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Outline

Background information on the problem:
— Heating due to frictional sliding

— Shear stress at depth

— Average stress drop along fault

Solution of heat equation in 2D
— Fourier series
— Method of images

Compare with Lachenbruch and Sass 1980

Consider hydrothermal heating to explain heat
flow anomaly



Earthquake Energy Release

Energy released during an earthquake should be
related to:
— Size of fault
— Amount of stress on the fault
— Displacement of fault
E=AtA

Majority of energy is converted into heat

Assuming this heat can be averaged over many cycles,
can express heat flow as a function of plate velocity

E=tV



Fault Heat Production

* Plot of fault heat production
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Shear Stress on Fault

* Typical stress drop during a major earthquake
is about 3-5MPa (30-50 bar)

* About two orders of magnitude lower than
shear stresses at the bottom of the
seismogenic zone

— Fault is not restored to a stress-free state even
after very large events

— Fault is under significant shear stress at all times



Shear Stress on Fault

e Seismogenic zone: surface to 12 km depth

e Shear stress is a large portion of the
overburden stress
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Derivation of Heat equation

e Starting with the first law of thermodynamics:

dU — 5Q + 5W (Conservation of Energy)
e Consider the control element:




Derivation of the Heat equation

Rewrite using the heat flux through
the control element:
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Substitute in Fourier’s Law:
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Derivation of the Heat equation

Simplify:
dT 0
pe, = 5(— —)—5( kyg)_&_z( -k, —)+Q(XZ)

Assume steady-state and isotropic conditions.
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With infinitely long line-source:
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Solving the Heat equation

Equation:

0(x)0(z + a)— = ZX—T + %

Boundary Conditions:
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Solving the heat equation

Take Fourier Transform of both sides:
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Now we need to perform inverse transforms to
get back to spatial coordinates:



Solving the heat equation

Take inverse transform with respect to k,:
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Solving the heat equation

Use method of images to satisfy boundary
condition:

T(x,z) = ;ﬂ qs"lzm {ln[x2 +(z - a)z]% - ln[x2 +(z+ a)z];}

This solution will provide the scalar
temperature field from the line-source. We
can use this to determine heat-flux at the
surface.



Depth from Surface (km)

Temperature Distribution

Using solution for a line source, can solve for temperature
distribution due to fault heat production

First approximation: discretize into a few line sources
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Temperature Distribution

 Temperature distribution * Sum of infinitesimally small

from discretized sources: line sources can be described
by an integral
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Temperature Distribution

* Integral can be evaluated analytically or numerically:

Highest temperatures are a
few km above depth of the
seismogenic zone

Temperature map meets
required boundary
conditions:

T(x,0)=0
|l|im T(x,z)=0

|l_lim T(x,z)=0



Surface Heat Flow

* Surface heat flow can be found using Fourier’s

law:
? = —kVT
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Surface Heat Flow - Measurements

e Measurements of heat flow above San Andreas
have been compiled by Lachenbruch and Sass

(1980)
— Measurements are from geographically large area

— Study from 1973 found San Andreas is within a
~100km-wide band of high heat flow, but there is no
thermal anomaly along main heat trace

— Data have significant scatter: p=69.8 mW/m?
0=19.8 mMW/m?
* Heat flow values are inconsistent with reasonable
value of 0.6 assumed for f



Surface Heat Flow - Measurements

e Coefficient of friction of 0.4 is consistent with the
mean of the data, 0.3 approaches 84t percentile
of the data
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Surface Heat Flow - Discussion

* Turcotte et al (1980), using a more sophisticated model
with brittle and plastic zones determined that a coefficient

of friction of 0.05 would be consistent with no measurable
heat flow anomaly

— Coefficient of friction would have to be applicable to depths of
25 to 30 km

* Turcotte et al propose three possible explanations for this

— Hydrostatic pressure is nearly equal to the lithostatic pressure
(might give a coefficient of friction as low as 0.05, but this
situation is deemed unlikely)

— Proposed model is inaccurate — perhaps strain in fault system
occurs over a broad region?

— Measurements have failed to identify the heat flow anomaly
(groundwater effects) — also dismissed as unlikely



Surface Heat Flow - Discussion

 Can determine whether hydrothermal circulation is
even a plausible theory to explain lack of thermal
anomaly by removing heat sources to depth d:
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Surface Heat Flow - Discussion

 Temperature and vertical heat flow calculations indicate match to
measured values is possible with a depth of heat flow “deletion” to
about 3.5 km with =0.6:
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Conclusions

Solution to infinite plane source of heat with functional
dependence on z is possible using solution to line source

Based on reasonable assumptions regarding coefficient of friction,
shear stress on the fault, and plate velocities, San Andreas should
produce a measureable heat anomaly. However, no such anomaly
has been measured.

Possible explanations include:

— High hydrostatic stresses which reduce the coefficient of friction

— Hydrothermal effects which dilute or spread the heat anomaly

— Model errors
Based on the simple calculations in this presentation, low

coefficient of friction and hydrothermal circulation appear to be
plausible explanations for the lack of a measured heat anomaly



