Post Glacial Rebound and Relative Sea Level
» ARSL = AOSL + AGIA+ AVCM

*AVCM
- largest probable signals on 100-year timescale
- areas of large AVCM
- California AVCM = earthquake cycle + crustal fluids

- Many coastal cities have large VCM

RSL - relative sea level

OSL - ocean sea level

GIA - glacial isostatic adjustment
VCM - vertical crustal motion



Spatial and temporal variations in continental ice sheets

(c) Surface after melting of the ice sheet
but prior to postglacial rebound

(d) Full rebound

Figure 6.14 Subsidence due to glaciation and
subsequent postglacial rebound
[Turcotte and Schubert, 2001]

J.L. Fastook, TJ. Hughes / Quaternary Science Reviews 80 (2013) 169—194

| \\W’r\jw ! \“u \ | l“\ »jw\} u A

age (thousands of years)

The progression of glaciation cycles through the
Quaternary Ice Age using oxygen-isotope ratios as a
proxy for global ice volume. LGM is the Last Glacial
Maximum. From Siegert et al. (2002).



Major northern hemisphere continental ice sheets
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Fig. 6. Possible retreat configuration of Northern Hemisphere ice sheets during a Quaternary glaciation cycle obtained from bottom-up modeling. Ice shelves floating over basins in
the Arctic Ocean are grounded along dotted lines. Ice-sheet elevations are contoured every 500 m, and labeled every kilometer. Ice sheets meet along broken suture lines. Mountain
glaciations are enclosed by heavy lines. Proglacial lakes and other lakes are denoted by parallel horizontal lines.



Major northern hemisphere continental ice sheets
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Why is there
no ice sheet
here?
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Fig. 6. Possible retreat configuration of Northern Hemisphere ice sheets during a Quaternary glaciation cycle obtained from bottom-up modeling. Ice shelves floating over basins in
the Arctic Ocean are grounded along dotted lines. Ice-sheet elevations are contoured every 500 m, and labeled every kilometer. Ice sheets meet along broken suture lines. Mountain
glaciations are enclosed by heavy lines. Proglacial lakes and other lakes are denoted by parallel horizontal lines.



relative sea level (m)

Figure 1:Relative Sea Level
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Uplift decreases exponentially with time
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Figure 6.16 Uplift of the mouth of the Angerman River, Sweden,
as a function of time before the present compared with the
exponential relaxation model, Equation (6.104), for wm, =300 m
less 30 m of uplift yet to occur, 7, = 4400 years, and an initiation
of the uplift 10,000 years ago.



Uplift Rate from GPS

1 mm/yr
Horizontal velocity wp

Vertical velocity, mm/yr

http://web.ics.purdue.edu/~ecalais/projects/noam/noam/



Laurentide rebound centered at Hudsons Bay
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Relative Sea Level Rise, MM/Yr

RSL from tide gauges

Relative Sea Level Trends and Distance from Hudson Bay
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RSL from tide gauges - Fennoscandia



Observed RSL trend, mm/year

20th Century Relative Sea Level Trends in Europe
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Rebound at Greenland:

Present-day elastic rebound or past viscoelastic rebound?
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vertical crustal motion
from earthquakes



Great Sumatra Earthquake, 2004




Great Sumatra Earthquake, 2004

Island
Gradually
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Coral grows up to low tide level.

/"

Once at low tide level, coral can
only grow sideways.

When the islands sink, coral continues
to grow upward.

When the islands pop-up during an earthquake,
the upper part of coral dies, but the lower part that
is still under low tide level continues to grow.

