The Foucault pendulum at the
Smithsonian Institution in
Washington, D.C. This type of
pendulum was first used by
the French physicist Jean
Foucault to verify the earth’s
rotation experimentally.
During its swinging motion,
the pendulum’s plane of
oscillation appears to rotate,
as the bob successively knocks
over the red indicators
arranged in a horizontal circle.
In reality, the pendulum’s
plane of motion is fixed in
space, while the earth rotates
beneath the swinging
pendulum. (Courtesy of the
Smithsonian Institution)
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Oscillatory Motion

he main objectives of the previous chapters was to discover that the

motion of a body can be predicted if the initial conditions describ-

ing its state of motion and the external forces acting on it are known.

If a force varies in time, the velocity and acceleration of the body
will also change with time. A very special kind of motion occurs when the force
onabody is proportional to the displacement of the body from equilibrium. If
this force always acts toward the equilibrium position of the body, a repetitive
back-and-forth motion will result about this position. The motion is an exam-
ple of what is called periodic or oscillatory motion.

You are most likely familiar with several examples of periodic motion,
such as the oscillations of a mass on a spring, the motion of a pendulum, and the
vibrations of a stringed musical instrument. The number of systems that ex-
hibit oscillatory motion is extensive. For example, the molecules in a solid
oscillate about their equilibrium positions; electromagnetic waves, such as
light waves, radar, and radio waves, are characterized by oscillating electric
and magnetic field vectors; and in alternating-current circuits, voltage, cur-
rent, and electrical charge vary periodically with time.

Most of the material in this chapter deals with simple harmonic motion.
For this type of motion, an object oscillates between two spatial positions for
an indefinite period of time, with no loss in mechanical energy. In real me-
chanical systems, retarding (or frictional) forces are always present. Such
forces reduce the mechanical energy of the system as motion progresses, and
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the oscillations are said to be damped. If an external driving force is applied
such that the energy loss is balanced by the energy input, we call the motion a
forced oscillation.

13.1 SIMPLE HARMONIC MOTION

A particle moving along the x axis is said to exhibit simple harmonic motion
when #, its displacement from equilibrium, varies in time according to the
relationship

x= A cos(wt + 9) (13.1)

where A, @, and J are constants of the motion. In order to give physical
significance to these constants, it is convenient to plot x as a function of t, as in
Figure 13.1. First, we note that A, called the amplitude of the motion, is
simply the maximum displacement of the particle in either the positive or
negative x direction. The constant @ is called the angular frequency (defined in
Eq. 13.4). The constant angle ¢ is called the phase constant (or phase angle)
and along with the amplitude A is determined uniquely by the initial displace-
ment and velocity of the particle. The constants & and A tell us what the
displacement was at time ¢ = 0. The quantity (wt + 6) is called the phase of the
motion and is useful in comparing the motions of two systems of particles. Note
that the function x is periodic and repeats itself when wt increases by 2
radians.

The period, T, is the time for the particle to go through one full cycle of its
motion. That is, the value of x at time ¢ equals the value of x at time t + T. We
can show that the period of the motion is given by T = 27/ by using the fact
that the phase increases by 27 radians in a time T:

wt+d+2n=owt+T)+4

Hence, T = 2m or
T=— (13.2)

The inverse of the period is called the frequency of the motion, f. The
frequency represents the number of oscillations the particle makes per unit
time:

Iy
e e 3
The units of fare cycles/s, or hertz (Hz).
Rearranging Equation 13.3 gives
2
w =2nf=T” (13.4)

The constant w is called the angular frequency and has units of rad/s. We
shall discuss the geometric significance of @ in Section 13.4.

Displacement versus time for
simple harmonic motion

Figure 13.1 Displacement versus
time for a particle undergoing sim-
ple harmonic motion. The ampli-
tude of the motion is A and the pe-
riod is T.

