Overview

- Pacific plate is subducting under Japan.
- This is some of the oldest oceanic crust in the world
- Old Crust = Cold and Strong

http://2.bp.blogspot.com/-jjZfHSZ9MwU/UQCekP1UDql/AAAAAAAAADLo/2xlmv28FAbE/s1600/quake,+pacific+plate.jpg
Trenches Around the Pacific Plate

http://www.shorstmeyer.com/msj/geo130/slideShows/RingofFire.gif
Problem Intro

ON THE APPLICABILITY OF A UNIVERSAL ELASTIC TRENCH PROFILE

J.G. CALDWELL, W.F. HAXBY, D.E. KARIG and D.L. TURCOTTE

Department of Geological Sciences, Cornell University, Ithaca, N.Y. (USA)

Received October 23, 1975
Revised version received March 31, 1976

The paper that the problem is based off of, notice last author.
More Intro

- Trying to get the same model for various plates
- Modern day research is going on now in this area (Garcia and Peterson, lecture Nov 21)
- 40 years later, still unanswered questions
- Reproduce figure 3
Derivation

\[D \frac{d^4 w}{dx^4} + S \frac{d^2 w}{dx^2} + kw = 0 \] \hspace{2cm} (1)

\[w = A \sin \left[\frac{x}{\alpha} \left(1 + \epsilon \right)^{\frac{1}{2}} \right] \exp \left[-\frac{x}{\alpha} \left(1 - \epsilon \right)^{\frac{1}{2}} \right] \] \hspace{2cm} (2)
Derivation

Boundary Conditions:

\[x \to \infty, w = 0 \quad x = 0, w = 0 \]

Educated Guess:

\[w = Ce^{\gamma x} \]
Derivation

\[\frac{d^2 w}{dx^2} = C \gamma^2 e^{\gamma x} \]

\[\frac{d^4 w}{dx^4} = C \gamma^4 e^{\gamma x} \]

\[DC \gamma^4 e^{\gamma x} + SC \gamma^2 e^{\gamma x} + kCe^{\gamma x} = 0 \]

\[D \gamma^4 + S \gamma^2 + k = 0 \]

\[\gamma^4 + \frac{S}{D} \gamma^2 + \frac{k}{D} = 0 \]
Substitutions

\[\alpha^4 = \frac{k}{D} \]

\[\epsilon = \frac{S}{2(Dk)^{\frac{1}{2}}} \]

\[\frac{k}{D} = \frac{4}{\alpha^4} \]

\[\frac{S}{D} = \frac{4\epsilon}{\alpha^2} \]

\[\gamma^4 + \frac{4\epsilon}{\alpha^2} \gamma^2 + \frac{4}{\alpha^4} = 0 \]
Quadratic Formula

\[\gamma^2 = \frac{-4\epsilon \alpha^{-2} \pm \sqrt{(4\epsilon \alpha^{-2})^2 - 4(4\alpha^{-4})}}{2} \]

\[\gamma^2 = \frac{-4\epsilon \alpha^{-2} \pm \sqrt{(\epsilon^2 - 1)(16\alpha^{-4})}}{2} \]

\[\gamma^2 = 2\alpha^{-2} \left[-\epsilon \pm (\epsilon^2 - 1)^{\frac{1}{2}} \right] \]
Quadratic Formula

\[\gamma^2 = 2\alpha^{-2} \left[-\epsilon \pm i \left(1 - \epsilon^2 \right)^{\frac{1}{2}} \right] \]

\[\gamma^2 = 2\alpha^{-2} \left[\left(\frac{1 - \epsilon}{2} \right)^{\frac{1}{2}} \pm i \left(\frac{1 + \epsilon}{2} \right)^{\frac{1}{2}} \right]^2 \]

\[\gamma^2 = \alpha^{-2} \left[(1 - \epsilon)^{\frac{1}{2}} \pm i (1 + \epsilon)^{\frac{1}{2}} \right]^2 \]

