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Abstract: A new mean sea surface (MSS) was determined by focusing on the accuracy provided
by exact-repeat altimetric missions (ERM) and the high spatial coverage of geodetic (or drifting)
missions. The goal was to obtain a high-resolution MSS that would provide centimeter-level precision.
Particular attention was paid to the homogeneity of the oceanic content of this MSS, and specific
processing was also carried out, particularly on the data from the geodetic missions. For instance,
CryoSat-2 and SARAL/AltiKa data sampled at high frequencies were enhanced using a dedicated
filtering process and corrected from oceanic variability using the results of the objective analysis of
sea-level anomalies provided by DUACS multi-missions gridded sea-level anomalies fields (MSLA).
Particular attention was also paid to the Arctic area by combining traditional sea-surface height
(SSH) with the sea levels estimated within fractures in the ice (leads). The MSS was determined
using a local least-squares collocation technique, which provided an estimation of the calibrated
error. Furthermore, our technique takes into account altimetric noises, ocean-variability-correlated
noises, and along-track biases, which are determined independently for each observation. Moreover,
variable cross-covariance models were fitted locally for a more precise determination of the shortest
wavelengths, which were shorter than 30 km. The validations performed on this new MSS showed
an improvement in the finest topographic structures, with amplitudes exceeding several cm, while
also continuing to refine the correction of the oceanic variability. Overall, the analysis of the precision
of this new CNES_CLS 2022 MSS revealed an improvement of 40% compared to the previous model,
from 2015.

Keywords: mean sea surface; Marine Geodesy; ocean variability; Radar Altimetry

1. Introduction

The mean sea surface (MSS) is an important field in physical oceanography, geophysics,
and geodesy. In principle, it corresponds to the time-averaged height of the ocean surface.
In practice, the goal is to achieve a complete separation of the ocean content into two distinct
components, a variable part and a static part, over an arbitrary reference period. The first
challenge consists in removing the variable part without deteriorating the topography of
the geophysical structures, especially at the shortest wavelengths.

Until recently, MSS was restricted to ice-free ocean areas. For some years, dedicated
processing to retrieve the sea level from fractures in ice, the leads, were developed, and
MSS covering the global ice-covered Arctic region emerged [1]. This includes the DTU15
MSS [2] solution, which was used to produce Arctic-Sea-level maps covering the Arctic
region up to 88◦N [3,4]. In this paper, sea-level measurements within the ice-covered region
were used to create a satellite-based MSS up to 88◦N.
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These different goals were reached by combining data from exact-repeat missions
(ERMs) and very-high-resolution observations of non-repetitive altimetric missions. How-
ever, the use of geodetic and drifting data requires special attention due to the difficulty in
obtaining direct and accurate access to the interannually and seasonally variable parts of
the oceanic signal [5].

In this paper, we present a brief overview of the data used, as well as some reminders
about the treatments and mapping methods implemented, which have already been widely
discussed in previous publications [5–8].

Our main purpose is to discuss in detail the latest upgrades of the methodology and
processing. First, the use of full-rate altimetry data (20 Hz, 40 Hz) to improve the mapping
of geophysical structures smaller 30 km is explained. The second improvement is the
oceanic-variability processing, especially for wavelengths lower than 100 km, which is
not fully resolved by DUACS MSLA [9]. A final section is devoted to the analysis of the
improvements of this new 2022 MSS compared to the previous version, the CNES_CLS
2015 MSS.

2. Altimeter-Data Processing
2.1. Altimeter Data for MSS Computation
2.1.1. Ocean Data

While the CNES_CLS 2015 MSS was computed using 1-Hz altimeter measurements,
the CNES_CLS 2022 MSS is the result of the combination of mean profiles (MP) cal-
culated from ERM that are still processed at 1 Hz and high-resolution data from the
SARAL/Altika (SARAL) and CryoSat-2 (C2) geodetic (or drifting) missions, sampled at
40 Hz and 20 Hz, respectively.

An overview of the satellite missions considered and the periods available on the
database that were used is presented in Figure 1 (details of cycles used are presented in
Appendix A, Table A1).
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Figure 1. Overview of the altimetric missions used and their temporal coverage. TP (Topex/Poseidon),
J (Jason 1, 2, 3), E1 (ERS-1), E2 (ERS-2), En (EnviSat), GFO (GeoSat Follow-On), C2 (CryoSat-2),
SARAL (SARAL/AltiKa).

