 2 (2π |k|) B = 0 so B = 2π |k| A. (18.14)

The stream function and the two velocity components are

ψ (k, z) = A (1 + 2π |k| z) e−2π|k|z

u = A(2π |k|)2ze−2π|k|z

w = A (i2πk) (1 + 2π |k| z) e−2π|k|z.

(18.15)

Finally, we need to match the surface pressure gradient boundary condition

∂P
∂x

∣∣∣∣
0

= −ρ g∂T
∂x
. (18.16)

From the force balance equation we have

∂P
∂x

= −η

(
∂3ψ

∂x2 ∂z
+
∂3ψ

∂z3

)
. (18.17)

But we know that
∂ψ

∂z

∣∣∣∣
0

= 0 (18.18)

so only one term remains. In the transform domain this boundary condition becomes

η
∂3ψ

∂z3 = ρ g (i2πk) T (k) . (18.19)

Taking the third derivative of the stream function and solving for A, we find

A =
(i2πk) ρ gT (k)

2η(2πk)3 . (18.20)
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Putting this result into the equation for the vertical velocity, we find

w (k, 0) =
−ρ g

2η(2π |k|)
T (k) . (18.21)

We also know that w = ∂T/∂t, so we end up with a differential equation for the time
evolution of the topography

∂T
∂t

= −
ρ g

4π |k| η
T. (18.22)

The solution to this differential equation is

T (k, t) = T (k, 0) e−
ρ g

4π|k|η t. (18.23)

From this, we find the characteristic relaxation time is

τr =
4πη
ρ gλ

. (18.24)

Note that this exact solution differs from the initial guess by 4π, which is OK for a
first-order calculation.

Let’s consider the example of Fennoscandia, which has a characteristic wavelength
of 3000 km, a mantle density of 3300 kg m−3, and a characteristic relaxation time of
4400 yr. Using the formula, we arrive at a viscosity of 1.1 × 1021 Pa s.

18.3 Elastic Plate over a Viscous Half Space

We can construct a more realistic model by placing an elastic lithosphere over a viscous
half space. We begin with an ice load that has deformed the lithosphere for infinite time,
so the deflection of the elastic plate T (x) follows the flexural response function given
in Chapter 8. The differential equation for a line load of magnitude Vo is

D∂4T
∂x4 + ρgT (x) = Vo δ (x) (18.25)

where D is the flexural rigidity defined in Chapters 8 and 17. The solution for the
deflection of the plate in the Fourier transform domain is

T (k) =
Vo

ρg

[
1 +

k4

k4
f

]−1

(18.26)

where

k f =
1

2π

[
ρg
D

]1/4

is the flexural wavenumber and is equal to the inverse flexural wavelength. At time
zero, we remove this line load from the lithosphere and solve for the viscous rebound
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of the lithosphere and mantle. From equation (18.23), we find that the topography at
some later time is

T (k, t) =
Vo

ρg

[
1 +

k4

k4
f

]−1

e−
ρg

4π|k|η . (18.27)

The response at a later time is easily computed with the following matlab program,
where we construct the Fourier transform of the line-load flexure, multiply each wavenum-
ber by the appropriate exponential decay, and inverse transform.

%

% MATLAB program to compute rebound of an elastic plate over a viscous half space

%

clear;clf;

L=10000000; % make region wide enough to avoid edge effects

g0=9.8; % acceleration of gravity

E=7.e10; % Young’s modulus

h=100000; % elastic plate thickness

nu=.25; % Poisson’s ratio

rho=3300; % mantle density

eta=5.e20; % dynamic viscosity

V0=4000*rho*g0; % ice sheet load in Pascals

D=E*h.ˆ3/(12*(1-nu*nu)); % flexural rigidity

kf=(rho*g0/D).ˆ.25/(2.*pi); % flexural wavenumber = 1/flexural_wavelength

tmax=10000*86400*365; % maximum time

%

% set the location of the line load at L/2

%

N=1024; dx=L/N; x=(1:N)*dx;

topo=zeros(N,1); topo(N/2)=V0/(rho*g0);

%

% take the Fourier transform of the load and generate wavenumbers

%

ctopo=fftshift(fft(topo));

k=-N/2:1:(N/2-1); k=(k./L)’; ak=abs(k);

%

% compute the Fourier transform of the load as well as the

% response time for each wavenumber

%

CW0=-1./(1+(k./kf).ˆ4);

TR=4*pi*eta.*abs(k)/(rho*g0);

