3

Motion in One Dimension

ynamics is concerned with the study of the motion of an object and
the relation of this motion to such physical concepts as force and
mass. It is convenient to describe motion using the concepts of
space and time, without regard to the causes of the motion. This
portion of mechanics is called kinematics. In this chapter we shall consider
motion along a straight line, that is, one-dimensional motion. In the next
chapter we shall extend our discussion to two-dimensional motion. Starting
with the concept of displacement discussed in the previous chapter, we shall
define velocity and acceleration, Using these concepts, we shall proceed to
study the motion of objects undergoing constant acceleration. The subject of
dynamics, which is concerned with the causes of motion and relationships

An apple and a feather,
released from rest in a 4-ft
vacuum chamber, fall at the
same rate, regardless of their
mass. Neglecting air resistance,
all objects fall to the earth
with the same acceleration of
magnitude 9.8 m/s® as
indicated by the violet arrows
in this multiflash photograph.
The velocity of the two objects
increases linearly with time as
indicated by the series of red
arrows.
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Figure 3.1 Position-time graph
for a particle moving along the x
axis. The average velocity v in the
interval At =t — ¢, is the slope of
the straight line connecting the
points P and Q.

Average velocity

between motion, forces, and the properties of moving objects, will be dis-
cussed in Chapters 5 and 6.

From everyday experience we recognize that motion represents the con-
tinuous change in the position of an object. The movement of an object
through space may be accompanied by the rotation or vibration of the object.
Such motions can be quite complex. However, it is sometimes possible to
simplify matters by temporarily neglecting the internal motions of the moving
object. In many situations, an object can be treated as a particle if the only
motion being considered is one of translation through space. An idealized
particle is a mathematical point with no size. For example, if we wish to
describe the motion of the earth around the sun, we can treat the earth as a
particle and obtain reasonable accuracy in a prediction of the earth’s orbit.
This approximation is justified because the radius of the earth’s orbit is large
compared with the dimensions of the earth and sun. On the other hand, we
could not use the particle description to explain the internal structure of the
earth and such phenomena as tides, earthquakes, and volecanic activity. On a
much smaller scale, it is possible to explain the pressure exerted by a gas on the
walls of a container by treating the gas molecules as particles. However, the
particle description of the gas molecules is generally inadequate for under-
standing those properties of the gas that depend on the internal motions of the
gas molecules, namely, rotations and vibrations.

3.1 AVERAGE VELOCITY

The motion of a particle is completely known if its position in space is known at
all times. Consider a particle moving along the x axis from point P to point Q.
Let its position at point Pbe x; at some time ¢;, and let its position at point Q be
x¢ at time f;. (The indices i and f refer to the initial and final values.) At times
other than ¢; and t;, the position of the particle between these two points may
vary as in Figure 3.1. Such a plot is often called a position-time graph. In the
time interval At = t; — ¢, the displacement of the particle is Ax = x; — x;. (Re-
call that the displacement is defined as the change in the position of the
particle, which equals its final minus its initial position value.)

The x-component of the average velocity of the particle, o, is defined as
the ratio of its displacement, Ax, and the time interval, At:

xXf— X4
tt— Y

)

(3.1)

i
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From this definition, we see that the average velocity has the dimensions of
length divided by time, or m/s in SI units and ft/s in conventional units. The
average velocity is independent of the path taken between the points Pand Q.
This is true because the average velocity is proportional to the displacement,
Ax, which in turn depends only on the initial and final coordinates of the
particle. It therefore follows that if a particle starts at some point and returns to
the same point via any path, its average velocity for this trip is zero, since its
displacement along such a path is zero. The displacement should not be con-
fused with the distance traveled, since the distance traveled for any motion is
clearly nonzero. Thus, average velocity gives us no details of the motion
between points Pand Q. (How we evaluate the velocity at some instant in time
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is discussed in the next section.) Finally, note that the average velocity in one
dimension can be positive or negative, depending on the sign of the displace-
ment. (The time interval, At, is always positive.) If the coordinate of the
particle increases in time (that is, if x; > x;), then Ax is positive and v is positive,
This corresponds to a velocity in the positive x direction. On the other hand, if
the coordinate decreases in time (x; < x;), Ax is negative; hence v is negative.
This corresponds to a velocity in the negative x direction.