Period

Frequency

Angular frequency
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Velocity in simple harmonic

motion

Acceleration in simple
harmonic motion

Maximum values of velocity

and acceleration in simple
harmonic motion

We can obtain the velocity of a particle undergoing simple harmonic
motion by differentiating Equation 13.1 with respect to time:

v= i—: = —wA sin(wt + ) (13.5)

The acceleration of the particle is given by dv/dt:

a=%=—w”ﬁl cos(wt + J) (13.6)

Since x = A cos(wt + d), we can express Equation 13.6 in the form
a=—w (13.7)
From Equation 13.5 we see that since the sine and cosine functions oscil-
late between £ 1, the extreme values of v are equal to = wA. Equation 13.6

tells us that the extreme values of the acceleration are = w?A. Therefore, the
maximum values of the velocity and acceleration are given by

Vmax = WA (13.8)

G = WA (13.9)

Figure 13.2a represents the displacement versus time for an arbitrary
value of the phase constant. The projection of a point moving with uniform

|
|

e
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=

=
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Figure 13.2  Graphical representation of simple harmonic motion: (a) the displacement versus
time, (b) the velocity versus time, and (c) the acceleration versus time. Note that the velocity is
90° out of phase with the displacement and the acceleration is 180° out of phase with the
displacement.
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circular motion on a reference circle of radius A also moves in sinusoidal
fashion. This will be discussed in more detail in Section 13.5.

The velocity and acceleration versus time curves are illustrated in Figures
13.2b and 13.2¢. These curves show that the phase of the velocity differs from
the phase of the displacement by /2 rad, or 90°. That is, when x is a maximum
or a minimum, the velocity is zero. Likewise, when x is zero, the speed is a
maximum. Furthermore, note that the phase of the acceleration differs from
the phase of the displacement by z radians, or 180°. That is, when x is a
maximum, a is 2 maximum in the opposite direction.

As we stated earlier, the solution x = A cos(wt + &) is a general solution of
the equation of motion, where the phase constant § and the amplitude A must
be chosen to meet the initial conditions of the motion. The phase constant is
important when comparing the motion of two or more oscillating particles.
Suppose that the initial position x, and initial velocity v, of a single oscillator
are given, that is, at t=0, x=1x, and v = vp. Under these conditions, the
equations x = A cos(wt + &) and v = — wA sin(wt + J) give

rp=Acosd and vy = — A sin §

Dividing these two equations eliminates A, giving

v
L=—wtan s
Xg

5 The phase angle  and ampli-
tan § = ——— (13.10a) tude A can be obtained from
wxy the initial conditions

o0 \2
Furthermore, if we take the sum x,% + (&:) = A2 cos? 6 + A?sin? d and solve

fUl A, we Jill(l l at
0 ) ( . )

Thus, we see that § and A are known if x,, @, and v, are specified. We shall treat
a few specific cases in the next section.

We conclude this section by pointing out the following important proper-
ties of a particle moving in simple harmonic motion:

1. The displacement, velocity, and acceleration all vary sinusoidally with
time but are not in phase, as shown in Figure 13.2.
2. The acceleration of the particle is proportional to the displacement,  Properties of simple harmonic

but in the opposite direction. motion
3. The frequency and the period of motion are independent of the ampli-
tude.
EXAMPLE 13.1 An Oscillating Body 0O where t is in s, and the angles in the parentheses are in

A body oscillates with simple harmonic motion along the  radians. (a) Determine the amplitude, frequency, and
x axis. Its displacement varies with time according tothe ~ period of the motion.
equation By comparing this equation with the general rela-
tion for simple harmonic motion, x = A cos(wt + 4), we
_ r see that A= 4.0 m and @ = 7 rad/s; therefore we find
*=(4.0m) 005(’“ * ) F=wj2n=7/2n=0505s"1and T=1/f=2.0s.
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(b) Calculate the velocity and acceleration of the
| body at any time .

dx . n\ d
v —E_—A&{] sm(ﬂ:t+z) F (mt)

= —(4n m/s) sin(m‘-f- E)

dv m\ d
a=—= —4zn cos(:zt +Z) p (mt)

= — (472 m/s?) cos(?rt + %)

(c) Using the results to (b), determine the position,
velocity, and acceleration of the body at t =1 s.

Noting that the angles in the trigonometric func-
| tions are in radians, we getatt=1s

| x=(4.0m) COS(H +z) = (4.0 m) cos(%)
=(4.0m)(=0.707)= —2.83m

v =—(4% m/s) sin(%) = —(4n m/s)(—0.707) = 8.89

m/s
a=— (472 m/s?) cos(%) = —(4n? m/s?)(—0.707)
= 27.9 m/s?

(d) Determine the maximum speed and maximum
acceleration of the body.

