Seamount Flexure

Yue Tracy Du

Yao Yu

R. J. Banks, R. L. Parker & S. P. Huestis, 1977 D. Sandwell, Appendix, Chapter 17 Turcotte & Schubert, Chapter 12

Isostasy – local models

Airy model

Pratt model

Difficulties with such local models: crust has no strength at all for vertical loads.

Isostasy – regional compensation model

The outer shell of the earth is treated as a thin elastic plate, floating on the surface of a liquid.

s: mean ocean depth – 4 km in this study *d*: crust thickness – 6 km in this study

Plate deformation in response to topographic load

$$D\nabla^{4}w(\mathbf{x}) = q(\mathbf{x})$$

$$q(\mathbf{x}) = -(\rho_{c} - \rho_{w})gt(\mathbf{x}) - (\rho_{m} - \rho_{c})gw(\mathbf{x})$$

$$\int Fourier \ transform$$

$$D(2\pi|\mathbf{k}|)^{4}W(\mathbf{k}) + (\rho_{m} - \rho_{c})gW(\mathbf{k}) = -(\rho_{c} - \rho_{w})gT(\mathbf{k})$$

$$\int rearrange$$

$$W(\mathbf{k}) = \frac{-(\rho_c - \rho_w)}{(\rho_m - \rho_c)} \left[1 + \frac{D(2\pi |\mathbf{k}|)^4}{g(\rho_m - \rho_c)} \right]^{-1} T(\mathbf{k})$$

$$W(\mathbf{k}) = \frac{-(\rho_c - \rho_w)}{(\rho_m - \rho_c)} \left[1 + \frac{D(2\pi |\mathbf{k}|)^4}{g(\rho_m - \rho_c)} \right]^{-1} T(\mathbf{k})$$
$$\sim \frac{\lambda_f^4}{\lambda_x^4}$$

$$\lambda_f = 2\pi \left[\frac{D}{g(\rho_m - \rho_c)} \right]^{1/4} = \sqrt{2}\pi\alpha$$

-- flexural wavelength

$$D \equiv \frac{Eh^3}{12(1-\nu^2)}$$

-- flexural rigidity

$$\lambda_f >> \lambda_x$$
 $w = 0$,
uncompensated topography

 $\lambda_f \ll \lambda_x$ Airy-compensation model,

compensated topography

elastic thickness (*h*) of the lithosphere is the thickness of an elastic layer that would respond to applied loads in the same way as the heterogeneous lithospheric plate.

Gravity due to topographic load

parameters

Parameter	Definition	Value/Unit
w(x)	deflection of plate	m
	(positive up)	
Eh^3	flexural rigidity	N m
$D = \frac{1}{12(1 - v^2)}$		
h	elastic plate thickness	m
$ ho_w$	seawater density	1025 kg m^{-3}
ρ_c	seawater density	2800 kg m^{-3}
ρ_m	mantle density	3330 kg m^{-3}
g	acceleration of gravity	9.82 m s^{-2}
E	Young's modulus	6.5 x 10 ¹⁰ Pa
ν	Poisson's ratio	0.25

- Seamount width : 40 km
- Seamount height : 2 km

h = 0 km Seafloor depth = 4 km

h = 10 km Seafloor depth = 4 km

h = 30 km Seafloor depth = 4 km

h = 30 km Seafloor depth = 2 km

h = 0 kmSeafloor depth = 4 km

 $\Delta g(\mathbf{k}) = 2\pi G \left(\rho_c - \rho_w\right) e^{-2\pi |\mathbf{k}|s} T(\mathbf{k}) + 2\pi G \left(\rho_m - \rho_c\right) e^{-2\pi |\mathbf{k}|(s+d)} W(\mathbf{k})$