The average velocity can also be interpreted geometrically by drawing a
straight line between the points P and Q in Figure 3.1. This line forms the
hypotenuse of a triangle of height Ax and base At. The slope of this line is the
ratio Ax/Al. Therefore, we see that the average velocity of the particle during
the time interval ¢, to & is equal to the “slope” of the straight line joining the
initial and final points on the space-time graph. (The word slope will often be
used when referring to the graphs of physical data. Regardless of what data are
plotted, the word slope will represent the ratio of the change in the quantity
represented on the vertical axis to the change in the quantity represented on
the horizontal axis.)

and average velocity during this time interval.

Solution The displacement is given by

Ax=x—x=4m—12m= —8m
of x.

EXAMPLE 3.1 Calculate the Average Velocity The average velocity is

A particle moving along the x axis is located at x; = 12 m ) p

att, = lsandatxy=4matt;=3s. Find its displacement v Nt c.z.het 1L _8m_ —4m/fs
At t— 3s—1s s

Since the displacement and average velocity are nega-
tive for this time interval, we conclude that the par-
ticle has moved to the left, toward decreasing values

3.2 INSTANTANEOUS VELOCITY

We would like to be able to define the velocity of a particle at a particular
instant of time, rather than just over a finite interval of time. The velocity ofa
particle at any instant of time, or at some point on a space-time graph, is called
the instantaneous velocity. This concept is especially important when the
average velocity in different time intervals is not constant.

Consider the motion of a particle between the two points P and Q on the
space-time graph shown in Figure 3.2. As the point Q is brought closer and
closer to the point P, the time intervals (At,, Aty, Ats, . . .) get progressively
smaller. The average velocity for each time interval is the slope of the appro-
priate dotted line in Figure 3.2. As the point Q approaches P, the time interval
approaches zero, but at the same time the slope of the dotted line approaches
that of the blue line tangent to the curve at the point P. The slope of the line
tangent to the curve at P is defined to be the instantancous velocity at the time
t;. In other words,

the instantaneous velocity, v, equals the limiting value of the ratio Ax/At as
At approaches zero':

1 Note that the displacement, Ax, also approaches zero as At approaches zero. However, as Ax and
At become smaller and smaller, the ratio Ax/At approaches a value equal to the true slope of the
line tangent to the x versus f curve.

Tangent
line

Figure 3.2 Position-time grap
for a particle moving along the
axis. As the time intervals startin

-at t; get smaller and smaller, th

average velocity for that interv:
approaches the slope of the lin
tangent at P. The instantaneous vt
locity at Pis defined as the slope «
the blue tangent line at the time ¢
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. Ax
v= lim —

at—o0 At (3.2)

In the calculus notation, this limit is called the derivative of x with respect tot,

written dx/dt:

Definition of the derivative

. Axr  dx
v = lim =

a—0 At dt (3.3)

The instantaneous velocity can be positive, negative, or zero.

When the slope of the space-time graph is positive, such as at the point Pin
Figure 3.3, v is positive. At point R, v is negative since the slope is negative.
Finally, the instantaneous velocity is zero at the peak Q (the turning point),
where the slope is zero. From here on, we shall usually use the word velocity to
designate instantaneous velocity.

The instantaneous speed of a particle is defined as the magnitude of the

instantaneous velocity vector. Hence, by definition, speed can never be nega-

Figure 3.3 In the position-time
graph shown here, the velocity is
positive at P, where the slope of the
tangent line is positive; the velocity
is zero at (, where the slope of the
tangent line is zero; and the veloc-
ity is negative at R, where the slope
of the tangent line is negative.

tive.

