Review of complex numbers, complex valued functions,
and contour integration:

1) Find your calculus book and review things you have
forgotten. In particular review integration by parts.

2) Read this chapter and do the problems marked by an *.

Reference: Advanced Calculus: Second Edition,
Wilfred Kaplan, 1973.

Or refer to your own book on the topic.

CHAPTER 9

Functions of a Complex Variable

In this chapter we give an introduction to the theory of analytic functions
of a complex variable. The principal topics are series expansions, integrals
and residues. For a more thorough treatment of these topies and a dis-
cussion of conformal mapping and its applications, the reader is referred to
the author’s book Introduction to Analytic Functions (Reading, Mass. :
Addison-Wesley, 1966).

9-1 Complex functions. We assume familiarity with the complex
number system (Section 0-2). Figure 9-1 (next page) reviews standard
notations for the complex z-plane, where z = z - iy. We shall denote real
and imaginary parts as follows:

forz = z + 2y, z = Rez, = Im z.

We shall make steady use of all these notations, as well as the analogous
notations in a complex w-plane, where w = u -+ .

Complex-valued functions of 2. If to each value of the complex number
2z = x -+ 1y, with certain exceptions, there is assigned a value of the
complex number w = u - v, then w is given as a complex-valued function
of z and we write w = f(z). For example,

= 1
—2

w=2, w=2+85+7 w=: (e # 2)

are such functions. Important functions of this type are

polynomials: w = agz" 4+« + an_12 + an,

. . aoz” + ++ + an
rational funetions: w =
boz™ + + + by
exponential function: expz = e* = "+ = ¢"(cos y + 1 sin y),
iz =iz iz -1z

trigonometric functions: sinz = E—%: Co8 2z = e——_%—e;:

z — -_— =z -
hyperbolic functions: sinhz = E——-—2—e—. cosh z = e_—{% ,

679
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Fig. 9-1. The complex z-plane.

The definition of the exponential function is motivated by interpreting
¢* for complex z as the sum of its power series Zz2"/n!; see Section 6-19.
From the definitions it follows that, for real y,

e¥ = cosy +isiny and e % = cosy — isiny,

so that
iy __ —1ty iy —iy
siny=e—%; cosyzg——+2i—-

These equations suggest the definitions given above for sinz and cosz.
The definitions of the hyperbolic functions are based on the usual defini-
tions for real variables. By the reasoning described, it follows that, when
zisreal (z = x + 10), each of the five functions reduces to the familiar real
function. For example, e*T0 = ¢*.

The other trigonometric and hyperbolic functions are defined in terms of
the sine, cosine, sinh and cosh in the usual way.

9-2 Complex-valued functions of areal variable. It will be convenient
to represent paths for line integrals in the complex plane by equations of
form '

z = F(t), a<t<hb. (9-1)

Here ¢ is a real variable and F is a function whose values are complex,
so that we are dealing with a complex-valued function of a real variable.
Examples are the following funetions:

z=¢" 0=Zt=2m 2=t+1? O0=<t=1l
In (9-1) we can write 2 = x + iy and F(t) = f(t) + 29(t), where f and
g are real-valued. Then (9-1) is equivalent to the pair of equations

We can also consider (9-1) as an alternative to the familiar vector function
representation of a path.
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The path z = €' given above is equivalent to the path x = cos{,
y = sin ¢, and hence its graph is a circle.

The calculus can be developed for complex-valued functions of ¢ in
strict analogy with the development for real-valued functions. We write

lim F(f) = ¢ = 2o + o (9-3)
t—tg
if, given € > 0, we can choose & > 0 so that |F(t) — ¢! < € when
0 < |t — to] < 6. Itisassumed here that F(f) is defined for ¢ sufficiently
close to fo, but not necessarily for ¢ = to; if F(t) is defined only in an
interval t, < ¢ < B, the limit is interpreted as a limit fo the right and is

written
lim F().

t—to+

Limits to the left are defined similarly. Limits as{— oo or¢{ — —oo are
defined as for real functions. [However,

lim F(t) =
t—to
is defined to mean
lim [F()] = oo;
t—tg

there is no concept of +w or — o for complex numbers; see Section 9—14'.]
If F(f) is defined for @ < ¢ < B and ¢, lies in this interval, then F() is
said to be continuous at ¢ if

lim F(t) = F(to).

t—rig

If F(¢) is also defined at ¢t = « and
. lim F@) = F(a),

t—at

then F(t) is said to be continuous to the right at ¢ = a. Continuity to the
left and continuity in an interval are defined as for real functions.
If F(¢) = (1) + ig(t) then Eq. (9-3) is equivalent to the two equations{

lim f(f) = zo,  lim g(t) = Yo. (9-4)
ttg ttg

For Eq. (9-3) signifies that F(t) is as close to ¢ as desired, for ¢ sufficiently
close to to; by a geometric argument we see that this is equivalent to the
requirement that f = Re F be as close to a as desired and g = Im F as
close to b as desired, for ¢ sufficiently close to o. Similarly, continuity of
F(t) at to is equivalent to continuity of f(Z) and g(f) at to. Accordingly,
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such functions as ¢* 4 it® and e* are continuous for all &. Furthermore,
the rules for limits of sums, products and quotients, and the analogous
continuity theorems must carry over to the complex case. For example,
if Fi(t) = f1(®) + 4g:(t) and Fa(t) = f2(t) + 4go(t) are continuous in an
interval, then so also is

F1(8) - Fo(t) = [f1(t) + ig1()] - [f2(t) + dg2(8)]
= f1{0)f2(t) — g1()g2(t) + <[F1(0)g2(t) + F2)g1(D)].

For f1(¢), g1(t), f2(t), g2(t) must be continuous, so that the real and imag-
inary parts of F,(t) - Fa(t) are continuous, and hence Fi(f) - Fo(f) is
continuous.

For the discussion thus far, we are to some extent repeating the theory
of vector functions as given in Section 0-7. However, we remark that
complex multiplication and division have no analogue for vectors.

Derivatives and integrals. The derivative of F(f) can be defined as for
real functions:

Fl(to) — BTO F(to + AZ)t _ F(to) . (9_5)

By taking real and imaginary parts and applying (9—4), we conclude that

F'(to) = f'(to) + 19’ (to); (9-6)

that is, F(f) has a derivative at £, precisely when f(£), ¢(t) have derivatives
at ¢y, and the derivatives are related by Eq. (9-6). Derivatives to the
left or right are defined by requiring that At < 0 or At > 0, respectively
in Eq. (9-5); Eq. (9-6) also applies to these derivatives.

The rules for derivative of sum, product, quotient, constant, and con-
stant times function all carry over, and the proofs for real functions can
be repeated. We also note the rules .

%[F(t)]" =aFOI'F'@) (n=1,2,...), (9-7)
%e““’f” — (a + B (g b real). (9-8)

Furthermore, if F'(f) = 0 for @ < t < 8, then F(%) is identically constant
for @ <t < 8. The proofs are left as exercises (Problems 9 to 11 below).

