

а

b











$$N(x) = \frac{-2\pi G}{g} \int_{0}^{\infty} z \ \Delta \rho(x,z) \ dz \tag{1}$$

Since the topography is in isostatic equilibrium, the integral of  $\Delta \rho$  over depth is zero.

A diagram of the Airy compensation model is shown in Figure 2*a*. The topography h is isostatically supported by increasing the crustal thickness by an amount r. The geoid height for this model is

$$N = \frac{2\pi G}{g} (\rho_c - \rho_w) h \left[ z_c - z_w + \frac{h}{2} \frac{(\rho_m - \rho_w)}{(\rho_m - \rho_c)} \right]$$
(2)



Haxby and Turcotte, 1978 Sandwell and MacKenzie, 1989



high GTR = thermally-compensated swells



### separating swells from plateaus

(Sandwell and MacKenzie, JGR, v. 94, 1989)



### **Attributes of Mantle Plumes**

(Courtillot, Davaille, Besse and Stock, EPSL, v205, 2003.)

- 1. linear volcanic chain with monotonous age progression
- 2. flood basalt at origin of track
- 3. large buoyancy flux
- 4. consistently high ratios of 3 of 4 isotopes of helium
- 5. significant low shear wave velocity in underlying mantle.
- 6. geoid/topography ratio > 2.5 m/km

#### Table 1 Scores for 49 hotspots with respect to five criteria used to diagnose a potentially deep origin (see text)

### possible deep mantle plumes

(Courtillot, Davaille, Besse and Stock, *EPSL*, v. 205, 2003.)

# 9 hotspots have > 3 attributes

- 1. Afar
- 2. Caroline
- 3. Easter
- 4. Hawaii
- 5. Iceland
- 6. Louisville
- 7. Reunion
- 8. Samoa
- 9. Tristan