It is also possible to find the displacement of a particle if its velocity is
known as a function of time using a mathematical technique called integration.
Because this procedure may not be familiar to many students, the topic is
treated in Section 3.6, which is optional, for general interest and for those
courses that cover this material.

EXAMPLE 3.2 Average and Instantaneous

Velocity O
A particle moves along the r axis. Its x coordinate varies
with time according to the expression x = — 4t + 2¢2,

where x is in m and # is in 5. The position-time graph for
this motion is shown in Figure 3.4. Note that the particle
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Figure 3.4 (Example 3.2) Position-time graph for a particle
having an x coordinate that varies in time according to x =
—d4t + 24*. Note that 1 is not the same as v = — 4 + 4.

first moves in the negative x direction for the first second
of motion, stops instantaneously at t=1 s, and then
heads back in the positive x direction for ¢ > 1 s. (a) De-
termine the displacement of the particle in the time in-
tervals t=0tot=1sandt=1stot=3s.

In the first time interval, we set t; = 0 and tg=1s.
Since x = —4t + 2i2, we get for the first displacement

Axgy = xp—x5

[—4(1) +2(1)*] = [~ 4(0) + 2(0)?]

= —2m

Likewise, in the second time interval we can set t; = 1 s
and fg = 3 s. Therefore, the displacement in this interval
is

Axyqg=xp— x;
=[—4(3) +2(3)%] = [-4(1) + 2(1)?]

= 8m

Note that these displacements can also be read directly
from the position-time graph (Fig. 3.4).

{b) Calculate the average velocity in the time inter-
valst=0tot=1sandt=1stot=3s. \




In the first time interval, At =t;— ;=1 s. There-
fore, using Equation 3.1 and the results from (a) gives

Likewise, in the second time interval, At = 2 s; therefore

— Axm_Sm

vl i

These values agree with the slopes of the lines joining
these points in Figure 3.4,

(¢) Find the instantaneous velocity of the particle at
t=235s.

By measuring the slope of the position-time graph at
t=2.5 s, we find that v = 6 m/s. (You should show that
the velocityis—4 m/satt = 0 and zeroatt = 1 5.) Doyou
see any symmetry in the motion? For example, does the
speed ever repeat itself?2

EXAMPLE 3.3 The Limiting Process

The position of a particle moving along the x axis varies in
time according to the expression x = 32, where xisinm,
3is in m/s2, and ¢ is in s. Find the velocity at any time.

Solution The position-time graph for this motion is
shown in Figure 3.5. We can compute the velocity at any
time ¢ by using the definition of the instantaneous veloc-
ity. If the initial coordinate of the particle at time £ is
x; = 3t%, then the coordinate at a later time ¢ + At is
xp=3(t + At)2 = 3[12 + 2t At + (A1)?]
= 3t + 6t At + 3(At)?
Therefore, the displacement in the time interval At is

Ax = xp— x; = 312 + 6t At + 3(At)2 — 312

= 6t At + 3(At)2
| The average velocity in this time interval is
o= A—j =6t+ 3 At

To find the instantaneous velocity, we take the limit of
this expression as At approaches zero. In doing so, we see
that the term 3 At goes to zero, therefore

. Ax
v=lim —=

at—0 At 6t m/s

| 2 We could also use the rules of differential calculus to find

dx d

d dt
(—4t+ 2¢2) = 4(—1 +t) m/s. Therefore, at t=2.5 5, v=

the velocity from the displacement. That is, v=

| 4(—1 +2.5) = 6 m/s. A review of basic operations in the cal-
| culus is provided in Appendix B.6.
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Figure 3.5 (Example 3.3) Posi-
tion-time graph for a particle hav-
ing an x coordinate that varies in
time according to x=3t®. Note
that the instantaneous velocity at
t = 3 s equals the slope of the blue
line tangent to the curve at this
point,

Notice that this expression gives us the velocity at any
general time ¢. It tells us that v is increasing linearly in
time. It is then a straightforward matter to find the veloc-
ity at some specific time from the expression v = 6¢. For
example, at £ =3 s, the velocity is v =6(3) =18 m/s.
Again, this can be checked from the slope of the graph
(the blue line) at t =3 s.

