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Preface

This book gives a comprehensive and connected account of all aspects of mantle convection
within the Earth, the terrestrial planets, the Moon, and the Galilean satellites of Jupiter.
Convection is the most important process in the mantle, and it sets the pace for the evolution
of the Earth as a whole. It controls the distribution of land and water on geologic time
scales, and its influences range from the Earth’s climate system, cycles of glaciation, and
biological evolution to the formation of mineral and hydrocarbon resources. Because mantle
convection is the primary mechanism for the transport of heat from the Earth’s deep interior
to its surface, it is the underlying cause of plate tectonics, formation and drift of continents,
volcanism, earthquakes, and mountain building processes. It also shapes the gravitational
and magnetic fields of the Earth. Mantle convection plays similar, but not identical, roles in
the other planets and satellites.

This book is primarily intended as a research monograph. Our objective is to provide a
thorough treatment of the subject appropriate for anyone familiar with the physical sciences
who wishes to learn about this fascinating subject. Some parts of the book are quite math-
ematical, but other parts are qualitative and descriptive. Accordingly, it could be used as a
text for advanced coursework in geophysics and planetary physics, or as a supplementary
reference for introductory courses.

The subject matter has been selected quite broadly because, as noted above, mantle
convection touches on so many aspects of the Earth and planetary sciences. A comprehen-
sive index facilitates access to the content and an extensive reference list does the same
for the relevant literature. A list of symbols eases their identification. We highlight major
unanswered questions throughout the text, to focus the discussion and suggest avenues of
future research. There are numerous illustrations, some in color, of results from advanced
numerical models of mantle convection, laboratory experiments, and global geophysical
and planetary data sets. Many complex geodynamical processes are explained using simple,
idealized mathematical models.

We begin with a historical background in Chapter 1. Qualitative evidence for the drift of
the continents over the Earth’s surface was available throughout much of the first half of the
twentieth century, while at the same time a physical understanding of thermal convection
was being developed. However, great insight was required to put these together, and this
happened only gradually, within an atmosphere of enormous controversy. The pendulum
began to swing towards acceptance of continental drift and mantle convection in the 1950s
and 1960s as a result of paleomagnetic data indicating that continents move relative to one
another and seafloor magnetic data indicating that new seafloor is continually created at
mid-ocean ridges.

xiii



Xiv Preface

The concepts of continental drift, seafloor spreading, and mantle convection became
inseparably linked following the recognition of plate tectonics in the late 1960s. Plate tec-
tonics unified a wide range of geological and geophysical observations. In plate tectonics
the surface of the Earth is divided into a small number of nearly rigid plates in relative
motion. Chapter 2 presents an overview of plate tectonics, including the critical processes
beneath ridges and deep-sea trenches, with emphasis on their relationship to mantle convec-
tion. This chapter also introduces some other manifestations of convection not so closely
related to plate tectonics, including volcanic hot spots that mark localized plume-like mantle
upwellings, and the evidence for delamination, where dense lower portions of some plates
detach and sink into the underlying mantle.

To understand mantle convection we need to know what the Earth is like inside. In
Chapter 3 we discuss the internal structure of the Earth and describe in detail the properties of
its main parts: the thin, solid, low-density silicate crust, the thick, mostly solid, high-density
silicate mantle, and the central, partially solidified, metallic core. Seismology is the source
of much of what we know about the Earth’s interior. Chapter 3 summarizes both the average
radial structure of the Earth and its lateral heterogeneity as revealed by seismic tomography.
The chapter also describes the pressure-induced changes in the structure of mantle minerals,
including the olivine—spinel and spinel-perovskite + magnesiowiistite transitions that occur
in the mantle transition zone and influence the nature of mantle convection.

Radiogenic heat sources and high temperatures at depth in the Earth drive mantle con-
vection, and the cooling of the Earth by convective heat transfer in turn controls the Earth’s
temperature. The Earth’s thermal state is the subject of Chapter 4. Here we discuss the
geothermal heat flow at the surface, the sources of heat inside the Earth, the thermal prop-
erties of the mantle including thermal conductivity and thermal expansivity, and the overall
thermal state of the Earth. Chapter 4 includes analysis of the oceanic lithosphere as the upper
thermal boundary layer of mantle convection and considers the thermal structure of the con-
tinental lithosphere. The adiabatic nature of the vigorously convecting mantle is discussed
and the D” layer at the base of the mantle is analyzed as the lower thermal and composi-
tional boundary layer of mantle convection. The thermal structure of the core is reviewed.
Mechanisms of magma migration through the mantle and crust are treated in considerable
detail.