| Hotspot                        | Lat  | Lon<br>(°E) | Track       | Flood/plateau            | Age<br>(Ma) | Buoy.      | Reliab. | <sup>3</sup> He/ <sup>4</sup> He | Tomo<br>(500) | Count    |
|--------------------------------|------|-------------|-------------|--------------------------|-------------|------------|---------|----------------------------------|---------------|----------|
| Afar                           | 10N  | 43          | лю          | Ethiopia                 | 30          | 1          | good    | high                             | slow          | 4        |
| Ascension                      | 8S   | 346         | no          | no                       | 1           | na         | na      | na                               | 0             | 0+?      |
| Australia E                    | 385  | 143         | ves         | no                       | 1           | 0.9        | fair    | na                               | 0             | 1+?      |
| Azores                         | 39N  | 332         | no?         | no                       | i           | 1.1        | fair    | high?                            | 0             | 1+?      |
| Baja/Guadalune                 | 27N  | 247         | wes?        | 10                       | i           | 03         | noor    | low                              | 0             | 0+?      |
| Balleny                        | 675  | 163         | no.         | 10                       | ,           | na         | na      | 101                              | ő             | 0+2      |
| Bermuda                        | 33N  | 203         | 80          | no?                      | ,           | 11         | rood    | na                               | ő             | 0+2      |
| Bouwat                         | 549  | 233         | 80          | 10.                      | ;           | 0.4        | fair    | high                             | ő             | 1+2      |
| Bowie                          | 53N  | 225         | wes         | 10                       | <i>'</i> ,  | 0.3        | noor    | ngn                              | slow          | 2+2      |
| Cameroon                       | AN   | 0           | 300<br>1002 | 10                       | ;           | 0.0        | n 9     |                                  | 0             | 0+2      |
| Cameroon                       | 28N  | 340         | yea.        | 100                      | <i>'</i> ,  | 1          | foir    | low                              | elow          | 2        |
| Canal y                        | 14N  | 340         | 10          | 10                       | ;           | 16         | naar    | high                             | 0             | ÷.       |
| Canellas                       | CN . | 340         | no          | no<br>Th                 | 1           | 2          | DOOL    | high                             | 0             | 2        |
| Caroline                       | 126  | 104         | jes         | no                       | 1           | 4          | poor    | nign                             | 0             | 3        |
| Comores<br>Compart@p. Educated | 125  | 43          | no          | no<br>Kana 2             | 102         | na         | na      | na                               | 0             | 0+2      |
| Crozet/Pr. Edward              | 455  | 20          | yes?        | Karoo?                   | 185         | 0.5        | good    | na                               | 0             | 0+?      |
| Dantur                         | 13N  | 24          | yes?        | no                       | <i>'</i> .  | na         | poor    | na                               | 0             | 0+?      |
| Discovery                      | 428  | 0           | no?         | no                       | 1           | 0.5        | poor    | high                             | 0             | 1+?      |
| Easter                         | 275  | 250         | yes         | mid-Pac mnt?             | 100?        | 3          | fair    | high                             | slow          | 4+?      |
| Enter                          | AC   | 200         | yes:        | CAMP?                    | 2012        | 11a<br>0.5 | na      | na                               | 0             | 0+2      |
| Colemando                      | 45   | 328         | yes?        | CAMP?                    | 201?        | 0.5        | poor    | na                               | 0             | 0+2      |
| Galapagos                      | 0    | 268         | yes?        | Carribean?               | 90          | 1          | Taur    | high                             | 0             | 2+?      |
| Great Meteor/New England       | 28N  | 328         | ves?        | no?                      | 1           | 0.5        | poor    | na                               | 0             | 0+?      |
| Hawaii                         | 20N  | 204         | yes         | subducted?               | >80?        | 8.7        | good    | high                             | slow          | 4+?      |
| Hoggar                         | 23N  | 6           | no          | No                       | /           | 0.9        | poor    | na                               | slow          | 1        |
| Iceland                        | 65N  | 340         | yes?        | Greenland                | 61          | 1.4        | good    | high                             | slow          | 4+?      |
| Jan Mayen                      | 71N  | 352         | no?         | yes?                     | /           | na         | poor    | na                               | slow          | 1+?      |
| Juan de Fuca/Cobb              | 46N  | 230         | yes         | no                       | 1           | 0.3        | fair    | na                               | slow          | 2+?      |
| Juan Fernandez                 | 34S  | 277         | yes?        | ю                        | 1           | 1.6        | poor    | high                             | 0             | 2+?      |
| Kerguelen(Heard)               | 49S  | 69          | yes         | Rajmahal?                | 118         | 0.5        | poor    | high                             | 0             | 2+?      |
| Louisville                     | 51S  | 219         | yes         | Ontong-Java              | 122         | 0.9        | poor    | па                               | slow          | 3+?      |
| Lord Howe (Tasman East)        | 338  | 159         | yes?        | no                       | /           | 0.9        | poor    | na                               | slow          | 1+?      |
| Macdonald (Cook-Austral)       | 30S  | 220         | yes?        | yes?                     | 1           | 3.3        | fair    | high?                            | slow          | 2+?      |
| Marion                         | 47S  | 38          | yes         | Madagascar?              | 88          | na         | na      | na                               | 0             | 1+?      |
| Marqueses                      | 108  | 222         | yes         | Shatski?                 | ???         | 3.3        | na      | low                              | 0             | 2+?      |
| Martin/Trindade                | 20S  | 331         | yes?        | no                       | /           | 0.5        | poor    | na                               | fast          | 0+?      |
| Meteor                         | 528  | 1           | yes?        | no                       | 1           | 0.5        | poor    | na                               | 0             | 0+?      |
| Pitcaim                        | 268  | 230         | yes         | no                       | 1           | 3.3        | fair    | high?                            | 0             | 2+?      |
| Raton                          | 37N  | 256         | une?        | 80                       | 1           | na         | na      | na                               | slow          | 1+?      |
| Reunion                        | 215  | 56          | yes         | Deccan                   | 65          | 1.9        | poor    | high                             | 0             | 4        |
| St Helena                      | 17S  | 340         | yes         | no                       | 1           | 0.5        | poor    | low                              | 0             | 1        |
| Samoa                          | 14S  | 190         | 1125        | по?                      | 14?         | 1.6        | poor    | high                             | slow          | 4        |
| San Felix                      | 26S  | 280         | yes?        | no                       | 1           | 1.6        | poor    | na                               | 0             | 1+?      |
| Socorro                        | 19N  | 249         | no          | no                       | 1           | na         | poor    | na                               | slow          | 1+?      |
| Tahiti/Society                 | 188  | 210         | ves         | 10                       | 1           | 3.3        | fair    | high?                            | 0             | 2+?      |
| Tasmanid (Tasman central)      | 398  | 156         | ves         | 10                       | i           | 0.9        | poor    | na                               | slow          | 2        |
| Tiberti                        | 21N  | 17          | 1002        | 80                       | ,<br>i      | n.a        | noor    | n.9                              | 0             | 0+2      |
| Tristan                        |      |             |             |                          |             |            |         |                                  |               |          |
|                                | 375  | 348         | 1125        | Parana                   | 133         | 1.7        | noor    | low                              | 0             | 3        |
| Vema                           | 37S  | 348<br>4    | yes<br>wes? | Parana<br>yes? (Orange R | 133         | 1.7<br>na  | poor    | <i>low</i>                       | 0             | 3<br>0+? |

