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Lake Loading Problem

- Changes in water level in lake = —
or oceans changes stress on e e
surrounding rocks & B | Loron. 1950

- Due to lake loading and pore o ‘ ~ km
pressure

- If large enough, could trigger
earthquakes
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- Luttrell et al. (2007)

- Investigated stress changes in
southern San Andreas region due 5
to lake level changes of Lake %
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Outline of Luttrell et al.

- Created 3-D model of elastic plate
- Tested model against 2-D elastic plate model
- Constrained model parameters to fit Lake Cahuilla system

- Calculated stress change in southern San Andreas region
for past 1300 years of lake history



Change in stress due to lake loading:
2-D elastic plate model
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Derivation of vertical displacement

We begin with the solution for a line load, equation 3.130 from Turcotte and Schubert:
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Derivation of vertical displacement

W(z) = ‘2;4 ([—e~ " cos(|u))]% o + /0:‘B e~ " cos(|u)du + /: e~ " sin(|u|)du)

Integrate by parts: w = e™1*l; dw = —e™%l; v = —cos(|u|); dv = sin(|u|)du
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W(z) = "8016;4 (1 — e cos (%m))

W(z) = (1- e"'“'cos(|u|))




Derivation of vertical displacement

W(z) = ‘gg“ (1 — e% cos (-7))

We recognize that if z were negative, the entire expression for W would be negative as well, thus we rewrite as:
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Derivation of horizontal stress
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Derivation of horizontal stress
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Derivation of horizontal stress
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Derivation of horizontal stress

o —3%025 e sin [ —
T h? h o

Again, we recognize that if  were negative, the entire expression for o,, would be negative as well, thus we
rewrite as:
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2-D Model Results

Young’s Modulus, E = 70e°

Poisson’s Ratio, v = 0.25

Mantle Density, p,, = 3300kg/m3

Water Density, p,, = 1000kg/m?®

Elastic Plate Thickness, H = 30e°

Evaluated at seismogenic zone depth, z = 5km
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vertical load, Vp = pu,gh



2-D Model Results
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Model Comparison
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e
Constraining 3-D model parameters

- Used current elevation of observed ancient shoreline to constrain
plate thickness and relaxation time
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- Range of best fitting models based on current rebound velocity
measurements: H=25km, 1=70yr — H=35km, 1=30 yr
- Calculated stress change due to lake history for both models with and
without pore pressure effects.
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Expected perturbations of
+ 0.4 - 0.6 MPa

Changes smaller and less
sudden without pore
pressure effects (~0.2 MPa)

~10 times smaller than
tectonic loading between
major earthquakes

Main differences in models:

- Magnitudes higher for shorter
relaxation time

- Broader plate deformation
effect for thicker plate



Could these stress changes trigger
earthquakes?

- Calculated stress changes are of comparable size to other
effects suggested to trigger events

- Could trigger on faults that are near critically stressed
- 4/5 of last events are near times of lake level change

- However, large error bars in the timing of past lake level
changes and past earthquake events



Ocean Loading Problem

- Most affected areas are those where tectonic plate
boundary coincides with coastline

- Rapid sea level rise at the Black Sea following last glacial
maximum
- Rise of ~70m within a few years to a few hundred years

- Black Sea filling increases Coulomb stress along the
North Anatolian Fault by ~75kPa
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