The limiting process can also be examined numeri-
cally. For example, we can compute the displacement
and average velocity for various time intervals beginning
at t =3 s, using the expressions for Ax and v. The results
of such calculations are given in Table 3.1. Notice that as
the time intervals get smaller and smaller, the average
velocity more nearly approaches the value of the instan-
taneous velocity at t = 3 s, namely, 18 m/s.

TABLE 3.1 Displacement and Average Velocity
for Various Time Intervals for the Function x = 32
(the intervals begin at ¢ = 3 s)

At (s) Ax (m) Ax/At (m/s)
1.00 21 21

0.50 9.75 19.5
0.25 4.69 18.8
0.10 1.83 18.3
0.05 0.9075 18.15
0.01 0.1803 18.03
0.001 0.018003 18.003
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Figure 3.6 Velocity-time graph
for a particle moving in a straight
line. The slope of the line connect-
ing the points P and Q is defined as
the average acceleration in the
time interval At =t — t.

A multiflash photograph of a freely
falling baseball (mass 0.23 kg) and
shotput (mass 5.4 kg) taken at a
flash rate of 1/15 s. The spacing be-
tween markers is 10 em. Note that
the two objects fall at the same
rate. Why is this so, in view of the

fact that they have different
masses? (Courtesy of Henry Leap)

3.3 ACCELERATION

When the velocity of a particle changes with time, the particle is said to be
accelerating. For example, the speed of a car will increase when you “‘step on
the gas.” The car will slow down when you apply the brakes. However, we
need a more precise definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity v, at time ¢, and a
velocity v at time ¢, as in Figure 3.6.

The average acceleration of the particle in the time interval At = t; — t;is
defined as the ratio Av/At, where Av = v; — v; is the change in velocity in
this time interval:

ve— v Ao
e—t At

(3.4)

a

Acceleration is a vector quantity having dimensions of length divided by
(time)?, or L/T2. Some of the common units of acceleration are meters per
second per second (m/s?) and feet per second per second (ft/s?).

In some situations, the value of the average acceleration may be different
over different time intervals. It is therefore useful to define the instantaneous
acceleration as the limit of the average acceleration as At approaches zero.
This concept is analogous to the definition of instantaneous velocity discussed
in the previous section. If we imagine that the point Q is brought closer and
closer to the point P in Figure 3.6 and take the limit of the ratio Av/At as At
approaches zero, we get the instantaneous acceleration:

(3.5)

a=lim —=—
at—o At dt

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity-time
graph. One can interpret the derivative of the velocity with respect to time as
the time rate of change of velocity. Again you should note that if a is positive,
the acceleration is in the positive x direction, whereas negative a implies
acceleration in the negative x direction. From now on we shall use the term
acceleration to mean instantaneous acceleration. Average acceleration is sel-
dom used in physics.
Since v = dx/dt, the acceleration can also be written

_dv_d (dx) _d¥

“T@ T @\dt) ae

That is, the acceleration equals the second derivative of the coordinate with
respect to time.

Figure 3.7 shows how the acceleration-time curve can be derived from
the velocity-time curve. In these sketches, the acceleration at any time is
simply the slope of the velocity-time graph at that time. Positive values of the
acceleration correspond to those points where the velocity is increasing in the
positive x direction. The acceleration reaches a maximum at time t; , when the
slope of the velocity-time graph is a maximum. The acceleration then goes to
zero at time t3, when the velocity is a maximum (that is, when the velocity is

(3.6)
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Figure 3.7 The instantaneous acceleration can be obtained from the velocity-time graph (a). At
each instant, the acceleration in the a versus t graph (b) equals the slope of the line tangent to the v

versus { curve.

momentarily not changing and the slope of the v versus ¢ graph is zero).
Finally, the acceleration is negative when the velocity in the positive x direc-

tion is decreasing in time.