### Hawaii Iceland Reunion

- 1. linear volcanic chain with monotonous age progression
- 2. flood basalt at origin of track
- 3. large buoyancy flux
- 4. consistently high ratios of 3 of 4 isotopes of helium
- 5. significant low shear wave velocity in underlying mantle.
- 6. geoid/topography ratio > 2.5 m/km



# Plate Driving Forces on Earth



 $F_s$  - swell push = -( $g^2/2\pi G$ ) $N_s$ 

[Parsons and Richter, 1980; Dahlen, 1981; Fleitout and Froidevaux, 1982; 1983]

- $F_D$  drag
- $F_{\tau}$  trench pull

trench pull  $\approx$ 3 x ridge push?



## swell push = geoid height

• Assume: isostatic compensation and  $\lambda >> 2\pi L$ 

• swell push 
$$F_{s} = \int_{o}^{L} \Delta P(z) dz = \left[\Delta P(z)\right]_{o}^{L} - \int_{o}^{L} z \frac{\partial \Delta P}{\partial z} dz = g \int_{o}^{L} \Delta \rho z \, dz$$
  
• geoid height 
$$N = \frac{-2\pi G}{g} \int_{o}^{L} \Delta \rho(\mathbf{k}, z) \frac{e^{-2\pi |\mathbf{k}| z}}{2\pi |\mathbf{k}|} dz \approx \frac{-2\pi G}{g} \int_{o}^{L} \Delta \rho z \, dz$$

$$F_s = \frac{-g^2}{2\pi G}N$$
 and  $\mathbf{f} = \frac{-g^2}{2\pi G}\nabla N$ 

Swell-push force is independent of compensation mechanism!!

assumptions local compensation long wavelength  $(\lambda > 2\pi L)$ 

$$\vec{\mathbf{f}}_{s} = \frac{-\nu}{(1-\nu)} \frac{g^{2}}{2\pi GL} \Delta N$$
  
body force in thin  
elastic plate or shell



### stress in a spherical shell (modified from Banerdt, JGR, 1986)

$$\vec{\mathbf{f}} = \frac{-\nu}{(1-\nu)} \frac{g^2}{2\pi GL} \nabla N$$
 - poloidal body force in thin shell

$$\tau_{\theta\theta} + \tau_{\phi\phi} - 2\tau_{rr} = \frac{2\nu}{(1-\nu)} \frac{g^2}{2\pi GL} \left[ \frac{l(l+1)}{l(l+1)-2} \right] N_l^m - \text{differential stress}$$

$$\tau_{\theta\theta} + \tau_{\phi\phi} - 2\tau_{rr} \approx \frac{2\nu}{\left(1 - \nu\right)} \frac{g^2}{2\pi GL} N$$

