

Physics of Surfing Waves David T. Sandwell (http://topex.ucsd.edu/ps)

- Physics of waves
- Characteristics of waves
- · Generation of waves by storms
- · Wave speed shallow vs. deep ocean
- · Sets dispersion

Exercises: April 15

(each problem is covered in class today)

- 1. Derive the expression for the period of a harmonic oscillator with mass m and spring constant k.
- 2. Derive the expression for the speed of a deep water wave in terms of the wave period T.
- 3. What are *sinh, cosh,* and *tanh* in terms of the exponential function? What is *tanh*(10⁻⁶)? What is *tanh*(10)?

harmonic oscillator

deep ocean waves

What are the units of pressure?

restoring force = $-\rho gh$

acceleration = $\rho \frac{L}{2\pi} \frac{d^2 h}{dt^2}$

$$\rho \frac{L}{2\pi} \frac{d^2 h}{dt^2} = -\rho g h$$

What is ω ?

Table 8-1 Description of a fully developed sea for a given wind speed.				
Wind speed in km/h (mi/h)	Average height in m (ft)	Average length in m (ft)	Average period in sec	Highest 10% of waves in m (ft)
20 (12)	0.33 (1.0)	10.6 (34.8)	3.2	0.75 (2.5)
30 (19)	0.88 (2.9)	22.2 (72.8)	4.6	2.1 (6.9)
40 (25)	1.8 (5.9)	39.7 (130.2)	6.2	3.9 (12.8)
50 (31)	3.2 (10.5)	61.8 (202.7)	7.7	6.8 (22.3)
60 (37)	5.1 (16.7)	89.2 (292.6)	9.1	10.5 (34.4)
70 (43)	7.4 (24.3)	121.4 (398.2)	10.8	15.3 (50.2)
80 (50)	10.3 (33.8)	158.6 (520.2)	12.4	21.4 (70.2)
90 (56)	13.9 (45.6)	201.6 (661.2)	13.9	28.4 (93.2)

Munk, W. H. and M. A. Traylor, Refraction of Ocean Waves, J. Geology, v. LV, No. 1, 1947

wave generation

- · generated by storms at sea
- · far from the storm they are sinusoidal

Airy solution

$$c(d) = \left[\frac{gL}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)\right]^{1/2}$$

L - wavelength g - acc. gravity d - ocean depth

deep water wavesshallow water wavesd >> L/2d << L/2 $c_d = \sqrt{\frac{gL}{2\pi}}$ $c_s = \sqrt{gd}$

Munk, W. H. and M. A. Traylor, Refraction of Ocean Waves, J. Geology, v. LV, No. 1, 1947

- Are sets real? How is a set defined?
- More analysis of buoy data can provide characteristics of sets.
- Why do waves come in sets?

OCEANSIDE OFFSHORE, CA - Station: 04501 Water depth(m): 220.00 August 3, 2007

Waves arrive in San Diego at the same time t_1 .

Suppose the waves were generated at the same time t_o .

$t_1 - t_o = 2R/c_1$	$c = \frac{gT}{2\pi}$	deep water dispersion
$t_1 - t_0 = 2(R + D)/c_2$		
$c_2 = c_1 \left(\frac{R+D}{R}\right)$	$T_2 = T_1 \left(\frac{R+D}{R}\right)$	

$$h(t) = A\cos\left(\frac{2\pi t}{T_1}\right) + B\cos\left(\frac{2\pi t}{T_2}\right) \qquad \text{suppose} \quad B = A$$
$$h(t) = 2A\cos\left[\pi t \left(\frac{1}{T_1} + \frac{1}{T_2}\right)\right]\cos\left[\pi t \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

surf = mean period modulated by beat period

interval between sets

$$T_{B} = T_{1} \left(1 - \frac{R}{R+D} \right)^{-1}$$

R = 7000 km D = 400 km T_{1} = 17s,

$$T_B = 5.5 \min$$

A long time to wait between sets!

Conclusions - Waves

- Ocean waves: force of acceleration is balanced by the force of gravity.
- Wind speed >= wave speed. 17-s period waves require wind speed of 27 m/s = 60 mph.
- Wave speed:
 - *deep water (d >> L/2),* speed depends on period (dispersive) shallow water ($d \ll L/2$), speed depends on depth (refraction)
- Refraction is important when d < L or about 200 m = 650 feet
- Surfers believe sets are real but the data are not clear. Why?