From the general relations for v and a found in (b),
we see that the maximum values of the sine and cosine
functions are unity. Therefore, v varies between £ 4n
m/s, and e varies between +4n% m/s?. Thus, vy, =
4m mfs and a,,,, = 472 m/s%. The same results are ob-
tained using Upe = @A and ag,, = WA, where A=
4.0 m and @ = m rad/s.

(e) Find the displacement of the body between t =0
andt=1s.
The x coordinate at t = 0 is given by

2o = (4.0 m) cos(O + g) = (4.0 m)(0.707) = 2.83 m

In (c), we found that the coordinate at t =1 s was —2.8
m; therefore the displacement betweent=0andt=1s
is

Ar=x—1=—283m—283m= —566m
Because the particle’s velocity changes sign during

the first second, the magnitude of Ax is not the same as
the distance traveled in the first second.

(f) What is the phase of the motion at ¢t = 2 sP
The phase is defined as wt + &, where in this case
® = mand é = n/4. Therefore, at t = 2 5, we get

Phase = (wt + 8);p = 7(2) + 7/4 = Om/4 rad

13.2 MASS ATTACHED TO A SPRING

In Chapter 7 we introduced the physical system consisting of a mass attached
to the end of a spring, where the mass is free to move on a horizontal, friction-
less surface (Fig. 13.3). We know from experience that such a system will
oscillate back and forth if disturbed from the equilibrium position x=0,
where the spring is unstretched. If the surface is frictionless, the mass will
exhibit simple harmonic motion. One possible experimental arrangement that
clearly demonstrates that such a system exhibits simple harmonic mation is
illustrated in Figure 13.4, in which a mass oscillating vertically on a spring has
a marking pen attached to it. While the mass is in motion, a sheet of paper is
moved horizontally as shown, and the marking pen traces out a sinusoidal
pattern. We can understand this qualitatively by first recalling that when the
mass is displaced a small distance x from equilibrium, the spring exerts a force
on m given by Hooke’s law,

F=—kr (13.11)
where k is the force constant of the spring. We call this a linear restoring force
since it is linearly proportional to the displacement and is always directed
toward the equilibrium position, opposite to the displacement. That is, when
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the mass is displaced to the right in Figure 13.3, x is positive and the restoring
force is to the left. When the mass is displaced to the left of x =0, then x is
negative and F is to the right. If we now apply Newton’s second law to the
motion of m in the x direction, we get

F=—kx=ma
L (13.12)
m

that is, the acceleration is proportional to the displacement of the mass from
equilibrium and is in the opposite direction. If the mass is displaced a maximum
distance x = A at some initial time and released from rest, its initial accelera-
tion will be —kA/m (that is, it has its extreme negative value). When it passes
through the equilibrium position, x = 0 and its acceleration is zero. At this
instant, its velocity is a maximum. It will then continue to travel to the left of
equilibrium and finally reach x = —A, at which time its acceleration is kA/m
(maximum positive) and its velocity is again zero. Thus, we see that the mass
will oscillate between the turning points * = +A. In one full cycle of its mo-
tion, the mass travels a distance 4A.

We shall now describe the motion in a quantitative fashion. This can be
accomplished by recalling that a = dv/dt = d*x/dt*. Thus, we can express
Equation 13.12 as

d2x k

F o] ; x (13. 13)
If we denote the ratio k/m by the symbol @?,

w? = kim (13.14)

then Equation 13.13 can be written in the form

d’x 3

—_—— 13.1

pr w*x ( 5)

What we now require is a solution to Equation 13.15, that is, a function
x(t) that satisfies this second-order differential equation. The nature of such a
solution x(t) as an algebraic relationship is that it reduces the differential
equation to an identity. However, since Equations 13.15 and 13.7 are equiva-
lent, we see that the solution must be that of simple harmonic motion:

x(t) = A cos(wt + &)
To see this explicitly, note that if
x = A cos(wt + &)

then
dx d .
i A pr cos(wt + 8) = — wA sin{wt + J)
d®x

i —mA ;id_t sin(wt + ¢) = — w?A cos(wt + J)

F
e

(a) -
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Figure 13.3 A mass attached to
a spring on a frictionless surface
exhibits simple harmonic motion.
{a) When the mass is displaced
to the right of equilibrium, the
displacement is positive and the ac-
celeration is negative. (b} At the
equilibrium position, x = 0, the ac-
celeration is zero but the speedisa
maximum. (¢) When the displace-
ment is negative, the acceleration
is positive.