### N=120 m produces 315 MPa in a 50 km thick lithosphere





Heidelberg Academy of Sciences and Humanities

University of Karlsruhe / International Lithosphere Program

World Stress Map - Zoback at al., 1997

# Stress from geoid (EGM96)



$$N = N_{swell} + N_{convection}$$

- Earth  $N_{convection} > N_{swell}$
- Assume:
  - *N<sub>2,0</sub>*=0;
  - degrees 2-8,  $N_{swell}$  is correlated with the topography (4m/km);
  - degrees > 8, *N* unchanged.
- Assume ridges are weak so deviatoric stress should be small and slightly extensional (15 MPa over 15km thick plate).
- Fit a harmonic spline model to residual geoid at ridges to enforce the weak-ridge boundary condition.

# Stress high-pass filtered geoid cosine taper degrees 2 -10





#### Dynamics of the India-Eurasia collision zone

#### Lucy M. Flesch

Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York

#### A. John Haines

Bullard Laboratories, University of Cambridge, Cambridge, England, United Kingdom

#### William E. Holt

Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York

**Abstract.** We present simple new dynamic calculations of a vertically averaged deviatoric stress field (over a depth average of 100 km) for Asia from geodetic, geologic, topographic, and seismic data. A first estimate of the minimum absolute magnitudes and directions of vertically averaged deviatoric stress is obtained by solving force balance equations for deviatoric stresses associated with gravitational potential energy differences within the lithosphere plus a first-order contribution of deviatoric stresses associated with stress boundary conditions. This initial estimate of the vertically averaged deviatoric stress field is obtained independent of assumptions about the rheology of the lithosphere. Absolute magnitudes of vertically averaged deviatoric stresses vary between 5 and 40 MPa. Assuming bulk viscous behavior for the lithosphere, the magnitudes of deviatoric stresses, together with the magnitudes of strain rates inferred from Quaternary fault slip rate and GPS data, yield vertically averaged effective viscosities for Tibet of  $0.5-5 \times 10^{22}$  Pa s, compared with  $1-2.5 \times 10^{23}$  Pa s in more rigid areas elsewhere in the region. A forward modeling method that solves force balance equations using velocity boundary conditions allows us to refine our estimates of the vertically averaged effective viscosity distribution and deviatoric stress field. The total vertically averaged deviatoric stress and effective viscosity field are consistent with a weak lower crust in Tibet; they are consistent with some eastward motion of Tibet and south China lithosphere relative to Eurasia; and they confirm that gravitational potential energy differences have a profound effect on the spatially varying style and magnitude of strain rate around the Tibetan Plateau. Our results for the vertically averaged deviatoric stress argue for a large portion of the strength of the lithosphere to reside within the seismogenic upper crust to get deviatoric stress magnitudes there to be as high as 100-300 MPa (in accord with laboratory and theoretical friction experiments indicating that stress drops in earthquakes are small fractions of the total deviatoric stress).



Figure 1a. Horizontal contraction (solid) and extension (open) strain axes directions associated with earthquakes larger than  $\sim M_w > 5.5$  between 1963 and 1998, showing the distributed nature of the deformation around the India-Eurasia collision zone as well as the spatial variation in the strain field [Holt et al., 1995]. Focal mechanisms are for large events with  $M_w > 7.0$ ; a few large historic events (pre-1963) are also shown [Molnar and Deng, 1984].



Figure 2b. Same as Figure 2a only GPE estimates were inferred from the EGM 96 geoid model.



Figure 2c. Same as Figure 2a only GPE estimates were inferred using seismic crustal thickness estimates determined from surface wave data in Asia (G. Laske and G. Masters, http://mahi.ucsd.edu/Gabi/sediment.html, 2000).

### **Plate Driving Forces on Earth**



- $F_s$  swell push
- $F_D$  drag
- $F_{\tau}$  trench pull

trench pull  $\approx$  3 x ridge push

### Plate Driving Forces on Venus

- assume swell push force dominates on Venus
- geoid height predicts surface strain on Venus

normal faults (rift zones) where N > 0thrust faults (wrinkle ridges) where N < 0strike-slip faults (none) where N = 0

Need both long wavelength geoid and short wavelength structural geology!