Higher derivatives are obtained by repeated differentiation:

F'(t) = [F'(t)) = D*F, F"'(t) = [F"()) = D°F

y e
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The first derivative of F(f) can be thought of as the velocity vector of
the point (z, ) as it moves on the path x = f(t), y = ¢(¢), with ¢ as time.
The second derivative can be interpreted as acceleration.

The definite tntegral of F(I) over an interval @« = ¢ < B is defined as a
limit of a sum Y_F (&) Ayt as for real functions. However, again the limit
theorem permits us to take real and imaginary parts:

/ "F@) dt = / ® 1) dt + f" g(t) dt. (9-9)

If F(t) is continuous over the interval, then f(f) and g(¢) are continuous
so that the integral exists. More generally, the integral exists if f(¢) and
g(t) are piecewise conlinuous for « < ¢t < 8. When f and g are piecewise
continuous, we term F = f - 2¢ piecewise continuous.

An indefinite integral of F(t) is defined as a function G/(f) whose deriva-
tive is F(f). As in ordinary calculus, we find that, if G(f) is one indefinite
integral, then G(f) 4 ¢ provides all indefinite integrals:

/ F) dt = G@) +

¢ being an arbitrary complex constant. If an indefinite integral G of F
is known, then it can be used to evaluate definite integrals of F as in
calculus:

[" Foa = | "@0) dt = GB) — Gla). (9-10)

The proof is left as an exercise (Problem 12 below).

From Eq. (9-9), we can verify the familiar rules for the integral of a
sum, the integral of constant times function, the combination of integrals
from « to 8 and from 8 to 7, and integration by parts. We also have the
basic inequality

[Foa|s [ Fola s Me — ; (9-11)

this is valid if « < 8, if F(f) is, for example, piecewise continuous for
a £t £ B, and if [F(f)] £ M on this interval. The inequality is most
easily obtained from the definition of the integral as limit of a sum; for
we have, by repeated application of the triangle inequality [see Eq. (0-10)],

S FE Al S 3 FOD A S M(8 — a),
k=1 k=1

and passage to the limit gives (9-11). Definite integrals and indefinite
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integrals are related by the rule

t

d P du = F@) (9-12)

dt
(see Problem 12 below).

2

/2 2 (t2 .t3> 3,7
ExampLE 1. . t+ i) dt = —é—}—zg— lzé_;_;_;l_

1 . )
ExAMPLE 2 / it gy _ gatbie|! _ ot g @b 0)
" Jo a+ bilo o+ b :
ExampPLE 3.
—a _a t t n) t

where p(f) is a polynomial of degree n and a is a complex constant, not 0.
The equation is established by integration by parts [Problem 8(f)].

Problems

% 1. (a) Let z1 = ri(cos 81 + isin 01), z2 = ra(cos 62 4 ¢ sin f2). Show that

21+ zg = rirglcos (61 + 62) 4 < sin (61 + 02)]

¥ (b) Show that e®1192) = ¢i1. ¢z [see part (a)].
2. Prove the following identities:
% (a) e1.er2 = g1122 [gee Problem 1(b)]
() ()" = e (n =0, %1, £2,...)
(c) sin2z+ cos22z = 1
(d) sin (21 + 2z2) = sin 21 cos 22 + cos z1 sin 22
(¢) Re(sinz) = sinzcoshy, Im (sinz) = coszsinhy
(f) siniz = {sinh 2z cosiz = coshz

(8 ¢ = ¢, sinz = 8in3% cosz = cosZ

3. (a) Prove that ¢ ¢ 0 for all 2.

(b) Prove that sin z and cos z are 0 only for appropriate real value of 2.
4. Represent the following functions graphically:

(@ w=00+8+«(1—1 (b) w = t*+ 124 1)
(¢) w = €3 (d) w = 2e-1+20¢
(e) w = te~1+20¢ ) w= et — e

% 5. Find the derivatives of the functions of Problem 4.

6. Graph w = 32" and indicate the first and second derivatives graphically
fort = 0,¢ = /2, =
7. Integrate the functions of Problem 4 from 0 to 1.
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8. Use integration by parts to evaluate each of the following:

(a) /(1+it)2sintdt )k(b)/”—“'dt n=12..)
(c) / {" sin bt dt = % / " — e dt (n=1,2...)
¥ (@ ft"cosatdt=Re/""”dt (areal,n = 1,2,...)

(e) /t” cosatcosbtcosctdt (n=1,2,...)

(f) / p(t)e™" dt, where p(t) is a polynomial of degree n (Example 3 in text)
9. Prove Eq. (9-7) by induction (repeated application of rule for differenti-
ation of a product).
10. Prove (9-8) with the aid of (9-6).
11. Prove that if F/(f) = 0, « < t < B, then F(t) = constant for & < ¢t < 8.
12. (a) Prove (9-12) by taking real and imaginary parts.
(b) Prove (9-10) either directly or as a consequence of (9-12).

Answers

5.(a) 1 — 4 (b) 43+ 2it (c) 33 (d) (—2 + 4i)el—1+20¢
() e1+201 4 ¢(—1 4 20)] (f) —e™* 4 e

6. w' = 6%, w'’ = —12¢%%
7. (8) B+49/2 (b) B+ 20))/15 (o) (e3 — 1)/3d

(d) 2(e71+% — 1)/(—1+ 2) (o) [1+ (20 — 2)e~1+2]/(—3 — 4)
) 2—el—¢

8. (a) (2 — 21t — 3)cost - (2t — 2f) sint + ¢

—at tn tn -t
(b) —e (; + toee g ) +ec
n—2 n—d
(c) cos bt[ 7 4+ n(n —b;)t __n(n — D(n -—1)52)(1» — 3)¢ 4. ]
n—1 n—3
+ sin bt [ntb2 _ nn— 1)(;; — 2t 4. ] +e
ait tn 'n, -1

@ o || L+ P ﬁ“‘]’ o

1 2 —aygt tn tn—l + + + C
() — g ,;1 [ ;—k + ”—H )

where the a; are the 8 numbers (£ a £ b & ¢)t.
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9-3 Complex-valued functions of a complex variable. Limits and
continuity. We return to the general complex-valued function of a com-
plex variable. These functions will be our principal concern for the
remainder of this chapter. We write:

w = f(2),

where z = z + 7y, w = u 4 v, to indicate such a function. An example is
the function

w=22 (all2).

Here we can also write:

ut = (x4 iy)? = 22 — y? + 2ixy,

so that (on taking real and imaginary parts)

u=z%—1y%, v=2ay
In a similar manner, every complex function w = f(z) is equivalent to a
pair of real functions:
u = u(z,y) = Relf(z)], v=10(=,y) = Im[f()],

of the two real variables z, y. Also from such a pair of real functions,
defined on the same set, we obtain a complex function of 2. For example,

u=2+zy+y?, v=az®

is equivalent to the complex function

w=f2) = &® + zy + y® + zy’,

forwhichf(1+2¢) =1+2+4+8 =17+ 8.
The functions €%, sin 2, cos 2, sinh 2, cosh z were defined in Section 9-1.
For these the corresponding pairs of real functions are as follows:

w = ¢€°: u = €” cos y, v=¢€"siny,

w=sinz: u ==sinzx cosh y, v = cos z sinh y,

w = cosz: u = coszcoshy, v = —sinzsinhy, (9-13)
w = sinh z: u = sinh z cos y, v = cosh z sin y,

w = coshz: u = coshzcosy, v = sinh z sin y.