All these measurements were processed using altimeter standards and corrections
corresponding to the DT-2021 version described in [10]. The MSLA DT-2018 version [11]
was used to correct the SSH from the oceanic variability over the defined reference period
[1993, 2012] for all the altimetric missions (see [5] for details).
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2.1.2. Arctic Data

In the polar regions, satellite sea-level observations are limited by sea ice. How-
ever, thanks to dedicated processing, sea levels can be estimated within fractures in ice
(leads). The sea levels within the leads from three altimeters were ingested in the new
CNES_CLS_2022 MSS to cover the Arctic region up to 88◦N. The processing is explained
in detail by Prandi et al. [3]. Firstly, the echoes from the altimeters over the ice-covered
region were classified to identify peaky waveforms corresponding to lead echoes, and then
instrumental and geophysical corrections were applied, and editing processing was per-
formed to remove outliers. An additional cross-calibration through optimal interpolation
was performed to reduce the long-wavelength geographically correlated errors between the
three altimetric missions (CryoSat-2, SARAL/AltiKa, and Sentinel-3A). Table A2, presented
in Appendix A, summarizes the characteristics of the along-track input data. Note that the
environmental and instrumental corrections applied to these data may be different from
those used in the DT-2021 version (see Table A2 in Appendix A).

The reduction in ocean variability is a key process in the production of the MSS.
For the Arctic region, sea-level-anomaly maps from June 2016 to June 2020, described by
Prandi et al. [3], were used to remove the ocean variability from the along-track leads of
sea-surface height.

For some periods since 1993, no altimetry missions were conducted to sample the
Arctic Ocean up to 88◦N (especially before the start of Cryosat-2), so the reference period
of the ice-covered region is more recent than that used for the open ocean. The leads
MSS was calibrated on the open-ocean MSS using differences at the limit between the two
surfaces. The aim was to homogenize the ice-covered reference period onto the open-ocean
reference period, although, in the permanently ice-covered region, this period tended to be
more recent.

2.1.3. The Correction of the Interannual and Seasonal Variability

The CNES_CLS 2022 MSS is based on the combination of altimeter data from different
altimeter missions and covering different periods of time.

Figure 1 presents the satellite missions and time coverages that were used for the 2015
and 2022 MSSs. Except for the GeoSat Follow-On (GFO) MP, which covers the same period,
the mean profiles used for the 2015 MSS cover a period from 1993 to 2013, while those for
the 2022 MSS are from 2002 to 2020. The same holds for the geodetic missions, for which we
have very distinct temporal coverage. For the 2015 MSS, we used ERS-1 between 1994 and
1995, and Jason-1 GM and CryoSat-2 between 2011 and 2014, whereas for the 2022 MSS, the
geodetic data were from 2011 to 2019.

We also noticed that Topex/Poseidon (T/P), ERS-2 (E2), and EnviSat (En) were not
reused because preliminary analyses showed that they provided a smoother sub-30-km-
wavelength content than the most recent altimetric missions, which was due to a less
performing retracking method. It should be noted that reprocessing is underway to improve
this aspect, but this was not available when the mean profiles were prepared for this new
MSS. Similarly, concerning the data from the geodetic missions, we preferred to focus on
the use of SARAL and C2 observations sampled at higher frequencies than 1 Hz.

The first requirement was to homogenize all the datasets in terms of mean oceanic
content, which should be as close as possible to the steady state of the ocean. Ideally, this
should correspond to the sum of the geoid and the mean dynamic topography defined over
a sufficient period to tend towards a constant value. This represents a major difficulty, as the
data were acquired during various periods in the altimetry era. As already explained in pre-
vious papers ([5,8]), the correction of each observation based on a space–time interpolation
of SLA is a clean way to ensure this homogeneity.

More specifically, Figure 2 shows the evolution of the SLA over the years ranging from
1993 to 2020. As a convention, the average mean sea level for the year 1993 is artificially set
to 0. This implies that any SSH corrected with this SLA is also corrected for sea-level rises
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(SLRs), but relative to the year 1993. We also note that the choice of the 20-year period for
the mean content of the MSS implies an overall bias of 2.6 cm relative to 1993.
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Furthermore, the map of the average of the DUACS MSLA gridded products calcu-
lated over this 20-year period (Figure 3) was generally close to a constant value, which
corresponded to this same bias of 2.6 cm, and the fact that no residual signals were present
between ±5 mm showed that we were close to the ocean’s steady state.
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However, two regional effects were observed. First, we noted a residual effect of the
oceanic variability on areas with strong currents, such as the Gulf Stream (a), the Agulhas
Current (b), and the Kuroshio (c). This was due to the difficulty in fully correcting the
non-repetitive altimetric missions from the oceanic variability. Since, in contrast to the ERM,
for which it is possible to compute averages over long periods, for non-repetitive missions,
only DUACS MSLA maps are available, which do not contain the full amplitude of oceanic
variability [9]. This aspect is also one of major improvements made in the CNES_CLS 2022
solution, which is explained in more detail in Section 3, especially concerning the omission
error of the residual effect of the oceanic variability.