EXAMPLE 3.4
\cceleration
The velocity of a particle moving along the x axis variesin
time according to the expression v= (40 — 5¢2) m/s,
where t is in s. (a) Find the average acceleration in the
time interval t=0to ¢t =2 s.

The velocity-time graph for this function is given in
Figure 3.8. The velocities at ; = 0 and #;= 2 s are found
by substituting these values of { into the expression given
for the velocity:

v; = (40 — 5t2) m/s = [40 — 5(0)2] m/s = 40 m/s

Average and Instantaneous

—{mfs}

40

"\ Slope =
. 71 . =20 /s> |
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Figure 3.8 (Example 3.4) The velocity-time graph for a parti-
cle moving along the x axis according to the relation v = (40 —
5¢2) m/s. Note that the acceleration at { = 2 sis equal to the slope
of the blue tangent line at that time.

vp= (40 — 54%) m/s = [40 — 5(2)2] m/s = 20 m/s

Therefore, the average acceleration in the specified time
interval At = t;— t, = 2 s is given by

vp— v _ (20— 40) m/s _
t—t (2—0)s

The negative sign is consistent with the fact that the
slope of the line joining the initial and final points on the |
velocity-time graph is negative. 1
(b) Determine the acceleration at t = 2 s,
The velocity at time ¢ is given by v; = (40 — 5¢2) m/s,
and the velocity at time ¢ + At is given by

vp= 40 — 5(t + At)2 = 40 — 5:2 — 10t At — 5(Af)?

a= —10 m/s? 1
|
|

Therefore, the change in velocity over the time interval
At is

Av = vp— v;= [~ 10t At — 5(At)?] m/s

Dividing this expression by At and taking the limit of the
result as At approaches zero, we get the acceleration at
any time t:

o Av _ e __ 2
a ltlg}) & gtn;no( 10t —5 At) 10t m/s

Therefore, at ¢t = 2 s, we find that

a=(—10)(2) m/s?2 = —20 m/s?

This result can also be obtained by measuring the slope
of the velocity-time graph at t = 2 s. Note that the accel-
eration is not constant in this example. Situations involv-
ing constant acceleration will be treated in the next sec-
tion.
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Velocity as a function of time

So far we have evaluated the derivatives of a function by starting with the
definition of the function and then taking the limit of a specific ratio. Those of
you familiar with the calculus should recognize that there are specific rules for
taking the derivatives of various functions. These rules, which are listed in
Appendix B.6, enable us to evaluate derivatives quickly.

Suppose x is proportional to some power of t, such as

x = At"

where A and n are constants. (This is a very common functional form.) The
derivative of x with respect to ¢ is given by

dx

— =pAt"!

"
Applying this rule to Example 3.3, where x = 3%, we see that v = dx/dt = 6t,
in agreement with our result of taking the limit explicitly. Likewise, in Exam-
ple 3.4, where v =40 — 5¢2, we find that a = dv/dt = —10¢. (Note that the
rate of change of any constant quantity is zero.)

3.4 ONE-DIMENSIONAL MOTION WITH CONSTANT
ACCELERATION

If the acceleration of a particle varies in time, the motion can be complex and
difficult to analyze. A very common and simple type of one-dimensional mo-
tion occurs when the acceleration is constant, or uniform. Because the acceler-
ation is constant, the average acceleration equals the instantaneous accelera-
tion. Consequently, the velocity increases or decreases at the same rate
throughout the motion.