The proofs are left as exercises (Problem 1 below). In (9-13) each function
is defined for all z; that is, for all (z, y).

In general, we assume w = f(z) to be defined in a domain (open region)
D in the z-plane, as suggested in Fig. 9-2. If 2, is a point of D, we can
then find a circular neighborhood |z — zo| < k about z¢ in D. If f(z) is
defined in such a neighborhood, except perhaps at 2o, then we write
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lim f(z) = wo (9-14)

z2—2g

if, for every € > 0, we can choose
5 > 0, so that

|f(2) — wo| < e
for 0 < [z — 29| < 6.

(9-15)

If f(zo) is defined and equals wy,
and (9-14) holds, then we call f(z) .
continuous at 2. Fre. 9-2. Domain and neighborhood.

TueoreMm 1. The function w = f(2) s conttnuous af 29 = o + 1yg of
and only if u(z, y) = Re [f(2)] and v(z, y) = Im [f(2)] are continuous at
(230, yO)

Thus w = 22 = 22 — y? + 2{zy is continuous for all 2, since u =
22 — y?2andv = 2zy are continuous for all (z, y). The proof of Theorem 1
is left as an exercise (Problem 5 below).

TaroREM 2. The sum, product, and gquotient of continuous functions of z
are continuous, except for division by zero; a continuous function of a
continuous function 1s continuous. Similarly, if the limits exist,

lirrzl [f(&) +9(2)] = zlin: f(e) + zling g(@), ... (9-16)

These properties are proved as for real variables. (It is assumed in
Theorem 2 that the functions are defined in appropriate domains.)

It follows from Theorem 2 that polynomials in z are continuous for all
2z, and each rational function is continuous except where the denominator
is zero. From Theorem 1 it follows that

e = e¢“cosy + ie®siny
is continuous for all z. Hence, by Theorem 2, so also are the functions

sin 2 el —e " cOs 2 el t+ e
= ] ) = .
2t 2

We write

lim f(z) = o« if lim |f(2)] = +o0;

2020

that is, if for each real number K there is a positive § such that |f(z)| > K



588 Functions of a Complex Variable Chap. 9

for 0 < |2 — 20| < 6. Similarly, if f(2) is defined for |z] > R, for some
R, then lim,_,» f(2) = cif for each € > 0 we can choose a number R, such
that |f(z) — ¢| < € for |z|] > Ry. All these definitions emphasize that
there is but one complex number o and that “approaching o ” is equiva-
lent to recedlng from the origin.

9-4 Derivatives and differentials. Let w = f(z) be given in D and let
2o be a point of D. Then w is said to have a derivative f’(zo) if

m 10+ 42) — f(z0)

Az—>0 Az

= f'(z0)

In appearance this definition is the same as that for functions of a real
variable, and it will be seen that the derivative does have the usual prop-
erties. However, it will also be shown that if w = f(z) has a continuous
derivative in a domain D, then f(z) has a number of additional properties;
in particular, the second derivative f”/(z), third derivative f"’(z),...,
must also exist in D,

The reason for the remarkable consequences of possession of a derivative
lies in the fact that the increment Az is allowed to approach zero in any
manner. If we restricted Az so that 29 + Az approached z, along a particu-
lar line, then we would obtain a “directional derivative.” But here the
limit obtained is required to be the same for all directions, so that the
“directional derivative” has the same value in all directions. Moreover,
2o + Az may approach 2, in a quite arbitrary manner, for example along a
spiral path. The limit of the ratio Aw/Az must be the same for all manners
of approach.

We say that f(2) has a differential dw = ¢ Az at 20 if f(zo + A2) — f(z0) =
¢ Az + € Az, where € depends on Az and is continuous at Az = 0, with
value zero when Az = 0.

THEOREM 3. If w = f(2) has a differential dw = ¢ Az at zq, then w has a
dertvative f'(20) = ¢. Conversely, if w has a derivative at 2o, then w has a
differential at zo: dw = f'(zq) Az.

This is proved just as for real functions. We also write Az = dz, as for
real variables, so that

dw = (z) dz, ‘(”i—:’ — f12). (9-17)

From Theorem 3 we see that existence of the derivative f'(zo) implies
continuity of f at z,, for

flzo + 42) — f(z9) = cAz + €Az — 0

as Az — 0.
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TaroreM 4. If wy and wy are functions of z which have differentials in D,
then
d(wy + wg) = dw; + dwg,
¢

d(U)1U)2) = Wy de + We dwl, (9—18)
d _— =

2
w2 ws

wy we dw; — wi dws (ws, % 0)

If wy is a differentiable function of wl,‘and wy s a differentiable function
of z, then wherever wolw,(2)] is defined

dz  dw, dz

These rules are proved as in elementary calculus. We can now prove as
usual the basic rule:

d’LU2 dw2 dw1 (9_19)

L or et (n=1,2,..). (9-20)
dz

Furthermore, the derivative of a constant is zero.

Problems

1. For each of the following write the given function as two real functions of
z and y and determine where the given funetion is continuous:
z

"2 _
(@) w= (14 1)z (b)w_z+i
sin z e’
= = d =
() w=tanz = —— (d) w T F1
*e) w = e ) w= s?nz
*(g) w = cosz (h) w = sinh z
(i) w = coshz (§) w = e*cosz
2. Evaluate each of the following limits:
2
sinz -+ z . 2 —z
(3‘) zl—-nrl es+ 2 (b) 11—13) 2z
cos z
i d) 1
© Im = @ fm s
3. Differentiate each of the following complex functions:
1
¥@ w=2="+5+1 ® w=—"r
2
3,7 z
© w=[1+ G+ 1 @ w =g

4. Prove the rule (9-20).
5. Prove Theorem 1.
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Answers
L. (a) u =22 —y? — 22y, v = 22 — y2 4 22y, all 2
() u = @+ y?+ P+ (y+ DT
v = —z[z2+ (y+ D! (2 = —i)
(¢) u = tan z sech? y [1 -+ tan2 x tanh? y] !
v = tanh y sec? z [1 4+ tan? x tanh2 y] !
z2#Z (7/2)+nm,n =0, £1, £2,...
(d) u = e7*[(1 + ) cosy — ysiny][(1 + 2)% + y?]~!

v=—e*[(1+ z)siny + ycosyll(1 + 2)2 + y*~! (2 = —1)
(e) ... (i) See (9-13), continuous for all z
(G) ‘u = e*(cos z cos y cosh y 4 sin z sin y sinh y)

v = e"(cos z sin y cosh y — sin z cos y sinh y), all 2

2. (a) t(w -+ sinh 7) ) —3% (c) w @ o

3. (a) 32245 (b —(—1)72 (c) 42[1 + (224 1)31%(:2 4 1)%
d) ¢+ D742 — 2?)