%

% calculate the topography at 4 time steps

%

nstep=4; dt=tmax/nstep;

for i = 1:nstep

time=dt*(i);

years=time/(86400*365)

cmod=ctopo.*CW0.*exp(-time./TR);

mod=real(ifft(fftshift(cmod)));

subplot(3,1,1),plot(x/1000.,mod);axis([3000,7000,-70,40]);ylabel(’topography (m) ’)

if i == 1

hold

%

% also plot stream function for this case
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%

nd=20; dmax=2000000; dz=dmax/(nd-1);

stream=zeros(nd,N);

Ak=i*2*pi*rho*g0*k.*cmod./(2*eta*(2*pi*ak).ˆ3);

for n = 1:nd

z=(n-1)*dz; argz=2*pi*ak*z;

cstr=Ak.*(1+argz).*exp(-argz);

str=imag(ifft(fftshift(cstr)));

for jj = 1:N

stream(n,jj)=str(jj);

end

end

end

zz=-(0:nd-1)*dz;

subplot(3,1,2),contour(x/1000,zz/1000,stream,40); axis(’equal’);

axis([3000,7000,-1000,0]); xlabel(’distance (km)’); ylabel(’depth (km)’);

end
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Figure 18.2: (top) Topography calculated at four times after the removal of a line load
from an elastic plate over a viscous half space. (bottom) Stream function 10,000 years
after the removal of the load shows upward flow of the mantle beneath the rebound
area and downward flow in surrounding areas.

We show the topography at four times following the removal of the load in Figure 18.2 (top).
The topography rebounds in the area where the load was removed and subsides on ei-
ther side of the load. The characteristic wavelength of this signature is about equal to
the flexural wavelength, which is related to the thickness of the lithosphere. We found
in Chapter 9 that a typical elastic thickness for flexure on million year and greater
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timescales is 30 km. However, to explain the width of the peripheral bulge seen in ver-
tical velocity profiles across Laurentide and Fennoscandia (e.g., Figure 18.3) a much
thicker elastic lithosphere (∼100 km) is needed.

Relative Sea Level Trends and Distance from Hudson Bay 
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Figure 18.3: Rate of relative sea level rise versus radial distance from Hudson Bay,
Canada derived from tide gauge records. The average global sea level rise over the
past 100 years was about 2 mm/yr (green dashed line) although it has increased to
about 2.8 mm/yr today. Areas within the perimeter of the ancient Laurentide ice sheet
are still rebounding at rates up to 9 mm/yr, so relative sea level is falling. Areas on
the peripheral bulge are subsiding due to unflexing of the 100 km thick elastic plate.
Ocean islands far from tectonic features provide the best sites for measuring global sea
level rise. From Miller and Douglas (2006).

This vertical land motion can have a significant effect on relative sea level at shorelines.
The mean global sea level rise due to ocean volume changes (mass and thermal) is ∼2.8
mm/yr. However, if you live in Churchill, Canada, where emergence rate is maximum,
you will record a sea level fall of 9 mm/yr. If you live on the peripheral bulge in
Hampton Roads, USA, you will record a sea level rise of more than 4 mm/yr.

Of course, this 2-D line load model with uniform mantle viscosity is only a crude
approximation to the actual 3-D loading and viscosity structure. Moreover, the redis-
tribution of mass as shown by the stream function in Figure 18.2 (bottom) produces
a change in the geoid height (Mitrovica et al., 2009), which further complicates the
global variations in sea level. Nevertheless, this simple 2-D model explains the basic
features observed in past and present-day postglacial rebound.
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18.4 Exercises

Exercise 18.1. Given the parameters in Table 18.1, develop (guess) characteristic times
for the following processes:

(a) Heat diffusion Describe this timescale in terms of an experiment or process.

(b) Maxwell viscoelastic relaxation Describe this timescale in terms of an experi-
ment or process.

(c) Glacial rebound, viscosity Describe this timescale in terms of an experiment or
process.

Parameter Definition Value/Unit

κ Thermal diffusivity 8 × 10−7 m2 s−1

h Wine cellar depth 3 m

E Young’s modulus 6.5 × 1010 Pa

η Dynamic viscosity 1020 Pa s

ρ Mantle density 3300 kg m−3

g Acceleration of gravity 9.82 m s−2

λ Wavelength of surface
deformation

3000 km

Table 18.1: Parameters needed for Exercise 18.1.