It should also be noted that the large discrepancies at high latitudes (d, e) were mainly
due to the lack of continuous seasonal coverage from the repetitive missions, particularly
those of Topex/Poseidon, Janson-1, Jason-2, and Jason-3 ERM, which are the most accurate
but also the most continuous in time, and serve as a reference from 1993 to today. The
decrease in observability for these regions resulted in a lower number of cycles with which
to calculate the mean heights of the MP, which increased the standard deviation and, hence,
the noise budget associated with each observation, which implicitly increased the formal
error of the MSS (see Equation (3)).

2.2. Filtering of High-Resolution Data

Compared to the previous MSSs performed by CLS (2015, 2011, and 2001), which only
used data sampled at 1 Hz (7 km) along-track, recent improvements in data processing
allow us to access data at higher frequencies on C2 and SARAL with acceptable accuracy
for the purpose of mapping the gravity field [12], as well as MSS, in our case.

Thanks to the longevity of the C2 mission, the across-track density also reached a level
that had never been achieved before. Considering that the optimal interpolation was based
on selected observations in a subdomain, the combined use of C2 and SARAL sampled at
20 Hz and 40 Hz, respectively, allowed us to obtain, generally, more than 400 observations
in influence bubbles with radii of about 10 km, whatever the area considered in the open
ocean. In practice, this is statistically adequate for mapping topographic structures in the
range of a few kilometers.

This approach is based on a covariance matrix that is normalized by the local variance
of the signal, and a noise-to-signal ratio that is excessively high (a ratio greater than 70% is
generally considered) can degrade the accuracy of the estimate. In addition to the spatial
density of the observations, this parameter directly affects the quality of the restitution of
topographic structures.

An example is given in Figure 4. It shows a cross-sectional view of two C2 profiles that
are only 700 m apart and that pass over a structure along the Emperor Seamount Chain,
with amplitudes exceeding 8 cm relative to the CNES_CLS 2015 MSS.

The thin curves correspond to the SSH sampled at 20 Hz and represent the unfiltered
difference between the corrected SSH and the CNES_CLS2015 MSS (C2-CLS15). Note that,
in this case, the corrected SSH means the application of environmental effects and ocean
variability (MSLA). It appears that the noise level of these data sampled at 20 Hz was
excessively high to clearly discriminate short-wavelength structures. We therefore used
a weighted Gaussian filter with an amplitude of 50% over a distance of 1.6 km to reduce
this noise. The result of this filtering is represented by the thick curves (C2(Fg)-CLS15),
which clearly provide a better assessment of the topographic content of each profile.
In addition, the two histograms in Figure 5 show the distribution of the data of these
two profiles before and after the filtering. We can see that the distribution of the data
before the filtering was very spread out, with a standard deviation of 6.8 cm, while the
results after filtering appeared more similar to a Gaussian distribution, with a standard
deviation of 3.4 cm.
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This example is also interesting from another point of view, as it shows that two tracks
only a few hundred meters apart can show differences of a few centimeters. Moreover, if
we consider the southern parts of these profiles, on the right side of the graph, where we
have a relatively flat signal compared to the CNES_CLS 2015 MSS, slight undulations in
the order of a centimeter in amplitude can be observed, which may be related to a residual
effect of noise after filtering. This led us to introduce correlated Gaussian noise in our
covariance matrix, details of which are reported in Section 3.
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Table 1 shows the results of the filtering for the North Pacific region and for a fraction
of the cycles used for the C2 and SARAL data. It can be observed that before the filtering,
the C2 data had global average biases of around 5.5 cm and standard deviations of 4.0 cm.
After the filtering, the data were centered and the standard deviations were homogeneous,
with values close to 2.0 cm RMS, for both the C2 and the SARAL. Note that the sampling
for the MSS determination was kept at 20 Hz for the C2 and 40 Hz for the SARAL.

Table 1. Filtering statistics: H corresponds to SSH, H_Fg to the filtered height, and CLS15 to the
CNES_CLS15 MSS.