9-5 Integrals. The complex integral ff(z) dz is defined as a line integral,
and its properties are closely related to those of the integral f Pdx 4+ Qdy
(see Chapter 5).

Let C be a path from A to B in the complex plane: z = z(f), y = y(1),
a =t £ b. We assume C to have a direction, usually that of increasing ¢.
We subdivide the interval @ < ¢ £ b into n parts by to = @, &1,...,
tn = b. Welet z; = z(t;) + ty(t;) and Ajg = 2z; — z;_1, Ajt = t; — tj_;.
We choose an arbitrary value ¢ in the interval ¢;_; < ¢t < t; and set
2% = z(t%) + 1y(t¥). These quantities are all shown in Fig. 9-3. We then
write

f f(2) dz = / f@2) dz = hm Z &) Ajz. (9-21)

max A_,t—»o i=1

B

A jt
Adz, A_|
a b
—t+——++—+—+
ty tj- \tj tn

Fia. 9-3. Complex line integral.

' that is,
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r . 3 .
| If we take real and imaginary parts in (9-21), we find

[1) dz = lim E(u + @) 8z + 5 49)
¢ = lim {(u Az — v Ay) + 12 (v Az + u Ay)};

[7@ dz = [ @+ ) @z + i dy)
d ‘

c

= /(udx —vdy) + if(vdx + u dy). (9-22)
C ¢

The complex line integral is thus simply a combination of two real line
integrals. Hence we can apply all the theory of real line integrals. In the
following, each path is assumed to be piecewise smooth; that is, z(f) and
y(t) are to be continuous with piecewise continuous derivatives.

TuroreM 5. If f(2) is continuous in domain D, then the integral (9-21)
exists and

b
/f(z) dz = / (u% fg) dt + zf ( =+ u )dt (9-23)

We now write our path as z = 2(t) as in Section 9-2. If we introduce the

derivative
dz dx dy
T d

of z with respect to the real variable ¢, and also use the theory of integrals
of such functions (Section 9-2), we can write (9-23) more concisely:

f £e) dz = / ()] %dt. (9-24)
C

ExampLe 1. Let C be the path x = 2, y = 3t, 1 <t = 2. Let
f(z2) = 2%. Then
2
[ de = /2 @+ 3i’2 + 30 &t = @ +3)° [ *de
1
¢
— —1073 + 2L

ExampLE 2. Let C be the circular path z = cos ty = sint,0 =t <27
This can be written more concisely thus: z = ¢*, 0 < ¢t < 2m. Since

dz/dt = 1e*,
27 27
/%dz=/ e et dt = / dt = 2.
0
c
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Further properties of complex integrals follow from those of real
integrals:

TuroreM 6. Let f(2) and g(2) be continuous in a domain D. Let C be a
piecewise smooth path in D. Then

JU@ + 9@z = [fe) de + [o(e) d,
[ c c

/ kf(z) de = k / f(2)dz (k = const),

c c

1@ @z = [1) dz + [1G2) d,

c ¢y Ca

where C 18 composed of a path Cy from zg to z; and a path Cz from z; to 25,
and

[1@) dz = — [1) dz,
¢ ¢’
where C’ 1s obtained from C by reversing direction on C.

Upper estimates for the absolute value of a complex integral are obtained
by the following theorem.

TaEOREM 7. Let f(2) be continuous on C, let |f(z)] = M on C, and let

b
L= / ds = / V(dz/dh)? + (dy/db)? dt
¢ a
be the length of C. Then
| [16) dz| = [If@]ds < M- L. (9-25)
¢ c
Proof. The line integral [|f(z)| ds is defined as a limit:
[17@)] ds = lim TfE)] A,
c
where Ajs is the length of the jth arc of C. Now
7z Azl = |f@D]- [Az] = 1fED] - Ass,
for |Ajz| represents the chord of the arc A;s. Hence

157G Azl £ TS Azl = ZIfE| Ajs

by repeated application of the triangle inequality (0-10). Passing to the
limit, we conclude that

’ / #(2) dz) < / 1f(2)] ds. (9-26)
C C
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Also, if |[f| = M = const,

TIfED A = TM Ajs = M - L.

Hence

[15@)ds < M- L. (9-27)
C

Inequalities (9-25) follow from (9-26) and (9-27). "

Problems

1. Evaluate the following integrals:
143
(a) / (x2 — iyz) dz on the straight line from 0 to 1 4 4.
0

x 144
d .
* (b) / zdz on the curve y = sin z. (c) /1 ?z on the line x = 1.
0

2. Write each of the following integrals in the form fudz — vdy + ¢fvdz +
udy; then show that each of the two real integrals is independent of path in the
zy-plane.

(a) f(e+ 1)dz X (b) ferdz
(c) [ztdz (d) [sinzde
# 3. (a) Evaluate . 1
¢ ~dz
2
on the circle || = R.
(b) Show that
¥ " ¢ldz =0
2

on every simple closed path not meeting or enclosing the origin.
(¢) Show that
1
—de =0
$:

on every simple closed path not passing through the origin.

Answers

1. (a) 3 (b) 72/2 () }log2+ i(w/4)
3. (a) 2m

9-6 Analytic functions. Cauchy-Riemann equations. A function
w = f(2), defined in a domain D, is said to be an analytic function in D if
w has a continuous derivative in D. Almost the-entire theory of functions
of a complex variable is confined to the study of such functions. Further-
more, almost all functions used in the applications of mathematics to
physical problems are analytic functions or are derived from such.
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It will be seen that possession of a continuous derivative implies pos-
session of a continuous second derivative, third derivative, ..., and, in
fact, convergence of the Taylor series

_ _ 2
fleo) + o) ET 2 4 e Py

in a neighborhood of each zy of D. Thus one could define an analytic
function as one so representable by Taylor series, and this definition is
often used. The two definitions are equivalent, for convergence of the
Taylor series in a neighborhocd of each zq implies continuity of the deriva-
tives of all orders.

While it is possible to construct continuous functions of z which are not
analytic (examples will be given below), it is impossible to construct a
function f(z) possessing a derivative, but not a continuous one, in D. In
other words, if f(z) has a derivative in D, the derivative is necessarily
continuous, so that f(2) is analytic. Therefore we could define an analytic
function as one merely possessing a derivative in domain D, and this
definition is also often used. For a proof that existence of the derivative
implies its continuity, refer to Vol. I of the book by Knopp listed at the
end of the chapter.