If we replace a by a in Equation 3.4, we find that

U 0
f!' - ti

a=

For convenience, let t; = 0 and ¢ be any arbitrary time t. Also, let v; = v, (the
initial velocity at ¢ = 0) and v = v (the velocity at any arbitrary time ). With
this notation, we can express the acceleration as

_ U1,

t
or

v =1, + at (for constant a) (3.7)

This expression enables us to predict the velocity at any time tif the initial
velocity, acceleration, and elapsed time are known. A graph of velocity versus
time for this motion is shown in Figure 3.9a. The graph is a straight line the
slope of which is the acceleration, «, consistent with the fact that a = dv/dtisa
constant. From this graph and from Equation 3.7, we see that the velocity at
any time t is the sum of the initial velocity, vy, and the change in velocity, at.
The graph of acceleration versus time (Fig. 3.9b) is a straight line with a slope
of zero, since the acceleration is constant. Note that if the acceleration were
negative (the particle is slowing down), the slope of Figure 3.9a would be
negative.
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Figure 3.9 A particle moving along the x axis with constant acceleration a; (a) the velocity-time
graph, (b) the acceleration-time graph, and (c) the space-time graph.

Because the velocity varies linearly in time according to Equation 3.7, we
can express the average velocity in any time interval as the arithmetic mean of
the initial velocity, vy, and the final velocity, v:

vgtov
2

v= (for constant a) (3.8)
Note that this expression is only useful when the acceleration is constant, that
is, when the velocity varies linearly with time.

We can now use Equations 3.1 and 3.8 to obtain the displacement as a
function of time. Again, we choose t; = 0, at which time the initial position is

x; = xo. This gives
_ + o
Ax=vAt=(v°2 L)t

or
x — xo = 3(v + vo)t (for constant a)  (3.9)
We can obtain another useful expression for the displacement by substi-

tuting Equation 3.7 into Equation 3.9:
x — x5 = L(vg + vy + at)t
x — x5 = vot + Lat? (for constant a) (3.10)
The validity of this expression can be checked by differentiating it with re-
spect to time, to give
de_d
dt dt
Finally, we can obtain an expression that does not contain the time by
substituting the value of ¢ from Equation 3.7 into Equation 3.9. This gives

u—uo)ﬁuz—uo2

a 2a

1
x0+uut+§at2)=vu+at

i rami o
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Velocity as a function of
displacement

02 =1y% + 2a(x — x,) (for constant a) (3.11)

A position-time graph for motion under constant acceleration assuming
positive a is shown in Figure 3.9c. Note that the curve representing Equation
3.10 is a parabola. The slope of the tangent to this curve at t = 0 equals the
initial velocity, vy, and the slope of the tangent line at any time t equals the
velocity at that time.

If motion occurs in which the acceleration is zero, then we see that

v—voi }whena=0

x—xg=ut
That is, when the acceleration is zero, the velocity is a constant and the
displacement changes linearly with time.

Equations 3.7 through 3.11 are five kinematic expressions that may be
used to solve any problem in one-dimensional motion with constant accelera-
tion. Keep in mind that these relationships were derived from the definition of
velocity and acceleration, together with some simple algebraic manipulations
and the requirement that the acceleration be constant. It is often convenient to
choose the initial position of the particle as the origin of the motion, so that
xo = 0 at t = 0. In such a case, the displacement is simply x.

The four kinematic equations that are used most often are listed in Table
3.2 for convenience.

The choice of which kinematic equation or equations you should use
in a given situation depends on what is known beforehand. Sometimes it is
necessary to use two of these equations to solve for two unknowns, such
as the displacement and velocity at some instant. For example, suppose the
initial velocity, vy, and acceleration, 4, are given. You can then find (1) the
velocity after a time t has elapsed, using v = v, + at, and (2) the displacement
after a time t has elapsed, using x — xo = vt + 4at?. You should recognize that
the quantities that vary during the motion are velocity, displacement, and
time.

You will get a great deal of practice in the use of these equations by solving
anumber of exercises and problems. Many times you will discover that there is
more than one method for obtaining a solution.

TABLE 3.2 Kinematic Equations for Motion in a Straight Line Under Constant
Acceleration

Information
Equation Given by Equation
v=uvy +at Velocity as a function of time
x —xg =40+ vt Displacement as a function of velocity and time
x — xp = vgt + tat? Displacement as a function of time
v? = vp? + 2a(x — xp) Velocity as a function of displacement

Note: Motion is along the x axis. At t =0, the position of the particle is xo and its velocity is vy.