Chapter 19

Driving Forces of Plate
Tectonics

19.1 Introduction

The major forces acting to drive the tectonic plates are nicely presented in the classic
paper by Forsyth and Uyeda (1975). They are: (1) the gravitational sliding force of the
cooling oceanic lithosphere also called the ridge push force Fr; (2) the slab pull force
Fs that is caused by the negative buoyancy of the cold subducted lithosphere; and (3)
the viscous shear coupling τ (usually drag) on the base of the plate and both surfaces
of the subducted plate (Figure 19.1). The ridge push and slab pull are body forces
having units of force per length along the strike of the trench. The viscous drag is a
stress having a force per area. The magnitude of the drag force depends on the ridge-
to-trench plate length, the plate speed, and the viscosity. In this simple model we have
an asthenosphere with a relatively low viscosity above the mesosphere having a 30–
300 times higher viscosity (Hager, 1984). In addition to these main forces, there is a
resistive force at the interface between the subducting oceanic plate and the overriding
continental plate between the surface and depth of ∼40 km. This is a stick-slip zone
where megathrust earthquakes are generated.

There are additional body forces (Figure 19.2) associated with phase changes within
the subducting lithosphere (e.g., Arredondo and Billen, 2017). There are three major
phase transitions: (1) at a depth of about 125 km, the basalt in the crust undergoes
a phase change to denser eclogite; (2) at a depth of about 410 km, the primarily en-
dothermic phase change of olivine to spinel increases the density of the cold interior of
the lithosphere which adds a significant downward body force; (3) at a depth of about
660 km, the exothermic phase changes decrease the density of the cold interior of the
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19
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Figure 19.1: Primary thermomechanical driving forces of the tectonic plates. Viscosity
versus depth (red curve) has a broad minimum defining the asthenosphere. The meso-
sphere begins at a depth of about 410 km and has a sharp viscosity increase at a depth
of 660 km.

lithosphere which decreases the downward body force and may retard the subduction
through this boundary. Therefore, the total slab pull force is the sum of the thermal
buoyancy force FT and the phase change force Fp.

Fs = FT + Fp (19.1)

In the remainder of this chapter we highlight the relative importance of the thermal
and phase change buoyancy forces for subducting lithosphere. In Chapter 5 we cal-
culated the temperature and buoyancy of the lithosphere using a plate cooling model,
which includes heat flow into the base of the lithosphere that limits the asymptotic plate
thickness to about 125 km. A back of the envelope calculation suggests that if the plate
cools for 80 Ma prior to subduction, it will take about 80 Ma to reheat after subduction.
Given a typical vertical subduction rate of 30 mm/yr it will take 22 Ma to reach the 660
depth so the slab remains relatively cold and dense during its transit through the upper
mantle.
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Figure 19.2: Subduction driving forces due to phase changes having the thermal struc-
ture of the plate cooling model at an age of 80 Ma. The overall buoyancy stress is the
thickness-averaged upward buoyancy due to composition and phase. There are three
major components: (1) As discussed in Section 5.5, pyrolite upwelling beneath ridges
undergoes decompression melting at a depth of about 40 km. This melt migrates to
the magma chamber at the ridge axis, where it forms oceanic crust (red) with a normal
thickness of 7 km and an average density of 2900 kg m−3. In addition, ultramafic
residues formed by partial melting during the generation of basalt are less dense than
undepleted mantle. This layer of depleted mantle (green) has a thickness of about 21
km and an average density of 3235 kg m−3, which is less than the normal density of pry-
olite mantle of 3300 kg m-3. This adds an additional positive buoyancy to the oceanic
lithosphere. During subduction, the basalt undergoes a phase change to the higher den-
sity eclogite 3540 kg m-3. This dramatic increase in density of the crust cancels the
overall positive buoyancy of the ultramafic residues so starting at a depth of 200 km,
the net buoyancy stress is zero. (2) Endothermic phase changes (positive Clapeyron
slope) produce a zone of increased density in the cold lithosphere for a large part of the
transition zone between depths of 310 km and 660 km. (3) Exothermic phase changes
(negative Clapeyron slope) below 660 km result in a zone of decreased density between
depths of 660 and 720 km.
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19.2 Age of Subducting Lithosphere