Nbr Obs Average Std RMS dH (m)

C2 PDGS (20 Hz) cycles 14–36

122 716 126 −0.056 0.039 0.068 H-CLS15

122 716 122 0.000 0,020 0.020 H_Fg-CLS15

C2 PDGS (20 Hz) cycles 97–116

110 434 652 −0.055 0.041 0.068 H-CLS15

110 434 652 0.000 0.021 0.021 H_Fg-CLS15

AltiKa (40 Hz)

371 560 919 −0.007 0.041 0.042 H-CLS15

371 560 632 0.000 0.019 0.019 H_Fg-CLS15

2.3. Slope Correction

The objective of slope correction is to take into account the impact of the gradient of the
geoid on the range measurement, considering that the point of impact of the return of the
radar wave is not at its nadir, but at the closest distance from the radar. Its determination is
presented in [13], where a simple solution is proposed, which is a function of the gradient
of the geoid and the altitude of the satellite considered. To apply it, it is only necessary to
interpolate a Cartesian grid, which is based on the deviation of the vertical at the position
of the satellite considered, and to apply a coefficient corrector, depending on its altitude.

Figure 6 shows the impact of this correction applied to the C2 for an altitude of
725 km. It exceeds values of 10 mm in areas of high geoid slope. In some regions, such as
the Aleutian Trench, it can also reach maximum values around 40 mm for C2, while it is
23 mm for a satellite such as Jason-3, with an altitude of 1336 km.
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Moreover, considering the improvements in the accuracy of altimetric data in recent
years, or, more precisely, the decrease in the instrumental noise at 20 Hz after retracking [12,14],
for which we can have values of standard deviation between 43 mm and 57 mm for C2
and GeoSat, respectively (except for SARAL with a much lower noise of 29 mm at 40 Hz),
it has become important to apply this slope correction to all data that are merged when
determining the MSS.

2.4. Altimetric Data for Validation
2.4.1. Open-Ocean and Coastal Data for Validation

Sentinel-3A measurements with 20-Hz sampling were used for the validation of the
MSS at short wavelengths in the open ocean. These measurements were selected for two
main reasons. The first was that they are independent of the MSS presented in this paper,
i.e., the Sentinel-3A measurements were not used for the MSS computation, and they are
geographically independent of the measurements used for the MSS computation (i.e., they
have a different ground-track position). Furthermore, Sentinel-3A benefits from synthetic
aperture radar (SAR) technology. We used the measurements processed with the LR-RMC
(low resolution with range-migration-correction) method [15]. This is an experimental
process developed by CNES that significantly reduces the noise at short wavelengths
(λ < ~50 km), where conventional SAR processing is known to be affected by sea-state
conditions and presents a red noise [16]. In practice, the measurements were corrected
from the different environmental and geophysical corrections, following the same stan-
dards as the altimeter measurement used for the MSS computation, and defined in [10].
We used for the validation of two different cycles of Sentinel-3A measurements: cycles
#26 (20 December 2017–16 January 2018) and #38 (9 September 2018, 6 December 2018),
which were selected for two periods sufficiently distant in time to decorrelate the oceanic
variability [8]. These data were used to perform the spectral analyses (Section 4.3) and
the coastal validations (Section 4.4).

2.4.2. Arctic-Leads Sea-Surface-Height Data for Validation

To validate the CNES_CLS 2022 MSS in ice-covered regions (Section 4.5), we used
independent along-track SSH within the leads from the ICESat-2 laser altimetry. The
ICESat-2 mission provides high-resolution photon-counting height measurements up to
88◦N across its six-beam configuration. The first validation of the sea level in the leads with
the conventional Cryosat-2 altimetry were performed [17]. Here, we used the sea level from
the middle strong beam 2R from the ATL07 v5 product [18], providing sea-level-anomalies
referenced to the ICESat-2-product MSS (variable ‘HEIGHT_SEGMENT_HEIGHT’). The
product corrections were changed when possible to match the radar-altimeter corrections.
These are summarized in Table 2. Next, three different SLA were referenced to the MSS
CNES_CLS 2022, to the MSS DTU15, and to the ICESat-2-product MSS, to quantify the
differences between the MSSs.

Table 2. Corrections applied to ICESat-2 lead data.

Model:

Solid Earth Tide Cartwright model

Ocean Loading, Tide,
and Long-Period-Equilib. Tide FES2022B model

Solid-Earth-Pole Tide Not applied

Ocean-Pole Tide ICESAT-2 correction

DAC MOG2D HR

Total column atm. delay Luthcke and Petrov, ATBD ATL03a
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3. Mapping Method

The mapping method is based on optimal interpolation, also called objective analy-
sis [19]. The basic principles of the method are described in detail in [6,7], and successive
improvements are provided in [5,8].