TueoreM 8. If w = u + w = f(2) is analytic in D, then u and v have
continuous first partial derivatives tn D and satisfy the Cauchy-Riemann
equalions

ou v du av

in D. Furthermore,

dw u . v v
@ oz lar T ay

.o ou .0u v .0u
1%—5—1@—@_2@' (9”29)
Conversely, if u(x, y) and v(z, y) have continuous first partial derivatives in
D and satisfy the Cauchy-Riemann equations (9-28), then w = u -+ wv =
f(2) is analytic in D.

Proof. Let 2y be a fixed point of D and let
Aw = Au + 1 Av = f(zg + Az) — f(z0), Az = Ax 4+ 1 Ay,

as in Fig. 9-4. We consider several equivalent formulations of the condi-
tion that f'(z,) exists. Throughout, €, €;, €, €3, €, denote functions of
Az = Az + ¢ Ay, continuous and equal to zero at Az = 0. By Theorem 3,
existence of f’(z¢) is equivalent to the statement

Aw = ¢ Az + € Az, ¢ = f'(z0), c=a-+1; (9-30)
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Zy+AZ

Ay

Zy AXx

Fia. 9-4. Complex derivative.

this is equivalent to
Aw = ¢ Az + € Ax | i€ Ay (9-30")
and also to
Aw = ¢ Az + € Ax + €5 Ay -+ i(e3 Az + €4 Ay), (9-30")

where €1, €3, €3, €4 are real. For if (9-30’) holds, then (9-30"") holds with
€, = Re (€), ¢ = —Im (¢), €5 = Im (¢), ¢, = Re (¢). Conversely, if
(9-30"") holds, then (9-30’) holds with € = 0 for Az = 0 and

e=@ﬂ4@%+gﬁﬁm% (Az % 0). (9-31)

As Fig. 9-4 shows,

Az

Ay
] < —_J
Az 1

=7 Az

<1

= H

so that we deduce from (9-31) that € — 0 as Az — 0. Thus (9-30), (9-30")
and (9-30") are all equivalent to existence of f’(zg) = ¢ = a4 b. By
taking real and imaginary parts in (9-30"), we obtain one more equivalent
condition:

Au = aAx — bAy + €; Ax + €3 Ay,

(9_30/!/)
Av = bAx |+ a Ay + €3 Ax + €4 Ay;
these equations state that u, v have differentials du = adz — bdy,
dv = bdx + ady at (g, ¥o), and hence at this point

ou av u o
—aq = — )

= " T T &
Thus differentiability of f'(2) at any 2z is equivalent to differentiability
of u, v along with validity of the Cauchy-Riemann equations. Further-
more, f/(z) and du/dr, ... are related by (9-29). By Theorem 1, these
equations show that continuity of f'(z) in D is equivalent to continuity of
du/ox, ... Thus the theorem is proved.
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The theorem provides a perfect test for analyticity: if f(z) is analytic,
then the Cauchy-Riemann equations hold; if the equations hold (and the
derivatives concerned are continuous), then f(z) is analytic.

ExamrLe 1. w = 2% = 2% — y? 4 ¢ 2zy. Here'w = 22 — y2,v = 2zy.
Thus

u_ @
ox T ey YT T

and w is analytic for all z.

z 1y

POy R SRR Here

ExAMPLE 2. w =

u_ y —a® . du__ —2ay
ox @2+ y?2 9y Yy (@ +yHE oz

Hence w is analytic except for 2% + y? = 0, that is, for z = 0.

ExamplE 3. w =2 — iy = % Hereu = 2,v = —y and
ou o u o
ﬂ——l’ @——1, @-—0—55-

Thus w is not analytic in any domain.

ExamrLE 4. w = 22%y? + 22%y%. Here

ou _ 2 W _ 2 U _ o, 2 [
ax—2xy, ay—4x Y, ay—2x Y, ax——4xy.
The Cauchy-Riemann equations give 2xy? = 42y, 222y — —4xy?. These

equations are satisfied only along the lines x = 0, y = 0. There is no

domain in which the Cauchy-Riemann equations hold, hence no domain

in which f(z) is analytic. One does not consider functions analytic only at
certain points unless these points form a domain.

The terms “analytic at a point” or “analytic along a curve” are used,
apparently in contradiction to the remark just made. However, we say
that f(z) is analytic at the point 2o only if there is a domain containing 2
within which f(2) is analytic. Similarly, f(2) is analytic along a curve C only
if f(2) is analytic in a domain containing C.

THEOREM 9. The sum, product, and quolient of analytic functions is
analytic (provided in the last case the denominator is not equal to zero at
any potnt of the domain under consideration). All polynomials are analytic
for all z. Every rational function is analytic in each domain containing
no root of the denominator. An analytic function of an analytic function
18 analytic.

This follows from Theorem 4.
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We readily verify (Problem 1 below) that the Cauchy-Riemann equa-
tions are satisfied for « = Re (¢°), v = Im (¢*). Hence ¢° is analytic for
all z. It then follows from Theorem 9 that sin 2, cos z, sinh 2, and cosh z
are analytic for all z, while tan 2, sec 2, and csc z are analytic except for
certain points (Problem 6 below). Furthermore; the usual formulas for
derivatives hold:

d . . d .. »
e = 5, Sinz = cosz, (9-32)
(Problem 3).

Two basic theorems of more advanced theory are useful at this point.
Proofs are given in Chapter IV of the book by Goursat listed at the end of
the chapter.

TrarEOREM 10. Given a function f(x) of the real variable x, ¢ £ x < b,

there is at most one analytic function f(2) which reduces to f(x) when z is
real.

TreoreM 11. If f(2), g(2), . . . are functions which are all analytic in a
domain D which includes part of the real axis, and f(2), g(2), . . . satisfy
an algebraic identity when z is real, then these functions satisfy the same
identity for all z in D.

Theorem 10 implies that our definitions of €%, sin z, . . . are the only ones
which yield analytic functions and agree with the definitions for real
variables.

Because of Theorem 11, we can be sure that all familiar identities of
trigonometry, namely,

sin®z 4 cos?z = 1, sin (g — z) = €08 2, o (9-33)

continue to hold for complex z. A general algebraic identity is formed by
replacing the variables w;, . . ., w, in an algebraic equation by functions
fi1(2), ..., fa(2). Thus, in the two examples given, one has

w4+ wi—1=0 (w; = sinz wy = cosz),
. T
w; — weg =0 [wl = sm(g — z), We = cosz].
To prove identities such as
et . e%? — ezl+22, (9_34)

it may be necessary to apply Theorem 11 several times. (See Problems 4
and 5 below.)
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It should be remarked that while ¢* is written as a power of ¢, it is best
not to think of it as such. Thus e'/2 has only one value, not two, as would
a usual complex root. To avoid confusion with the general power func-
tion, to be defined below, we often write e* = exp z and refer to ¢ as the
exponential function of z.