Mantle convection requires that the solid mantle behave as a fluid on geological time
scales. This implies that the solid mantle has a long-term viscosity. In Chapter 5, the physical
mechanisms responsible for viscous behavior are discussed and the observations used to
deduce the mantle viscosity are reviewed, along with the relevant laboratory studies of the
viscous behavior of mantle materials.

In Chapter 6, the equations that govern the fluid behavior of the mantle are introduced.
The equations that describe thermal convection in the Earth’s mantle are nonlinear, and it is
not possible to obtain analytical solutions under conditions fully applicable to the real Earth.
However, linearized versions of the equations of motion provide important information on
the onset of thermal convection. This is the subject of Chapter 7. A variety of approximate
solution methods are introduced in Chapter 8, including the boundary layer approximation
that explains the basic structure of the oceanic lithosphere. Concepts of dynamical chaos are
introduced and applied to mantle convection. Numerical solutions of the mantle convection
equations in two and three dimensions are given in Chapters 9 and 10, respectively. Obser-
vations and theory relevant to mantle plumes are presented in Chapter 11. In Chapter 12,
geochemical observations pertinent to mantle convection are given along with the basic
concepts of chemical geodynamics. Chapter 13 discusses the thermal history of the Earth
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and introduces the approximate approach of parameterized convection as a tool in studying
thermal evolution.

Mantle convection is almost certainly occurring within Venus and it may also be occurring,
or it may have occurred, inside Mars, Mercury, the Moon, and many of the satellites of
the outer planets. Observations and theory pertaining to mantle convection in planets and
satellites are given in Chapter 14. Mercury, Venus, Mars, the Moon, and the Galilean satellites
of Jupiter — Io, Europa, Ganymede, and Callisto — are all discussed in detail. Each of these
bodies provides a unique situation for the occurrence of mantle convection. Tidal heating,
unimportant in the Earth and the terrestrial planets, is the primary heat source for Io. The
orbital and thermal evolutions of Io, Europa, and Ganymede are strongly coupled, unlike the
orbital and thermal histories of the Earth and inner planets. The rheology of ice, not rock,
controls mantle convection in the icy satellites Ganymede and Callisto. Among the many
questions addressed in Chapter 14 are why Venus does not have plate tectonics and whether
Mars once did. Methods of parameterized convection are employed in Chapter 14 to study
the thermal evolution of the planets and satellites.

The results presented in this book are summarized in Chapter 15. Throughout the book
questions are included in the text to highlight and focus discussion. Some of these questions
have generally accepted answers whereas other answers remain controversial. The discussion
given in Chapter 15 addresses the answers, or lack of answers, to these questions.

Our extensive reference list is a testimony to several decades of substantial progress in
understanding mantle convection. Even so, it is not possible to include all the pertinent liter-
ature or to acknowledge all the significant contributions that have led to our present level of
knowledge. We apologize in advance to our colleagues whose work we may have uninten-
tionally slighted. We point out that this oversight is, in many cases, simply a consequence
of the general acceptance of their ideas.

Many of our colleagues have read parts of various drafts of this book and their comments
have substantially helped us prepare the final version. We would like to acknowledge in
this regard the contributions of Larry Cathles, Robert Kay, David Kohlstedt, Paul Tackley,
John Vidale, Shun Karato, and Orson Anderson. A few of the chapters of this book were
used in teaching and our students also provided helpful suggestions for improving the text.
Other colleagues generously provided figures, many of which are prominently featured in
our book. Illustrations were contributed by David Sandwell, Paul Tackley, Henry Pollack,
David Yuen, Maria Zuber, Todd Ratcliff, William Moore, Sami Asmar, David Smith, Alex
Konopliv, Sean Solomon, Louise Kellogg, Laszlo Keszthelyi, Peter Shearer, Yanick Ricard,
Brian Kennett, and Walter Mooney. The illustration on the cover of this book was prepared
by Paul Tackley. Paul Roberts diligently worked on the weakly nonlinear stability theory of
Section 8.8 and provided the solution for hexagonal convection presented in Section 8.8.2.

Credit for the preparation of the manuscript is due to Judith Hohl, whose patience, ded-
ication, and hard work were essential to the completion of this book. Her TeX skills and
careful attention to detail were invaluable in dealing with the often complicated equations
and tables. She is also responsible for the accuracy and completeness of the large reference
list and was helped in the use of TeX and BibTeX by William Moore, whose ability to modify
the TeX source code enhanced the quality of the manuscript and rescued us from a num-
ber of dire situations. Others who assisted in manuscript preparation include Sue Peterson,
Nanette Anderson, and Nik Stearn. Cam Truong and Kei Yauchi found and copied hundreds
of references. Richard Sadakane skillfully prepared the majority of the figures.