\[\gamma = \pm \alpha^{-1} \left[(1 - \epsilon)^{\frac{1}{2}} \pm i (1 + \epsilon)^{\frac{1}{2}} \right] \]
Solving for \(w \)

\[
w = Ce^{\gamma x}
\]

\[
w = C \exp \left(\pm \frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} \pm i (1 + \epsilon)^{\frac{1}{2}} \right] \right)
\]

\[
w = C_1 \exp \left(\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} + i (1 + \epsilon)^{\frac{1}{2}} \right] \right) + C_2 \exp \left(\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} - i (1 + \epsilon)^{\frac{1}{2}} \right] \right) + C_3 \exp \left(-\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} + i (1 + \epsilon)^{\frac{1}{2}} \right] \right) + C_4 \exp \left(-\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} - i (1 + \epsilon)^{\frac{1}{2}} \right] \right)
\]
Applying Boundary Conditions

\[BC1 \Rightarrow C_1 = C_2 = 0 \]

\[w = C_3 \exp \left(-\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} + i (1 + \epsilon)^{\frac{1}{2}} \right] \right) + C_4 \exp \left(-\frac{x}{\alpha} \left[(1 - \epsilon)^{\frac{1}{2}} - i (1 + \epsilon)^{\frac{1}{2}} \right] \right) \]

\[w = \exp \left[-\frac{x}{\alpha} (1 - \epsilon)^{\frac{1}{2}} \right] \left(C_3 \exp \left[i \frac{x}{\alpha} (1 + \epsilon)^{\frac{1}{2}} \right] + C_4 \exp \left[-i \frac{x}{\alpha} (1 + \epsilon)^{\frac{1}{2}} \right] \right) \]
Applying Boundary Conditions

\[BC2 \Rightarrow C_3 = -C_4 = A \]

\[
\begin{align*}
 w &= A \exp \left[-\frac{x}{\alpha} \left(1 - \epsilon \right)^{\frac{1}{2}} \right]
 \left(\exp \left[i \frac{x}{\alpha} \left(1 + \epsilon \right)^{\frac{1}{2}} \right] - \exp \left[-i \frac{x}{\alpha} \left(1 + \epsilon \right)^{\frac{1}{2}} \right] \right) \\
 &= A \exp \left[-\frac{x}{\alpha} \left(1 - \epsilon \right)^{\frac{1}{2}} \right] \sin \left[\frac{x}{\alpha} \left(1 + \epsilon \right)^{\frac{1}{2}} \right]
\end{align*}
\]
Fig. 3. Graphs of the non-dimensional deflection of a thin elastic plate and the associated non-dimensional bending moment and shear force.

\[x_b = \frac{\pi \alpha}{4} = \frac{\pi}{4} \left(\frac{4D}{k} \right)^{\frac{1}{2}} \]

\[\ddot{w} = 2^\frac{1}{2} \sin \left(\frac{\pi x}{4} \right) \exp \left[\frac{\pi}{4} \left(1 - x^2 \right) \right] \]
Figure 3

\[\bar{M} = \frac{2^{\frac{3}{2}} \pi^2}{8} \cos\left(\frac{\pi \bar{x}}{4}\right) \exp\left(\frac{\pi}{4} (1 - \bar{x})\right) \]

(10)
\[\bar{Q} = -\frac{2^{\frac{1}{2}} \pi^3}{32} \left[\cos\left(\frac{\pi \bar{x}}{4}\right) + \sin\left(\frac{\pi \bar{x}}{4}\right) \right] \exp\left[\frac{\pi}{4}(1 - \bar{x})\right] \] (11)
Some Real Data

The Peru Chile Trench

http://www.shorstmeyer.com/msj/geo130/slide_shows/RingofFire.gif
Conclusions of The Paper

- The model and the data fit well
- This paper is only valid for this trench
- Other trenches might have stronger/older plates
- Knowing the exact forces on plates is hard
- Horizontal forces *waves hand*