To obtain the real and imaginary parts of sin 2, we use the identity

sin (2; + 22) = sin 2; cos 23 + cos 2z; sin 22,

which holds, by the reasoning described above, for all complex z; and z,.
Hence sin (r + ¢y) = sinz cosiy + coszsindy. Now from the defini-
tions (Section 9-1),

sinh y = —2 sin 4y,
cosh y = cos . (9-35)
Hence
sin z = sin z cosh y 4 7 cos z sinh . (9-36)

Similarly, we prove, as in (9-13) above,

cos z = cos x cosh y — ¢sin z sinh v,
sinh z = sinh z cos y + ¢ cosh z sin y, (9-37)

cosh z = cosh z cos y + 4 sinh z sin y.

Conformal mapping. A complex function w = f(z) can be considered as
a mapping from the zy-plane to the uv-plane as in Section 2-7. In the
case of an analytic function f(z), this mapping has a special property: it is
a conformal mapping. By this we mean that two curves in the xy-plane,
meeting at (zo, yo) at angle a, correspond to two curves meeting at the
corresponding point (ug, v9) at the same angle o (in value and in sense—
positive or negative). This means that a small triangle in the xy-plane
corresponds to a similar small (curvilinear) triangle in the uv-plane.
(The properties described fail at the exceptional points where f’(z) = 0.)
Furthermore, every conformal mapping from the zy-plane to the uv-plane
is given by an analytic function. For a discussion of conformal mapping
and its applications, see Chapter 7 of the book by Kaplan listed at the
end of the chapter.

Problems
1. Verify that the following are analytic functions of z:
(a) 223 — 322y — 6ay® + 3 + (23 + 622y — 322 — 2y3)
(b) w = e# = e*cosy + de*siny
(¢} w = sinz = sinz cosh y + 7 cos z sinh y
2. Test each of the following for analyticity:

(a) 2 4 y3 4 322y + 3xy?) (b) sinz cosy + i coszsiny
(c) 3z + 5y + i@y — 52)
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3. Prove the following properties directly from the definitions of the functions:

d 3 (b) isinz=cosz icosz=—sinz
(@) g0 = ¢ dz ' da
(¢) sin(z+ 7) = —sinz -(d) sin (—2) = —sinz, cos (—2) = cosz

4. Prove the identity e*1 722 = %1 - ¢*2 by application of Theorem 11. [Hint:
Let z2 = b, a fixed real number, and z1 = 2, a variable complex number. Then
et = ¢7. ¢b is an identity connecting analytic functions which is known to be
true for z real. Hence it is true for all complex 2. Now proceed similarly with the
identity e1+2 = e*1 - ¢%.]

5. Prove the following identities by application of Theorem 11 (see Problem 4):

(a) cos (21 + 2z2) = cos 21 cos 2z — sin 21 sin 22

(b) €% = cosz+ tsinz

(c) (e =¢= (n=0,1,2,...)

6. Determine where the following functions are analytic (see Problem 3 fol-
lowing Section 9-2):

sin 2z _ cosz
(a) tanz = P (b) cotz = sin 2
sinh 2 sin 2
= d -
(c) tanhz wosh 2 (d) p; ,
¢ &
(e) Z Cos 2 ) sinz -+ cos z
Answers

2. (a) Analytic nowhere, (b) analytic nowhere, (¢) analytic for all z.

6. The functions are analytic except at the following points: (a) 4w -F nw,;
(b) nw; (¢) $wi+ nwi; (d) 0; (e) O, 37 + nw; (f) —47w + nw, where n = 0,
+1, £2, ...

9-7 The functions log z, a°, 2%, sin™" z, cos ™" z. The function w = log ?
is defined as the inverse of the exponential function z = ¢¥. We write
z = re”, in terms of polar coordinates r, 6, and w = u -+ v, so that

reio — eu+w — euew,

—r, o= 0-+2kr (k=0,=£l,...).

eu

Accordingly,
w=logz = logr + ¢(6 + 2km) = log |2| + targz, (9-38)

where log r is the real logarithm of r Thus log 2z is a multiple-valued
function of 2z, with infinitely many values except for z = 0. We can select
one value of 8 for each z and obtain a single-valued function, logz =
log r + 16; however, 6 cannot be chosen to depend continuously on z f<')r
all z > 0, since 8 will increase by 27 each time one encircles the origin in
the positive direction.
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Fie. 9-5. Domain for log 2.

If we concentrate on an appropriate portion of the z-plane, we can choose
8 to vary continuously within the domain. For example, the inequalities

—T <0< r>0

together describe a domain (Fig. 9-5) and also tell how to assign the values
of ¢ within the domain. With 6 so restricted, log r -+ <6 then defines a
branch of log z in the domain chosen; this particular branch is called the
principal value of log z and is denoted by Log 2. The points on the negative
real axis are excluded from the domain, but we usually assign the values
Log z = log |z| + im on this line. Within the domain of Fig. 9-5, Log 2
is an analytic function of z (Problem 4 below). Other branches of log z are
obtained by varying the choice of 8 or of the domain. For example, in
the domain of Fig. 9-5, we might choose 8 so that # < 8 < 37, or so that
—37 < 6 < —m. The inequalities 0 < 8 < 27, 7/2 < 6 < 57/2,...
also suggest other domains and choices of 8. We can verify that so long
as 6 varies continuously in the domain, logz = logr -+ 26 is analytic
there. The most general domain possible here is an arbitrary simply-
connected domain not containing the origin.

As a result of this discussion, it appears that log z is formed of many
branches, each analytic in some domain not containing the origin. The
branches fit together in a simple way; in general, we can get from one
branch to another by moving around the origin a sufficient number of
times, while varying the choice of log z continuously. We say that the
branches form “analytic continuations” of each other.

We can further verify that for each branch of log 2, the rule

’

d 1
% log = ; (9—39)

remains valid. The familiar identities are also satisfied (Problems 4 and 5
below).
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The general exponential function a® is defined, for @ # 0, by the equatior

a® = ¢*!°8% = exp (zlog a). (940
Thus for z = 0, a® = 1. Otherwise, log @ = log [a] + 7arg e, and we
obtain many values: a* = exp [2(log |a| -+ i(a + onm))], (n = 0, =1, +2
...), where «a denotes one choice of arg a. For example,

(1 +4)° = exp [1 {1og V2 +i (g + Znﬂ')}]
= ¢~ (005 log /2 4 i sin log V/2).

If z is a positive integer m, a® reduces to @™ and has only one value. Th
same holds for z = —m, and we have

= (9-41

If 2z is a fraction p/q (in lowest terms), we find that a® has ¢ distinct values
which are the gth roots of a?. (See Eq. (0-14).)

If a fixed choice of log a is made in (9-40), then ¢” is simply ¢, ¢ = log a
and is hence an analytic function of z for all z. Each choice of log a deter
mines such a function.