In brief, we assume that the best estimate θest is provided by the following Gauss–
Markov linear estimator:

θest(x) =
N

∑
i=1

N

∑
j=1

A−1
ij CxjΦobs,i (1)

Cxj =
〈
θest(xi)·θest

(
xj
)〉

(2)

where x = (λ,ϕ) is the location of the estimate, Aij is the covariance matrix, which is
composed of the spatial correlations between the observations (i, and j) and their associated
uncertainty budget; Cxj corresponds to the spatial correlations between the estimate and
the observations, and ϕobs,i are the observations.

The first particularity consists, on one hand, in reliance on the mean profiles of the ERM
missions to access the mean oceanic content at the mesoscale and at higher wavelengths,
and, on the other hand, in using the high-resolution geodetic (or drifting) missions to map
the finest topographic structures down to a resolution of a few km. The ability of this
method to improve geophysical structures at the shortest wavelengths strongly depends
on the statistical requirements specified by the spatial correlation model (Cxj), as well as
the noise budget associated with the observations.

For this MSS, a new correlation model based on the CNES_CLS 2015 MSS was used.
Compared to the model that was used for the determination of the previous MSS, which
had average radii of about 50 km, the isotropic component of this new model shows radii
generally less than 30 km (Figure 7). In practice, this new model was computed on a 3-min
grid with adjusted anisotropic radii in the four cardinal directions.
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Another aspect which can drastically improve the accuracy of the results is the noise
budget preconized for the observations. Equation (3) represents the error-covariance budget
that should be included in the covariance matrix to be inverted. As usual, we use white
noise (
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⟨𝐸 (𝑟𝑖) ⋅ 𝐸 (𝑟𝑗)⟩ = 𝛿𝑖𝑗 ⟨𝜀2⟩ + 𝜁𝑖𝑗⟨𝐵2⟩

+ 𝜁𝑖𝑗 √⟨𝑉𝑖
2⟩ ⋅ ⟨𝑉𝑗

2⟩ 𝑒𝑥𝑝 (
(𝑟𝑗 − 𝑟𝑖)

2

𝐿𝑉𝑎𝑟
) + 𝜁𝑖𝑗𝐴2 𝑒𝑥𝑝 (

(𝑟𝑗 − 𝑟𝑖)
2

C
) 

(3) 

where: 

) that corresponds to the instrumental noise. Moreover, even if profiles are generally



Remote Sens. 2023, 15, 2910 10 of 20

adjusted using least-squares optimization at crossover differences, it residual effects of a
few cm can persist between and within altimetric missions. This is why long wavelength
errors (B) are also prescribed for wavelengths greater than 300 km. Another very important
factor is represented by the third term, which corresponds to the omission error of the
residual effect of oceanic variability, especially, as previously explained, for wavelengths
below 100 km, which are not fully resolved with the DUACS MSLA fields. The approach
used to evaluate this omission error is based on the standard deviation of the mean profiles.
We consider, in this case, that it reflects the part of the variability that cannot be assessed.〈

E
(→

r i
)
·E
(→

r j
)〉
= δij

〈
ε2〉+ ζij

〈
B2〉

+ζij

√〈
Vi

2
〉
·
〈
Vj

2
〉

exp

(→r j −
→
r i
)2

LVar

+ ζij A2 exp

(→r j −
→
r i
)2

C

 (3)

where:
→
r i = (λ,ϕ) is the position of an observation.
i and j correspond to the indices of the observations.
δij = is the Kronecker symbol, (1 if i = j, 0 otherwise).
ζij = 1 if same track and same satellite.
The map in Figure 8 represents the maximum value of the standard deviation of the

mean profiles. This value was computed on a 5-km grid from the standard deviation of
the mean heights, which were selected in 100-km-radius bubbles. Next, we assume that
the values Vi and Vj, which result from the interpolation of this grid, correspond to the
uncertainty in our knowledge of the variability at a given position. The Lvar is a constant
that depends on the altimetric mission considered (values of 120 km and 60 km are used
for ERM and GM missions respectively). The last term is used to take into account doubts
about the residual effect of the Gaussian-filtering processing step described in Section 2.2,
which was only assigned for observations from the same track and the same satellite, where
A is a constant corresponding to an amplitude of 1 cm with a correlation length (C) of 5 km.
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4. Results
4.1. The CNES_CLS 2022 MSS

The CNES_CLS 2022 MSS was calculated on a 1-min-resolution grid and covered the
latitudes between 79.4◦S and 88◦N. It was completed with the EIGEN 6C4 geoid model [20]
over the continent, and over an area not covered by “valid” altimetric observations. A view
of the MSS field is presented in Figure 9.
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The transition between the MSS and the geoid was performed smoothly using a
distance-weighted averaging function, and it was implemented only from a threshold
within 2.0 cm of the error in order to ensure that we did not affect the MSS, where the
accuracy was at the correct level. However, the parallel use of the formal error grid provided
with the MSS is recommended to check whether one is located on the MSS or on the geoid.
The global field combining the MSS and the geoid is essentially provided for practical
purposes for users using Fast Fourier or other transforms or processes.

