
Components of an interseismic velocity field
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interior to this block is ṽ�̇ = R�̇φθ(θ − θ0). The north velocity components due to rotation308

and strain are similar where sin θ ≈ θ− θ0 (i.e., when the Euler pole is near θ0, Savage et al.,309

2001).310

As an alternative to assuming that the block centroid defines the reference coordinates,311

the strain rate components and the reference coordinates can be simultaneously linearly312

estimated by a reparameterization of equation (10),313
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{4}, where the vector indices are inside curly braces. While this316

parametrization allows for the the direct estimation of the strain rate tensor and reference317

coordinates, there is no constraint that would prevent reference coordinates from being nearly318

co-located with the Euler pole for a given block that may introduce the trade-off between319

block rotation and internal block strain.320

Summing the contributions from block rotations (equation 2) and internal block strain321

(equation 10), and subtracting the effect from elastic strain accumulation (equations 3, 5,322

6, 7), the nominally interseismic velocity ṽI (equation 1) can be rewritten as the complete323

statement of the forward problem,324
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which is a statement of the forward model for the simple case of one set of observation325

coordinates on a block moving with respect to a fixed exterior block. In general, we do not326

know the block motions, the spatial distribution of apparent elastic coupling, or internal327

strain rates and instead seek to estimate these parameters given a set of present-day (≤ 20328

year) GPS velocities, ṽGPS, and geologically determined fault slip rate constraints, sobs, while329

minimizing the gradient of the partially coupled slip distribution. Here we use the underbar330

notation to indicate the vectors and matrices generalized for an entire block model with331

multiple blocks, fault segments, GPS stations, etc., as shown in Appendix A. Additionally,332

boundary conditions such as no slip at the up- and/or down-dip limits of a subduction333

interface may be applied to the TDE slip distribution by specifying tbc. To solve for the334

best fitting set of rotational block motions, Ωest
, TDE slip rate vectors, test

, and internal335

block strain rate tensors, �̇est
, we generalize the linear combination (equation 12) for nS GPS336
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and strain are similar where sin θ ≈ θ− θ0 (i.e., when the Euler pole is near θ0, Savage et al.,309
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interior to this block is ṽ�̇ = R�̇φθ(θ − θ0). The north velocity components due to rotation308

and strain are similar where sin θ ≈ θ− θ0 (i.e., when the Euler pole is near θ0, Savage et al.,309
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co-located with the Euler pole for a given block that may introduce the trade-off between319

block rotation and internal block strain.320
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which is a statement of the forward model for the simple case of one set of observation325

coordinates on a block moving with respect to a fixed exterior block. In general, we do not326

know the block motions, the spatial distribution of apparent elastic coupling, or internal327

strain rates and instead seek to estimate these parameters given a set of present-day (≤ 20328

year) GPS velocities, ṽGPS, and geologically determined fault slip rate constraints, sobs, while329
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interface may be applied to the TDE slip distribution by specifying tbc. To solve for the334

best fitting set of rotational block motions, Ωest
, TDE slip rate vectors, test

, and internal335

block strain rate tensors, �̇est
, we generalize the linear combination (equation 12) for nS GPS336

Rotation

10 20 30 40

mm/yr

237.5˚

237.5˚

240˚

240˚

242.5˚

242.5˚

245˚

245˚

32.5˚

35˚

100 km

Meade and Loveless – Linear spherical block modeling p. 10

interior to this block is ṽ�̇ = R�̇φθ(θ − θ0). The north velocity components due to rotation308

and strain are similar where sin θ ≈ θ− θ0 (i.e., when the Euler pole is near θ0, Savage et al.,309
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ṽ�̇ = G�̇6 �̇6

=




Rφ Rθ −R 0 0 0
0 0 0 Rφ Rθ −R
0 0 0 0 0 0









�̇φφ cos θ0

�̇φθ

�̇φφφ0 cos θ0 + �̇φθθ0 − π/2
�̇φθ cos θ0

�̇θθ

�̇φθφ0 cos θ0 + �̇θθθ0 − π/2





. (11)

The six elements of the vector �̇6, are related to the parameters of interest by, �̇φθ =314

�̇
6
{2} , �̇θθ = �̇

6
{5}, �̇φφ = �̇6{1}�̇6

{2}/�̇
6
{4}, θ0 = sin−1(�̇

6
{4}/�̇

6
{2}), and φ0 = (�̇

6
{6} −315

�̇
6
{5} sin−1(�̇

6
{4}/�̇

6
{2}))/�̇

6
{4}, where the vector indices are inside curly braces. While this316

parametrization allows for the the direct estimation of the strain rate tensor and reference317

coordinates, there is no constraint that would prevent reference coordinates from being nearly318
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which is a statement of the forward model for the simple case of one set of observation325

coordinates on a block moving with respect to a fixed exterior block. In general, we do not326

know the block motions, the spatial distribution of apparent elastic coupling, or internal327

strain rates and instead seek to estimate these parameters given a set of present-day (≤ 20328

year) GPS velocities, ṽGPS, and geologically determined fault slip rate constraints, sobs, while329

minimizing the gradient of the partially coupled slip distribution. Here we use the underbar330
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No internal block strain
mean residual magnitude:

1.76 mm/yr

Internal block strain
mean residual magnitude:

1.67 mm/yr

Residual velocity fields

F-tests suggest that doubling the number of free parameters (adding strain rate tensors) has a 
50% probability of accounting for the observed increase in the goodness of fit statistic



Estimated strike slip rates in southern California

10

mm/yr

a) SAF - Carrizo
b) SAF - southern Carrizo
c) SAF - Mojave
d) SAF - San Bernardino
e) SAF - Indio
f) SAF - northern Imperial
g) SAF - southern Imperial
h) San Jacinto
i) Elsinore
j) White Wolf
k) Western Garlock
l) Central Garlock
m) Panamint Valley
n) Death Valley
o) Johnson Valley-Lockhart
p) Calico-Blackwater
q) Goldstone-Bullion
r) Ludlow 

Formal slip rate uncertainties range from 0.4 to 3.5 mm/yr


