

- Physics of waves
- Characteristics of waves
- · Generation of waves by storms
- · Wave speed shallow vs. deep ocean
- · Sets dispersion

Exercises: due Oct 11

(each problem is covered in class)

- 1. Derive the expression for the period of a harmonic oscillator with mass m and spring constant k.
- 2. Derive the expression for the speed of a deep water wave in terms of the wave period T.
- 3. What are *sinh, cosh,* and *tanh* in terms of the exponential function? What is *tanh*(10⁻⁶)? What is *tanh*(10)?
- 4. Consider two waves of equal height but different period (T_1 =12.5 s and T_2 =13 s. What is the time between sets? (we did not cover problem 4 so if you can't do it hand in 1-3.) Here is a hint: add two cosine functions h(x) = cos(ω_1 *t) + cos(ω_2 *t) where $\omega_1 = 2^* \pi/T_1$, use the trigonometric formula for the sum of two cosines, then interpret or plot the results.

harmonic oscillator

deep ocean waves

What are the units of pressure?

restoring force = $-\rho gh$

acceleration = $\rho \frac{L}{2\pi} \frac{d^2 h}{dt^2}$ force

What is ω ?

$$\rho \frac{L}{2\pi} \frac{d^2 h}{dt^2} = -\rho g h$$

Table 8-1 Description of a fully developed sea for a given wind speed.				
Wind speed in km/h (mi/h)	Average height in m (ft)	Average length in m (ft)	Average period in sec	Highest 10% of waves in m (ft)
20 (12)	0.33 (1.0)	10.6 (34.8)	3.2	0.75 (2.5)
30 (19)	0.88 (2.9)	22.2 (72.8)	4.6	2.1 (6.9)
40 (25)	1.8 (5.9)	39.7 (130.2)	6.2	3.9 (12.8)
50 (31)	3.2 (10.5)	61.8 (202.7)	7.7	6.8 (22.3)
60 (37)	5.1 (16.7)	89.2 (292.6)	9.1	10.5 (34.4)
70 (43)	7.4 (24.3)	121.4 (398.2)	10.8	15.3 (50.2)
80 (50)	10.3 (33.8)	158.6 (520.2)	12.4	21.4 (70.2)
90 (56)	13.9 (45.6)	201.6 (661.2)	13.9	28.4 (93.2)

Munk, W. H. and M. A. Traylor, Refraction of Ocean Waves, J. Geology, v. LV, No. 1, 1947

wave generation

- · generated by storms at sea
- far from the storm they are sinusoidal

Airy solution

$$c(d) = \left[\frac{gL}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)\right]^{1/2} \qquad L \text{ - wavelength} \\ g \text{ - acc. gravity} \\ d \text{ - ocean depth} \end{cases}$$

deep water waves d >> L/2 $c_d = \sqrt{\frac{gL}{2\pi}}$

shallow water waves

d << L/2

$$c_s = \sqrt{gd}$$

Munk, W. H. and M. A. Traylor, Refraction of Ocean Waves, J. Geology, v. LV, No. 1, 1947

Conclusions

- Ocean waves: force of acceleration is balanced by the force of gravity.
- Wind speed >= wave speed. 17-s period waves require wind speed of 27 m/s = 60 mph.
- Wave speed: d >> L/2 waves are dispersive; d << L/2 speed depends on depth.
- Refraction is important when d < 10L.