The MSS grid and the corresponding errors are available on the AVISO website, at:
https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html.

4.2. Differences between CNES_CLS 2022 and CNES_CLS 2015 MSS

A particularity of our method is that it allows us to obtain an estimate of the formal
error, which provides information about the homogeneity of the computed MSS. However,
although it is calculated after the adjustment of the noise budget (Equation (3)) with respect
to the statistics of the differences at the crossover points, it is not representative of the real
error or, more precisely, of the accuracy. In practice, it is rather representative of the relative
precision between the different points of the MSS.

The two maps (Figure 10) show the formal error of the 2022 and 2015 MSS, respectively.
It can be seen that the error of the 2022 MSS is much more homogeneous than that of the
2015 MSS. While, in 2015, the areas with the strongest geoid gradients were more prominent,
it is now the areas with strong ocean currents that are most prominent. This logically

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html
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corresponds to the regions for which there is the most uncertainty, given the difficulty in
fully (or perfectly) correcting the data for seasonal and interannual oceanic variability.
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From a statistical point of view, the average error, which was 1.4 cm for the 2015 MSS,
fells to 0.6 cm for 2022, and the standard deviation was reduced by a factor of two, decreas-
ing from 1.8 cm to 0.9 cm. This improvement was largely due to the number of observations
used, 6 billion for the 2022 versus a little more than 200 million for the 2015 MSS. However,
the refinement of the spatial correlation model on one hand and of the error covariances on
the other also contributed.

Focusing on the 2022 MSS error, we also noted, in Antarctica, an undefined area in
gray, for which we had no more valid data. It should be noted that the data for this area
were not available at the time we began writing this paper, in 2022, but they are currently
under preparation to complement this MSS, as has been the case in the Arctic region. There
was also a relatively significant increase in northern Canada, which was due to a substantial
loss of valid observations, particularly those of the C2 data, since our processing was not
able to handle the SARIn mode.

The difference between the MSSs (Figure 11) provides a first qualitative assessment of
the relative content between the MSSs at all the wavelengths. We note that this difference
was dominated by short wavelengths, which clearly highlights large bathymetric structures
(ridges, fault zones, seamounts). To a minor extent, we noted a slight residual effect over
the Gulf Stream (a) and Kuroshio (b) regions, which tended to demonstrate the impact of
the improved account of the residual effect of the ocean variability. These improvements
are quantified in the next section.

Furthermore, note the negative difference, in blue, along the boundary between the
Eurasian and Pacific plates (c), which is related to the implementation of the slope correction
(Section 2.3) for the CNES_CLS 2022 MSS.

From a statistical point of view, the mean difference between these two MSSs was
0.03 cm, with a standard deviation of 2.75 cm. After iterating, with the outliers rejected in
differences three times the standard deviation, the mean difference decreased to 1.08 cm
and the number of outliers represented 0.8% of all the grid points.

The map (Figure 12), which is a zoom of this difference over the southwestern Hawai-
ian Ridge, highlights the refinements obtained at the shortest wavelengths, where the
topographic structures, even in the order of 20 km in size, gained in amplitude, with values
exceeding 3 cm and reaching 10 cm in some cases.
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4.3. MSS Error Estimation at Short Wavelengths

The quantification of the MSS errors at short wavelengths and in the open ocean was
performed using the methodology presented in [8,21]. In brief, we used the difference
between two SLAs (SSH-MSS) from the same track over two cycles, which must be sepa-
rated in time by several months, the goal being to avoid any correlations in terms of ocean
variability. An analysis of the difference in variance between these SLAs then allowed us to
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decorrelate the errors related to the oceanic variability from that of the MSS. It then became
possible to disentangle the dynamical signal from the MSS error.

For this purpose, we used the Sentinel-3A measurement described in Section 2.3.
Cycles #26 and #38 were selected to minimize the correlation of the sea level between
these two cycles, which was one of the necessary conditions that allowed us to extract the
variance of the MSS error.