# **Geoid Topography Correlation**



(Bills and Lemoine, JGR, v 100, p. 26,257, 1995)

# Geoid Height $N = N_{swell} + N_{convection}$

| Earth                                        | Venus                                        |
|----------------------------------------------|----------------------------------------------|
| <i>N</i> = 100 m                             | <i>N</i> = 120 m                             |
| N <sub>swell</sub> = 30 m                    | <i>N<sub>swell</sub></i> = 120 m             |
| N <sub>swell</sub> < N <sub>convection</sub> | N <sub>swell</sub> > N <sub>convection</sub> |
| cannot predicted stress from N               | can predicted stress from N                  |
| need to isolate N <sub>swell</sub>           |                                              |
|                                              |                                              |
|                                              |                                              |
|                                              |                                              |

# Swell Push Force on Venus Topography and Geoid Height

|                                          |   |      |   |   |        |            |     |    |       |   |   |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     |        | 0000.0 | 0001.0 | 1        | 0000.0 | 0000.0 | 0004.0 | , 0000.0 | 1      |
|------------------------------------------|---|------|---|---|--------|------------|-----|----|-------|---|---|-----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|---|----------|-----|--------|--------|--------|----------|--------|--------|--------|----------|--------|
|                                          |   |      | S |   |        | · We       | X   | J. |       |   |   |     |        | ALL OF  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   | 4        |     |        |        |        |          |        |        |        |          |        |
|                                          | 1 |      |   |   |        |            |     |    |       |   |   |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | <b>1</b> .0 |   |          |     |        |        |        |          |        |        |        |          |        |
|                                          |   |      |   |   |        |            |     | ġ, |       |   |   |     |        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |             |   |          |     |        |        |        |          |        | K.     |        |          |        |
| ж                                        |   | 0.00 |   |   |        |            |     | K. |       |   |   | IG. |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     |        |        |        |          |        |        |        |          |        |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |   |      |   |   |        |            |     |    |       |   |   | 5   | 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     |        |        |        |          |        |        |        |          |        |
|                                          |   |      |   |   |        |            |     |    |       |   |   | 2   |        |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |             |   |          |     |        |        |        |          |        | 3      |        |          |        |
|                                          |   |      | 1 |   |        |            | · · |    | A CAR |   | C |     |        | 3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     |        |        |        |          |        |        |        |          |        |
| 12.                                      |   |      |   |   |        | a          |     |    |       |   |   |     |        |         | <u>i</u> de la constante de la cons | and a | 1           |   |          |     |        |        |        |          |        |        |        |          |        |
| -3°                                      | X |      |   |   | n<br>A |            |     |    | S)    |   |   |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     |        |        |        | 7        |        |        |        |          |        |
|                                          |   |      | * |   |        |            |     |    |       | 2 |   |     | 10 - A | C.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             | ę |          |     |        |        |        | 8.<br>82 |        | w      |        |          | ¥      |
|                                          |   |      |   | - | 8      |            |     |    |       | 2 |   |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   |          |     | 9<br>4 | •      |        |          |        |        |        |          | - Carl |
| A STATE                                  |   |      |   |   |        | ********** |     | X  |       |   |   |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |   | the Gala | Ć   |        | 6      |        | •        |        |        |        |          |        |
| -66                                      |   |      |   |   |        | S.A.       |     |    |       |   |   |     |        | A North |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 5           |   |          | . e |        | part 1 |        |          |        |        |        |          |        |

# Geoid Height, Strain Model, Rift Zones, and Wrinkle Ridges











### Yield Strength versus Geotherm



## **Conclusions for Venus**

- Venus has high correlation of geoid and topography due to isostatic compensation or poloidal mantle flow.
- Assuming λ >> 2πL and a uniform-thickness elastic shell, the thickness-averaged stress is proportional to N with no model parameters - extension over geoid highs and compression over geoid lows.
- Structural surface features, which developed over the geological history of the surface, are correlated with the present-day geoid.
- The lithosphere over major swells must support an average extensional stress of 250 MPa over 50 km thickness.