To better understand the forces driving the plates we first examine the area versus age
distribution of oceanic lithosphere (Figure 19.3) derived from a global age grid (Müller
et al., 1997). The area of seafloor decreases approximately linearly with age out to 180
Ma. This suggests that all ages of lithosphere are equally likely to subduct. In Section
5.6 we computed the buoyancy of the lithosphere relative to the mantle, including the
positive buoyancy of the crust and depleted upper mantle. Oceanic lithosphere having
normal crustal thickness of 6–7 km remains positively buoyant until it has cooled for
∼30 Ma. However, we see from this Figure 19.3, as well as from tectonic maps, that
young lithosphere is indeed subducting. There are two reasons young plates subduct:
(1) Young lithosphere is physically connected to older lithosphere and thus it is being
pulled into the trench by the negative buoyancy of the older plate. (2) Once the crust
and depleted mantle reach a depth of ∼125 km the basalt undergoes a phase change
to denser eclogite and the compositional buoyancy is negated (Arredondo and Billen,
2017) so the negative thermal buoyancy dominates.
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Figure 19.3: Area versus age distribution of oceanic lithosphere calculated from the
Müller et al. (1997) age map. The area decreases almost linearly with age to the oldest
seafloor at ∼180 Ma. Ocean lithosphere (6 km crust) is positively buoyant for ages less
than 30 Ma (see Section 5.6)

19.3 Forces due to Phase Changes

To calculate the buoyancy force due to phase changes Fp, we numerically integrate the
buoyancy stress (Arredondo and Billen, 2017) (Figure 19.2) from the surface to the
downdip end of the slab. If the subduction zone is young and the slab penetrates to less
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than ∼320 km then the contribution from the phase change is zero (Figure 19.4). If
the end of the slab is at a depth of 660 km, the phase change contribution is maximum
at −18 × 1012 N m−1. Most older slabs penetrate into the lower mantle so the 660
phase change, having a positive Clapeyron slope, dramatically reduces the Fp to −8 ×
1012 N m−1 at a depth of 720 km. This reduction in negative buoyancy combined with
a greater than 30 times increase in mantle viscosity is responsible for a tendency for
subducted lithosphere to stagnate at a depth of about 700 km.
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Figure 19.4: (upper) Buoyancy stress due to phase changes in lithosphere that has
cooled for 80 Ma (Arredondo and Billen, 2017). (lower) Depth-integrated buoyancy
force Fp in N m−1 (negative is downward force).

19.4 Forces due to Thermal Buoyancy

Next we consider the two driving forces related to lithospheric cooling. The ridge-
push force for the plate cooling model was already indirectly computed in Chapter 17.
The ridge push force Fr for long-wavelength, isostatically compensated topography is
given by

Fr =
g2

2πG
N (19.2)

where N is the geoid height, g is the acceleration of gravity, and G is the gravitational
constant. We can apply this to the geoid height for the plate cooling model (equa-
tion (17.19)) so the ridge push force is
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Fr (t) = gL2

(ρm − ρw)
d′(t)2

2
+ αρm (Tm − To)

1
6

+
2
π2
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n=1

−1n

n2 e−κ(
nπ
L )2t


 . (19.3)

To compute the thermal buoyancy of the slab, first assume that there is no reheating
of the slab after subduction so it maintains the thermal profile of 80 Ma lithosphere.
Actually, the reheating of the subducted plate transfers the negative buoyancy from
the plate to the surrounding mantle so it is still available to drive the subduction. The
buoyancy stress is the integral of the density anomaly relative to a uniform mantle
density times the acceleration of gravity.

σT = gρmα

L∫
0

(T − Tm) dz (19.4)

We have done this integral in Chapter 5 and the result is

σT (t) = −gαρm (Tm − To) L

1
2
−

4
π2
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1
(2n − 1)2 e−κ

(
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L

)2
t

 . (19.5)

We can integrate over the length of the subducted lithosphere to obtain the thermal
component of the slab pull force versus cooling time t and slab penetration depth Z

FT (t,Z) = −gαρm (Tm − To) LZ

1
2
−

4
π2

∞∑
n=1

1
(2n − 1)2 e−κ

(
(2n−1)π

L

)2
t

 . (19.6)

The results for the ridge push and thermal buoyancy of the slab are shown in Fig-
ure 19.5. The horizontally directed ridge-push force is 2.3 × 1012 N m−1 at 80 Ma.
The thermal buoyancy of the slab depends on both the age of the lithosphere being
subducted and the depth of penetration of the slab. This calculation also assumes the
slab remains intact from the surface to the slab penetration depth so it can serve as
a stress guide (Conrad and Lithgow-Bertelloni, 2002). For example, subduction of 80
Ma lithosphere to a depth of 660 km results in a thermal buoyancy of −35×1012 N m−1.
This is more than 10 times greater than the ridge push force.
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Figure 19.5: (upper) Ridge push force for plate (PS) and half-space (HS) cooling mod-
els. (lower) Contour plot of the thermal component of slab pull versus the age of the
lithosphere being subducted and the depth of penetration of the end of the slab.