Motion

of paper\k

Figure 13.4 An experimental ap-
paratus for demonstrating simple
harmonic motion. A pen attached
to the oscillating mass traces out a
sine wave on the moving chart
paper.
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Period and frequency for
mass-spring system

Comparing the expressions for x and d?x/dt*, we see that d*x/dt* = — w*x and
Equation 13.15 is satisfied.

The following general statement can be made based on the above discus-
sion:

Whenever the force acting on a particle is linearly proportional to the
displacement and in the opposite direction, the particle will exhibit sim-
ple harmonic motion.

We shall give additional physical examples in subsequent sections.
Since the period is given by T = 27/w and the frequency is the inverse of
the period, we can express the period and frequency of the motion for this

system as
2 m
B o 13.16
T = 2n 2 ( )

1
e (13.17)

That is, the period and frequency depend only on the mass and on the force
constant of the spring. As we might expect, the frequency is larger for a stiffer
spring and decreases with increasing mass.

It is interesting to note that a mass suspended from a vertical spring
attached to a fixed support will also exhibit simple harmonic motion. Although
there is a gravitational force to consider in this case, the equation of motion
still reduces to Equation 13.15, where the displacement is measured from the
equilibrium position of the suspended mass. The proof of this is left as a
problem (Problem 56).

Special Case I In order to better understand the physical significance of our
solution of the equation of motion, let us consider the following special case.
Suppose we pull the mass from equilibrium by a distance A and release it from
rest from this stretched position, as in Figure 13.5. We must then require that
our solution for x(t) obey the initial conditions that at t = 0, x, = Aand v, = 0.
These conditions will be met if we choose J = 0, giving x = A cos wt as our
solution. Note that this is consistent with x = A cos(wt + &), where x, = Aand
# = 0. To check this, we see that the solution x = A cos wt satisfies the condi-
tion that x, = A at £ = 0, since cos 0 = 1. Thus, we see that A and J contain the

t=10
w=A x=Acos w

| v, =10

Figure 13.5 A mass-spring system that starts from rest at xo = A. In this case, § =0, and so
x=A cos wt,



13.2 MASS ATTACHED TO A SFRING

r = A cos wt

/\ v=—wA sin wt

|

Special Case I 3 / i
o7 aT

!

T n T T

2 2
a=—w?A cos ot

Figure 13.6 Displacement, velocity, and acceleration versus time for a particle undergoing
simple harmonic motion under the initial conditions that at t = 0, xo = A and v, = 0.

information on initial conditions. Now let us investigate the behavior of the
velocity and acceleration for this special case. Since x = A cos wt

dx
v =—=—wA sin wt
dit
and
dv
a=—=—w?A cos wt
dt
From the velocity expression v = — A sin wt, we see thatatt =0, v, =0, as

we require. The expression for the acceleration tells us that at t=0, a =
— w?A. Physically this makes sense, since the force on the mass is to the left
when the displacement is positive. In fact, at this position F = — kA (to the left),
and the initial acceleration is —kA/m.

We could also use a more formal approach to show that x = A cos wt is the
correct solution by using the relation tan 6 = —u,/wx, (Eq. 13.10a). Since
vo=0att=0,tand=0andso 6 =0. T

The displacement, velocity, and acceleration versus time are plotted in
Figure 13.6 for this special case. Note that the acceleration reaches extreme
values of + w2A when the displacement has extreme values of +A. Further-

In
=
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more, the velocity has extreme values of £®A, which both occur at x = 0.
Hence, the quantitative solution agrees with our qualitative description of this o
system.

Special Case I Now suppose that the mass is given an initial velocity vp to the

Figure 13.7 The mass-spring sys-
tem starts its motion at the equilib-

right at the unstretched position of the spring so thatat ¢ = 0,x, = 0and v = 0o rjum position, x, = 0 at t = 0. Ifits
(Fig. 13.7). Our particular solution must now satisfy these initial conditions. initial velocity s vy to the right, its x

U,

Since the mass is moving toward positive x valuesatt = 0,andxo = 0att =0, o dinate varies as x = - sin ot.
(43}

the solution has the form x = A sin wt.
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Applying tan d = —vo/wx, and the initial condition that x,=0 at =0
gives tan = — or § = — /2. Hence, the solution is x = A cos(wt — 7/2),
which can be written x = A sin wt. Furthermore, from Equation 13.10b we see
that A = vy/w; therefore we can express our solution as