Figure 13 shows the power spectral density (PSD) from which the mean MSS error at
short wavelengths (λ < 100 km) was extracted. The black line (the true SLA spectrum) is
representative of the SLA unaffected by MSS errors, while the thick colored lines (the SLA
spectrum with the CNES15 and CNES22 MSSs) are representative of the SLA including the
errors from the two MSSs tested. The half differences between these PSDs are presented
by the thin colored lines and represent the error contents of the different MSSs over the
wavelength range where this estimation was statistically significant. A reduction is clearly
shown in the errors of the CNES_CLS 2022 MSS compared to the CNES_CLS 2015 MSS.
The variance of the MSS error over the wavelength ranging from 15 km to 100 km was
0.43 cm2 for MSS CNES_CLS 2015. It represents around 37% of the “true” SLA variance,
i.e., the variance of the SLA without considering the noise instrumental errors. The error of
the CNES_CLS 2022 MSS was nearly 0.26 cm2 (22% of “true” SLA variance), and it was
nearly 40% lower than the errors of the previous MSSs.
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with the various MSS references (thick colored lines). PSD of the MSS errors (thin colored lines) where
statistically significant (95% confidence threshold).

The spatial distribution of the MSS errors at short wavelengths can be estimated by
considering the SLA-error variance in geographical boxes, as presented in [8,21]. Figure 14
shows the geographical distribution of the MSS-error reduction at short wavelengths when
considering the CNES_CLS 2022 rather than the CNES_CLS 2015 version. The figure clearly
shows a reduction in errors, mainly located along the geophysical structures with the
steepest gradients, where the MSS differences at short wavelengths ere the highest (see
Sections 4.1 and 4.2). Locally, the MSS-error reduction reached more than 1 cm2. The map
also underscores the MSS-error reduction near the coast, as discussed in the next section.
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Figure 14. Map of the differences between the errors of CNES_CLS 2015 and CNES_CLS 2022 MSS
for wavelengths ranging from 15 km to 100 km. Positive values mean lower errors for CNES_CLS
2022 MSS solution.

4.4. Coastal Areas

The impact of the MSS in coastal areas was analyzed through the comparison of the
standard deviation of the SLA as a function of the distance to the coast. Figure 15 shows
the results obtained with the CNES_CLS 2015 and CNES_CLS_2022 MSSs. It shows the
reduced STD of the SLA near the coast with the MSS CNES_CLS 2022. In the 0–5-km
bin, the STD of the SLA reduced by 0.53 cm, i.e., a SLA-variance reduction of around 6%
compared to the CNES_CLS 2015 results. At 25–30 km, the differences only reached around
2%. Considering the error reduction using the CNES_CLS 2022 MSS compared to the
previous version, as quantified in the previous sections, it can be assumed that the SLA
STD reduction observed near the coast was mainly induced by the superior accuracy of the
CNES_CLS 2022 MSS.
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4.5. Arctic Areas

The CNES_CLS 2022 MSS successfully combined the open ocean and the ice-covered
Arctic regions. The small-scale features in the Arctic region (Figure 16) are continuous
across the open ocean and the ice-covered regions. The Gakkel and Lomonosov ridges, as
well as the Chukchi plateau, are well represented. Other smaller topographic structures
are visible.
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Figure 16. Small-scale features (λ < 50km) of the MSS CNES_CLS 2022 in the Arctic area.

We used sea-level data within the leads from the ICESat-2 laser altimeter to compare
this new CNES_CLS 2022 MSS with the DTU15 MSS and the ICESat-2-product MSS in the
Arctic region. We compared the variance of the along-track sea-level anomalies corrected
with the three MSSs for the period of 14 October 2018 to 30 June 2020. The sea-level variance
was reduced with the MSS CNES_CLS 2022 over most of the Arctic region (Figure 17).
The improvement was particularly visible at latitudes over 80◦N (Table 3). Compared to
the ICESat-2-product MSS, improvements were visible in the major Arctic topographic
structures. Compared to the DTU 2015 MSS, improvements were visible from 80◦N to
86◦N. However, in coastal regions, the variance increased with the MSS CNES_CLS 2022
compared to the other MSSs. This may have been due to the lack of SARIn C2 data.
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Figure 17. Differences in variance of sea level corrected with the MSS CNES_CLS 2022 and with
the DTU 2015 MSS in 50-km boxes for the period of October 2018 to June 2020 (left). with the same
applies to the MSS CNES_CLS 2022 and with the ICESat-2-product MSS (right).

Table 3. Reduction in variance of the CNES_CLS 2022 MSS compared to DTU 2015 MSS and the MSS
from the ICESat-2 product.