19.5 Asthenospheric Drag Force

The final force that we consider is the asthenospheric drag force. Our very simple
model consists of a plate of length L (10,000 km) moving at a velocity uo (40 mm/yr)
over an asthenosphere of dynamic viscosity η (5 × 1019 Pa s). The thickness of the
asthenosphere is h (100 km) and there is no motion at the base of the asthenosphere.
The solution to this simple channel flow model is discussed in Geodynamics (Section
6.2). The velocity as a function of depth is u (z) = uo (1 − z/h). The shear stress at the
base of the lithosphere is τ = η ∂u

∂z = −ηuo/h. The total drag force Fd at a distance L
from the spreading ridge is simply the stress times distance or Fd = −ηuoL/h. Using
the values above we find the force is −0.6× 1012 N m−1. Note that this is much smaller
than the other driving forces. This drag force could be comparable to the ridge push
force if the viscosity was 5 times larger.
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19.6 Discussion – Relative Magnitudes of Forces

In summary, we have decomposed the driving forces of plate motion into:

– the slab pull force with a thermal and phase change component Fs = FT + Fp;

– the ridge push force Fr;

– and the drag force Fd.

Table 19.1 provides some end member estimates of the magnitude of these forces for a
small young plate and a large old plate.

t(Ma) Z(km) L(km) FT Fp Fr Fd Ftot Plate characteristic

20 300 2000 −6.5 0 0.8 −0.12 −7.3 small young plate

— 660 — −16 −9 0.8 −0.12 −25.8 —

— 700 — −20 −4 0.8 −0.12 −24.8 —

80 300 10000 −13 0 2.3 −0.6 −15.3 large old plate

— 660 — −35 −18 2.3 −0.6 −55.3 —

— 700 — −37 −8 2.3 −0.6 −47.3 —

Table 19.1: Strength of driving forces ×1012 N m−1. The sum of forward driving forces
is Ftot = FT + Fp − Fr.

Note that the thermal component of the slab pull force dominates. The phase change
component of slab pull is about half the thermal component. The ridge push is 10–20
times smaller than the slab pull force. If the slabs remain as coherent stress guides
they must be able to transmit stress of up to 500 MPa when the force is averaged over
the 100 km thickness of the subducted lithosphere. As noted by Conrad and Lithgow-
Bertelloni (2002), this is close to the maximum strength of cold lithosphere (Kohlstedt
et al., 1995).

These simple calculations provide estimates of the forces driving the plates but one
must develop a full numerical model of viscous flow in a layered Earth to relate these
forces to the surface plate velocities and the global variations in geoid height. The
simplest models require a more than 30 times increase in viscosity between the upper
and lower mantle (Hager, 1984). More complex models that also match the observed
speeds and directions of the plates suggest that the entire negative buoyancy of the
slabs in the upper mantle is effectively transmitted to the surface to drive plate motions.
These models also predict that the negative buoyancy of the slabs in the lower mantle



CHAPTER 19. DRIVING FORCES OF PLATE TECTONICS 266

drives deep mantle flow but at a much slower rate due to the higher viscosity (Kohlstedt
et al., 1995). An example of a numerical simulation of a subducting plate is shown in
Figure 19.6. This 80 Ma lithosphere has subducted for 40 Ma so a large part of the slab
extends into the much higher viscosity lower mantle where if folds due to the resistive
viscous drag.

10

Figure 19.6: Numerical model of lithospheric subduction (Arredondo and Billen,
2017). Buoyancy due to phase changes (Figure 19.3) are combined with the thermal
buoyancy to drive subduction. The 80 Ma lithosphere has a very high yield strength of
1000 MPa that enables the plate to remain intact. The upper mantle viscosity is 1019

Pa s while the lower mantle has a much higher viscosity of 1022 Pa s.

19.7 Exercises

Exercise 19.1. Write a program to calculate the ridge push force versus cooling time on
Venus for asymptotic plate thicknesses of 125 and 500 km. Use a surface temperature
of 455 ◦C and a deep mantle temperature somewhat higher than the Earth at 1400 ◦C.
How does this compare with Earth?
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Exercise 19.2. Write a short essay on the arguments for and against lithospheric sub-
duction on Venus. Begin with a brief summary of the main observations that were used
to confirm lithospheric subduction on the Earth. Then discuss some of the published
arguments for and against subduction on Venus. End with a discussion of how to prove
or disprove the subduction theory with another mission to Venus. There is an extensive
reference list at the following web site topex.ucsd.edu/venus/index.html.

Exercise 19.3. Describe the three major phase changes that occur within subducting
lithosphere. Explain how they affect lithospheric buoyancy. What is the Clapeyron
slope?

topex.ucsd.edu/venus/index.html
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