Yo .
=— s wt
w

The velocity and acceleration in this case are given by

v dx s wt
=— =1 C0
. °
a ° W, sin wt
=—= — v, sin
dt 0

This is consistent with the fact that the mass always has a maximum speed at
x = 0, while the force and acceleration are zero at this position. The graphs of
these functions versus time in Figure 13.6 correspond to the origin at O’. What
would be the solution for x if the mass is initially moving to the left in Figure

13.77

EXAMPLE 13.2 That Car Needs a New Set of Shocks

A car of mass 1300 kg is constructed using a frame sup-
| ported by four springs. Each spring has a force constant
of 20 000 N/m. If two people riding in the car have a
combined mass of 160 kg, find the frequency of vibra-
tion of the car when it is driven over a pot hole in the
road.

Solution We shall assume that the weight is evenly dis-
tributed. Thus, each spring supports one fourth of the
load. The total mass supported by the springs is 1460 kg,
and therefore each spring supports 365 kg. Hence, the
frequency of vibration is

1 [E_1 [20000N/m _
f_ﬁrr m 2z 365kg WS

‘ Exercise 1 How long does it take the car to execute two
complete vibrations?
Answer 1.70s,

EXAMPLE 13.3 A Mass-Spring System
A mass of 200 g is connected to a light spring of force
constant 5 N/m and is free to oscillate on a horizontal,
frictionless surface. If the mass is displaced 5 cm from
equilibrium and released from rest, as in Figure 13.5,
(a) find the period of its motion.

This situation corresponds to Case I, where x =
I A cos wtand A =5 X 1072 m. Therefore,

_ kK _ 5N/m _
“”\/;_ V3o x109kg  ° s

Therefore

(b) Determine the maximum speed of the mass.

Ummax = WA = (5 rad/s)(5 X 102 m) = 0.250 m/s

(c¢) What is the maximum acceleration of the mass?

e = @W*A=(5rad/s)2(5 X 1072 m) = 1.25 m/s?
(d) Express the displacement, speed, and accelera-
tion as functions of time.
The expression x = A cos wt is our special solution
for Case I, and so we can use the results from (a), (b), and
(c) to get

x=Acoswt= (0.05 m) cos 5t

v=—wAsinwt= —(0.25 m/s) sin 5¢

a=—w?Acoswt= —(1.25m/s%) cos 5t
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13.3 ENERGY OF THE SIMPLE HARMONIC OSCILLATOR

Let us examine the mechanical energy of the mass-spring system described in
Figure 13.6. Since the surface is frictionless, we expect that the total mechani-
cal energy is conserved, as was shown in Chapter 8, We can use Equation 13.5
to express the kinetic energy as

K = imo® = imw?A? sin%(wt + 0) (13.18)
The elastic potential energy stored in the spring for any elongation x is
given by 1kx%. Using Equation 13.1, we get

Potential energy of a simple
= L}y2 = L A2 2 5) ple
U= gkx $kA? cos*(wt + 9) (13.19) harmonic oscillator

Kinetic energy of a simple
harmonic oscillator

We see that K and U are always positive quantities. Since @? = k/m, we can
express the total energy of the simple harmonic oscillator as

E =K + U= $kA%[sin®(wt + ) + cos?(wt + 6)]

But sin @ + cos? § = 1, where 6 = wt + J; therefore this equation reduces to

Total energy of a simple
harmonic oscillator

E = 1kA? (13.20)

That is,

the energy of a simple harmonic oscillator is a constant of the motion and
proportional to the square of the amplitude.

In fact, the total mechanical energy is just equal to the maximum potential
energy stored in the spring when x = = A. At these points, v = 0 and there isno
kinetic energy. At the equilibrium position, x = 0 and U= 0, so that the total
energy is all in the form of kinetic energy. That is, at x = 0, E = 3mof, =
Imea?A2,

Plots of the kinetic and potential energies versus time are shown in Figure
13.8a, where we have taken § = 0. In this situation, both K and U are always

U= ;krz
v I
K K= Emvz
KU =0 K, U
1, .,
3 kA |
| |
| |
| |
| |
| [ _
| |
t L—x
T T -A o A
2
(a) (b)

Figure 13.8 (a) Kinetic energy and potential energy versus time for a simple harmonic oscillator
with 8 = 0. (b) Kinetic energy and potential energy versus displacement for a simple harmonic
oscillator. In either plot, note that K + U = constant.