Sieh et al., Science, 2008
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Fig. 2. Histories of interseismic submergence and coseismic emergence through seven centuries at
sites (A) Bulasat, (B) Simanganya, and (C) Sikici. Data constrain solid parts of the curves well (fig.
S4); dotted portions are inferred. Emergence values (in centimeters + 2¢) are red. Interseismic
submergence rates (in millimeters per year, + 2¢) are blue. Millennial emergence rates are black.
Vertical dashed white lines mark dates of emergences. Red arrows at bottom highlight the timing
of the failure sequence for each supercycle.



vertical surface deformation
from withdrawal of crustal
fluids - water and oll
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Groundwater in LA Basin
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Historic Houston Subsidence
1906 - 1978

Data Source: National Geodetic Survey
Contour Interpretations: HGCSD

Houston
Ship Channel

Flgure 3. Subsidence cccurring batween 1905 and 1978 in the Houston-Galvesten region, Texas.
Map courlesy of Houslon-Galveston Coaslal Subsidence Dislrict

By 1979, the Houston Ship Channel area had subsided as much as 10 feet and over 3200 square miles of the
Houston metropolitan area had sunk an average of one foot (Galloway et al, 1999). Most of Houston's subsidence
is due to compaction of subsurface clays because of withdrawal of ground water from surrounding aquifer beds

(Zilkoski et al, 2001).

maximum subsidence rate = 40 mm/yr
Berman, 2005



The first documented instance of land subsidence due to fluid withdrawal was from the Goose Creek oil field near
the city of Houston. In 1917 oil was discovered on the margin of Galveston Bay near the mouth of the present-day
Houston Ship Channel. After production of several million barrels of oil, bay waters began to inundate the oil field.

(Figure 1). Pratt and Johnson (1926) recognized newly formed faults and fissures that resulted from fluid
withdrawal (Figure 2).

Houston 33« Baytown
g Goose’Creek
Pasadena POl Field
S ?‘Galveslory,.-‘" N
PG el

vy 7
Texasy 5 Y <
City ] Y 4
S D> Guifof
[ Galveston  Mexico
o Adsland

V7

Galveston Bay AN 0 Mies 20

I~ Z\o¥F

Figure 1. Measured subsidence between 1918 and 1926 around Goose Creek oilfield. Lines of equal

subsidence (feet) for an 8-year period are shown in gray lines—for a 1-year period, in black lines.
Modified from Galloway et al, 1999.

maximum subsidence rate = 100 mm/yr

Berman, 2005



Coastal Cities

Nelson 2009

The table below shows a list of cities throughout the world that have been experiencing
subsidence problems. Note that most of these cities are coastal cities like London, Houston, and
Venice, or are built on river flood plains and deltas, like New Orleans, Baton Rouge, and the San
Joaquin Valley of central California. Mexico City is somewhat different in that it was built in a
former lake.

o Subsidence (m) Area (km2) e
LongBeach/Los Angeles 9.00 50 Petroleum withdrawl
San Joaquin Valley, CA | 8.80 | 13500 |Groundwater withdrawal
Mexico City 8.50 225 filled lake
Tokyo, Japan 4.50 3,000 coastal sediments
San Jose, CA 390 800 bay sediments
Osaka, Japan 3.00 500 coastal sediments
Houston, TX | 2.70 | 12,100 |coastal sediments
Shanghai, China 2.63 121 coastal sediments
Niigata, Japan 2.50 8,300 coastal sediments
Nagoya, Japan 2.37 1,300 coastal sediments
New Orleans, LA 2.00 175 river sediments
Taipei, China | 1.90 130 coastal sediments
Bankok, Thailand 1.00 800 river sediments
Venice, Italy 0.22 150 coastal sediments
London, England 0.30 295 river sediments




Vertical Crustal Motions can dominate RSL

Global sea level rise ~3 mm/yr
Post Glacial Rebound 0-20 mm/yr

Earthquakes
Sumatra subduction - 1000 mm
California strike-slip - 200 mm
Interseismic
Sumatra - 10 mm/yr
California - 1.5 mm/yr
Groundwater
LA - secular - 3 mm/yr (Long Beach)
LA - annual - 10-30 mm/yr
Houston - secular - 40 mm/yr
New Orleans - secular - 8 mm/yr
OIL
Houston (1920s) - 100 mm/yr