Entire Region Excluding Coastal
Region (>100 km)

For Latitudes >80◦N,
Excluding Coastal Region

Var(sla w/MSS CNES/CLS22)—Var(sla
w/MSS DTU15) +0.5% −2% −11%

Var(sla w/MSS CNES/CLS22)—Var(sla
w/ICESat-2 product MSS) −61% −81% −92%

5. Conclusions

In this paper, we discussed different factors that can improve the determination of
the MSS.

Firstly, we showed that the determination of the MSS is the result of the combination
of altimetric missions that provide observations over different periods of time, and that it is
essential to correct these data according to seasonal and interannual oceanic variability. To
achieve this goal, we found that the use of MSLA DUACS allowed us to homogenize all
these SSHs towards a mean height close to the steady state of the ocean.

We also demonstrated that the high-frequency sampling of CryoSat-2 and SARAL/
AltiKa altimetric data significantly improved the mapping of the finest topographic struc-
tures in the MSS. However, it is necessary to use filtering to reduce the instrumental noise
level, and itis important to apply slope correction to ensure better homogeneity between
data from different altimeters.

From the point of view of the mapping method, the determination of a new model of
the spatial correlations and the improvement of the formalism that takes into account the
omission error corresponding to the residual effect of the oceanic variability also contributed
to increase the accuracy of the MSS.

In terms of validations, the formal error of the new 2022 MSS is much more homo-
geneous and decreased by a factor of two compared to the 2015 MSS. From a qualitative
point of view, the difference between the 2022 and 2015 MSSs highlights the improvements
in the geophysical structures in the shortest wavelengths. Furthermore, the assessment of
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the error using spectral analysis showed an overall an improvement in the accuracy of this
new CNES_CLS 2022 MSS of about 40% compared to the previous model.

Therefore, thanks to new treatments enabling observations over polar areas (sea-
ice leads), it is now possible to obtain data with a spatial density and accuracy close to
those used for the global ocean. Moreover, the validations carried out with ICESat-2
showed a significant improvement for latitudes higher than 80◦N, with a level of precision
approaching that obtained in the open ocean.

This new MSS is probably one of the last versions to have been determined solely
from conventional nadir altimetric data. It also serves as basis for parallel studies, notably
with the Scripps Institution of Oceanography and the Technical University of Denmark,
which aims to further refine the shorter wavelengths of the MSS, which should be used
as a reference for new swath observations, such as those that will be provided by the
SWOT mission.
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Appendix A

Table A1. Altimeter missions and periods used to generate the CNES_CLS 2022 MSS version.

Satellite Altimeter Missions Time Period

Low resolution (1 Hz)

Jason-1 + Jason-2 + Jason-3 May 2002–March 2020

Jason-1 interleaved + Jason-2 interleaved February 2009–May 2017

GFO January 2000–August 2008

SARAL/Alika March 2013–March 2015

High resolution

SARAL-DP/ALtiKa (40 Hz) July 2016–November 2019 (Cycles 100–134)

Cryosat-2 (20 Hz) February 2011–December 2019 (Cycles 14–126)

Table A2. Characteristics of the lead along-track data used within the Arctic ice-covered region for
the new CNES_CLS 2022 MSS. The environmental and instrumental corrections that differ from the
open-ocean DT-2021 processing version are in bold. LRM (low-resolution mode), TFMRA (threshold
first-maximum retracker algorithm), DAC (dynamic atmospheric correction).

SARAL/AltiKa
GDR-F

Sentinel-3A
S3PP

Cryosat-2
Baselines C/D

Latitude max. 81.5◦N 81.5◦N 88◦N

Mode LRM (40 Hz) SAR (20 Hz) SAR (20 Hz)

Retracking within
the leads Adaptive TFMRA50 TFMRA50

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html
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Table A2. Cont.

SARAL/AltiKa
GDR-F

Sentinel-3A
S3PP

Cryosat-2
Baselines C/D

Selection Waveform neural classification + SIC > 90% + sigma0 threshold

Env. and
Geo. corrections

DAC: MOG2D model (Carrère and Lyard, 2003)
Ocean tide: FES2014 (Carrère et al., 2016)

Pole tide: Desai et al., 2015
Solid Earth tide: Cartwright and Edden, 1973

Ionospheric: GIM (Iijima et al., 1999)
Dry tropospheric: ECMWF model

Wet tropospheric: ECMWF model (on-board radiometer estimates
not reliable over ice)

Non-parametric Sea-state bias only over open ocean (waves and
wind considered negligible over leads)

MSS: DTU15 (Andersen et al., 2016)

SSH Orbit—Range—∑ Corrections
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