If ¢ and z are interchanged in (9-40), we obtain the general powe
function,

za — ealog z. (9_42

If an analytic branch of log z is chosen as above, then this function become

an analytic function of an analytic function and is hence analytic in th

domain chosen. In particular, the principal value of z* is defined as th

analytic function 2% = ¢®L°8% in terms of the principal value of log 2.
For example, if a = %, we have

if (17236
212 . LD ]ogz L1/ Ddogr+it) __ (1/2)logr (1/2)¢

= \/;(cosg—{—ising);

as in Eq. (0-14). If Logz is used, then +/z = f(z) becomes analytic ?1
the domain of Fig. 9-5. A second analytic branch f(z) in the same domai.
is obtained by requiring that @ < 6 < 3m. These are the only two ana
lytic branches which can be obtained in this domain. It should be remarke
that these two branches are related by the equation f(z) = —/f1(2
For f, is obtained from f; by increasing 8 by 2, which replaces eMP¥

e(l/2)‘i(9-{-21r) — eri6(1/2)i0 — —6(1/2)”.
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The functions sin™! z and cos™?! z are defined as the inverses of sin z and
cos z. We then find

sin™! z = %log [iz = V1 — 22],
(9-43)

cos !z = ;l.log [2 £ iv1 — 22).

The proofs are left to the exercises (Problem 2). It can be shown that
analytic branches of both these functions can be defined in each simply-
connected domain not containing the points 1. For each z other than
=1, one has two choices of /1 — 22 and then an infinite sequence of
choices of the logarithm, differing by multiples of 2m3.

Problems

1. Obtain all values of each of the following:

(a) log 2 (b) log< (c) log (1 — %) (d) ¢ (e) (14 )23 (f) ¢ (g) sin—!1
(h) cos™12

2. Prove the formulas (9-43). [Hint: If w = sin—!z, then 2iz = ¢i» — ¢—iv;
multiply by ¢® and solve the resulting equation as a quadratic for e.]

3. (1) Evaluate sin—10, cos~10.

(b) Find all roots of sin z and cos z [compare part (a)].

4. Show that each branch of log z is analytic in each domain in which 8 varies

continuously and that

(d/dz) logz = 1/2.

[Hint: Show from the equations x = rcos§, y = rsin 0 that 86/9z = —y/r2,
98/dy = x/r. Show that the Cauchy-Riemann equations hold for u = logr,
v =0.]

5. Prove the following identities in the sense that, for proper selection of values
of the multiple-valued functions concerned, the equation is correct for each
allowed choice of the variables:

(a) log (z1-22) = logz1 + logza (21 # 0, z2 ¥ 0)

(b) elogz = 2 (2 % 0)

(e) loge® = 2

(d) logz1?2 = zologz1 (21 = 0)

6. For each of the following determine all analytic branches of the multiple-
valued function in the domain given:

(a) logz, z <0 (b) vz, >0
7. Prove that for the analytic function 2% (principal value),
(d/d2)z* = (az®)/2 = az*~1.

8. Plot the functions v = Re (v/z) and v = Im (+/2) as functions of z and y
and show the two branches described in the text.
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Answers
1. (a) 0.693 -+ 2nwt (b) iG7 + 2nw) (c) 0.347 4 i(Zm + 2nw)
(e) V'2exp (%m' + %TT z)

(f) exp (@ i+ 2V2 nm') (2) 47+ 2nrw (h) 2n7w £ 1317

(d) exp (—3r — 2nw)

The range of nis 0, =1, £2, ..., except in (e), where it is 0, 1, 2.
3. (a) and (b) nw and (w/2) +nw (0 = 0, =1, £2,...)
6. (a) logr + 10, 37+ 2nwr < 0 < 37+ 20w (n =0, =1, £2,...)
(b) V/rexp (18/3), —(w/2)+ 2nm < 8 < (w/2) +2n7 (n =0,1,2)

9-8 Integrals of analytic functions. Cauchy integral theorem. All paths
in the integrals concerned here, as elsewhere in the chapter, are assumed

to be piecewise smooth. .
The following theorem is fundamental for the theory of analytic

functions:

TaeoreM 12 (Cauchy integral theorem). If f(2) ¢s analytic in a simply-
connected domain D, then

96 f&dz=10

c

on every simple closed path C in D (Fig. 9-6).
Proof. We have, by (9-22) above,

96f(z)dz= QSudx— vdy+i¢vdx+udy.
c ¢

C

The two real integrals are equal to zero (see Section 5-6 above)

Fig. 9-6. Cauchy integral theorem.
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provided » and v have continuous derivatives in D and
ou_ _w  w_ou
dy ox 9y o

These are just the Cauchy-Riemann equations. Hence

¢f(z)dz=0—i—i-0=0.
c

This theorem can be stated in an equivalent form:

TueoreM 12'. If f(z) is analytic in the simply-connected domain D, then
S1(2) dz is independent of the path in D.

For independence of path and equaling zero on closed paths are equiva-
lent properties of line integrals. If C is a path from z; to 23, we can now
write

[f@ = ["16)as
[

the integral being the same for all paths C from z; to zs.

TueoreM 13. Let f(z) = u -+ v be defined tn domain D and let u and v
have continuous partial derivatives in D. If

56 f2) dz = 0 (9-44)
C

on every stmple closed path C in D, then f(z) is analytic in D.

Proof. The condition (9-44) implies that

¢udx——vdy=0, ¢vdx+udy=0

C c

on all simple closed paths C; that is, the two real line integrals are inde-
pendent of path in D. Therefore, by Theorem III in Section 56,

du v dv o
dy oz oy oz’
since the Cauchy-Riemann equations hold, f is analytic.

This theorem can be proved with the assumption that % and v have
continuous derivatives in D replaced by the assumption that f is con-
tinuous in D; it is then known as Morera’s theorem. For a proof, see Chap-
ter 5 of Vol. I of the book by Knopp listed at the end of the chapter.
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TaeoreMm 14. If f(z) is analytic in D, then

[P 76 de = 1) = fe2) — flen) (9-45)

on every path in D from 2, to z2. In particular,

$r@ =0

on every closed path in D.

Proof. By (9-29) above,

/z, () dz = / (g—:qtzg—g’;) (dz + i dy)

zg 22

Ju Ju . o v

= —dr + —d z/ —dr + —d
LT Ty W T, TaW
23

= flen) — 1),

=/ du +idv = (u + w)

This rule is the basis for evaluation of simple integrals, just as in ele-
mentary calculus. Thus we have

144 3

2

/ 2de ==
i 3

1 1

In the first of these any path can be used; in the second, any path not
through the origin.

i 3

—

= —i—i= —2.
P

TuroreM 15. If f(2) is analytic in D and D is simply-connected, then
F(z) = / 1) de (21 fized in D) (9-46)
21
is an indefinite integral of f(2); that is, F'(z) = f(z). Thus F(2) is itself
analytic.

Proof. Since f(2) is analytic in D and D is simply-connected, [, :1 f(z) dz
is independent of path and defines a function F which depends only on
the upper limit z. We have, further, F = U + <V, where

U=/zudx—vdy, V=/zvd1:+udy
z 21
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Fia. 9-7. Cauchy theorem for Fic. 9-8. Cauchy theorem for
doubly-connected domain. triply-connected domain.

and both integrals are independent of path. Hence dU = udx — vdy,
dV = vdx + udy. Thus U and V satisfy the Cauchy-Riemann equa-
tions, so that F = U 4 ¢V is analytic and

F@) = %+i%—z= wt i = £(2).

