
THERMAL RADIATION SUMMARY
(Rees Chapter 2)

Planck's Law describes the amplitude of radiation emitted (i.e., spectral radiance) from a black

body.  It is generally provided in one of two forms; Lλ(λ) is the radiance per unit wavelength as a

function of wavelength λ and Lν(ν)  is the radiance per unit frequency as a function of frequency ν.

The first form is

Lλ (λ) = 2hc2
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   where

T - temperature
c - speed of light 2.99 x 10-8 m s-1

h - Planck's constant 6.63 x 10-34 J s
k - Boltzmann's constant 1.38x10-23 J ˚K-1

Lλ - spectral radiance W m-3 sr -1

Lν - spectral radiance W m-2 Hz-1 sr -1

To relate the two forms and establish Lν one takes the derivative of L with respect to ν using the

chain rule 
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The Stefan-Boltzmann Law gives the total black body radiance as a function of the temperature

T.  One can derive this law by integrating the spectral radiance over the entire spectrum.  This is left

to the reader as an exercise.
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or L = σ T4 where σ is the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 ˚K-4 sr-1).

Wein's Law provides the wavelength (or frequency) there the spectral radiance has maximum
value.  This can be found by taking the derivative of Lλ with respect to wavelength and determining





where this function is zero.  This is another excellent exercise; after some algebra you should arrive

at the following transcendental equation

1 - e-γ = 
γ
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   ⇒  γ = 4.965

where

γ = hc
kTλmax

.

The more common form is λmax = Cw/T   where  Cw = 2.898  x 10-3 ˚Km.   Note that one could

perform an experiment to measure the total radiance from a black body and establish the Stefan-

Boltzmann constant σ.  Similarly one could determine the wavelength for maximum black body

output to estimate Wein's constant Cw.  Then with a knowledge of these two constants one could

estimate Planck's constant h and Boltzmann's constant k without every doing any quantum

measurements!

The Rayleigh-Jeans Approximation provides a convenient and accurate description for spectral

radiance when for wavelengths much greater than the wavelength of the peak in the black body

radiation formula.  To derive the Rayleigh-Jeans approximation, expand the exponential in the

denominator of Planck's Law in a Taylor series about zero argument;  this is a good appropriation

when λ >> λmax.  This is a third exercise left to the reader.  The approximate formula is

Lλ = 2kcT
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  or  Lν = 2kTν2

c2
.

This approximation is better than 1% when λT > 0.77 m K.  For example, for a body at 300˚K, the

approximation is valid when λ > 2.57 mm;  in other words this approximation is good when

viewing thermal emissions from the Earth over the microwave band.  Microwave radiometers can

measure the power received Lλ at an antenna.  This is sometimes called the brightness temperature

and it is linearly related to the physical temperature of the surface Tp.  The Rayleigh-Jeans

approximation provides a simple linear relationship between measured spectral radiance and surface

temperature as long as the emissivity ε of the surface is known or, in the case of sea ice, one knows

the temperature of the surface so the emissivity of the ice can be estimated.

Lmeasured = ε  
2kcTp
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Terminology

Consider a 60 W light bulb.  An electric current passes through the tungsten filament and heats it to

about 3000˚K.  Our bulb is perfect in the sense that it radiates all of this energy, perhaps as a gray

body.
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radiant flux (total) φ 60 W

radiant intensity I dφ/dΩ 60/4π W sr-1

radiant exitance M dφ/dA 60/4πR2 W m-2

radiance (brightness temp.) L cosθ d2φ/(dΩdA) W sr-1 m-2

irradiance E dφ/dA W m-2