Cauchy’s theorem for multiply-connected domains. If f(2) is analytic in a
multiply-connected domain D, then we cannot conclude that

¢f(z) dz =0

on every simple closed path € in D. Thus, if D is the doubly-connected
domain of Fig. 9-7 and C is the curve C'; shown, then the integral around
C need not be zero. However, by introducing cuts, we can reason that

f(2) dz = (D f() dz; (9-47)
prow-y

that is, the integral has the same value on all paths which go around the
inner “hole” once in the positive direction. For a triply-connected domain,
as in Fig. 9-8, we obtain the equation

§6f<z) de = gﬁf(z) dz + 95 1) de. (9-48)

This can be written in the form

@) dz + Q f(2) dz + ( f(2) dz = 0; (9-49)
Jrossgron=g
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Eq. (9-49) states that the integral around the complete boundary of a
certain region in D is equal to zero. More generally, we have the following
theorem:

Tuaeorem 16 (Cauchy’s theorem for multiply—cox’mected domains). Let
{(2) be analytic in a domain D and let Cy, . . ., Crben stmple closed curves
in D which together form the boundary B of a region R contained in D.
Then

f(2) dz = 0,
B/z 2

where the direction of integration on B is such that the outer normal is 90°
behind the tangent vector in the direction of integration.

9-9 Cauchy’s integral formula. Now let D be a simply-connected
domain and let 2o be a fixed point of D. If f(2) is analytic in D, the function
f(2)/(z2 — zo) will fail to be analytic at zo. Hence

55 1@ 4
2 — R

will in general not be zero on a path C enclosing zo. However, as above,
this integral will have the same value on all paths C about zo. To deter-
mine this value, we reason that if C is a very small circle of radius B
about zg, then f(zo) has, by continuity, approximately the constant value
f(20) on the path. This suggests that

¢ szZ)z"o dz = f(zo) - ¢ e _ f(zo) - 27,
c

2 — 29
lz—zpl=R

since we find

d 2x Ri 0 2%
2 1€ . — .
¢ 2—‘20—,/;) Wda—%/; de 27!'1,,

|z—zol=R

with the aid of the substitution: z — 2o = Re™. The correctness of the
conclusion reached is the content of the following fundamental result:

TaeoreM 17 (Cauchy integral formula). Let f(2) be analytic in a domain
D. Let C be a simple closed curve in D, within which f(z) is analytic and
let zg be inside C. Then

feo) = g P LD

2m J 2z — 2o (9-50)
c
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Figc. 9-9. Cauchy integral formula.

Proof. The domain D is not required to be simply-connected, but since
f is analytic within C, the theorem concerns only a simply-connected part
of D, as shown in Fig. 9-9. We reason as above to conclude that

fz) fz)
fz—zzodz= ¢ z—zzodz'

lz—zg|=R

It remains to show that the integral on the right is indeed f(z) - 2.
Now, since f(z9) = const,

gsz—f(_z—")z—(;dz = f(zo)sﬁ % _ _ fa) - 2m,

z2— 29

where we integrate always on the circle |z — 20| = R. Hence, on the same
path,

B0 dz — f(zo) - 25 = 56"("‘);]'(;0) dz. (9-51)

z2— 29 z—z

Now |z — 2| = R on the path, and since J(2) is continuous at z,,

[f(2) — f(20)] < € for R < &, for each preassigned € > 0. Hence, by
Theorem 7,

' Mdz! < <.27R = 27e.
z2— 2z R

Thus the absolute value of the integral can be made as small as desired by
choosing R sufficiently small. But the integral has the same value for all
choices of R. This is possible only if the integral is zero for all R. Hence
the left side of (9-51) is zero and (9-50) follows.

The integral formula (9-50) is remarkable in that it expresses the values
of the function f(z) at points 2¢ inside the curve C in terms of the values
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along C alone. If C is taken as a circle z = 2z + Re®, then (9-50) reduces
to the following:

2=
f(z0) = % , f(zo + Re™) de. (9-52)

Thus the value of an analytic function at the center of a circle equals the
average (arithmetic mean) of the values on the circumference.

Just as with the Cauchy integral theorem, the Cauchy integral formula
can be extended to multiply-connected domains. Under the hypotheses of
Theorem 16,

L[ 1@ 4 1 (4 1@ EON )
f(z°)=—2—7r;'/;——z(;dz__2_ﬂ'_'b< z_?;(;dz—*‘fz_z()dz—i_
B 2

Cy
(9-53)
where 2z, is any point inside the region R bounded by C; (the outer bound-
ary), Cs, ..., Cn. The proof is left as an exercise (Problem 6 below).

Problems

1." Evaluate the following integrals:

(a) ¢ 2% sin z dz on the ellipse 2’ + 2y2 =1

2
(b) 9§z ¢ - dz on the circle |: — 2] = 1
2i
(c) / ze” dz on the line segment joining the endpoints
1

1—i
(d) / zl2dz on the parabola 2% = z + 1
1+

2. (a) Evaluate [*, (dz/z) on the path z = ¢, —7/2 < ¢t < 7/2, with the
aid of the relation (log 2)’ = 1/z, for an appropriate branch of log z.

(b) Evaluate [ (dz/2) on the pathz = ¢, 7/2 £ t < 37/2, as in part (a).

(c) Why does the relation (log 2)’ = 1/z not imply that the sum of the two
integrals of parts (a) and (b) is zero?

3. A certain function f(2) is known to be analytic except for z = 1, z = 2,
2z = 3, and it is known that

¢f(z) dz = ar (b =1,2 3),
Ck
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where Cy is a circle of radius  with center at z = k. Evaluate

951‘(2) dz
on each of the following paths:
(a) || = 4 (b) |s] = 2.5 (e |z — 25 =1
4. A certain function f(z) is analytic except for z = 0, and it is known that

lim zf(z) = 0.

Fand-

¢f(z) dz = 0

on every simple closed path not passing through the origin. [Hint: Show that
the value of the integral on a path |2| = R can be made as small as desired by
making R sufficiently large.]

5. Evaluate each of the following with the aid of the Cauchy integral formula:

Show that

;ﬁ(a)¢zi3dzon|z|=5 *(b)¢zze_—32dzon|z]=l
z+ 2 sin z
¥* (o) 22_1dzon|z|=2 % (d) 22+1dzon|z|=2

[Hint for (¢) and (d): Expand the rational function in partial fractions.]

6. Prove (9-53) under the hypotheses stated.

7. Prove that if f(z) is analytic in domain D and f/(2) = 0, then f(2) = con-
stant. [Hint: Apply Theorem 14.]

Answers

120 (b)0 (o) (2% — 1)e® (d) —i

2. (a) 7 (b) mi :

3. (@) ar+aztas (b) aa+az (c) a2+ a3
5. (a) 6m (b) —2mi/3 (c) 2m (d) 2misinh 1





