
Geophys. J .  R .  astr. SOC. (1977) 51, 431-452 

Isostatic compensation on a continental scale: 
local versus regional mechanisms 

R. J. Banks: R. L. Parker and S. P. Huestis 
Institute of Geophysics and Planetary Physics, University of California, San Diego, USA 

Received 1977 March 17; in original form 1977 January 14 

Summary. Using the techniques of linear and quadratic programming, it can 
be shown that the isostatic response function for the continental United 
States, computed by Lewis & Dorman (1970), is incompatible with any local 
compensation model that involves only negative density contrasts beneath 
topographic loads. We interpret the need for positive densities as indicating 
that compensation is regional rather than local. The regional compensation 
model that we investigate treats the outer shell of the Earth as a thin elastic 
plate, floating on the surface of a liquid. The response of such a model can 
be inverted to yield the absolute density gradient in the plate, provided the 
flexural rigidity of the plate and the density contrast between mantle and 
topography are specified. 

If only positive density gradients are allowed, such a regional model fits 
the United States response data provided the flexural rigidity of the plate lies 
between 10” and loz2 N m. The fit of the model is insensitive to the mantle/ 
load density contrast, but certain bounds on the density structure can be 
established if the model is assumed correct. In particular, the maximum 
density increase within the plate at depths greater than 34 kin must not 
exceed 470 kg m-3; this can be regarded as an upper bound on the density 
contrast at the Mohorovicic discontinuity. 

The permitted values of the flexural rigidity correspond to plate 
thicknesses in the range 5-10 km, yet deformations at depths greater than 
20 km are indicated by other geophysical data. We conclude that the plate 
cannot be perfectly elastic; its effective elastic moduli must be much smaller 
than the seismically determined values. Estimates of the stress-differences 
produced in the earth by topographic loads, that use the elastic plate model, 
togeiher with seismically determined elastic parameters, will be too large by a 
factor of four or more. 

1 Introduction 

Measurements of gravity over large-scale topographic features such as mountain ranges 
typically show negative Bouguer anomalies that have an inverse correlation with the 
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elevation. The recognition of this relationship led to the development of the concept of 
isostasy; that the excess mass above sea level represented by topographic features is 
compensated by a deficiency of mass below sea level. The hypothesis can be given a more 
specific formulation in one of two ways: either in terms of the equality of mass of material 
in equal prisms above the ‘level of compensation’, or in terms of the equality of hydro- 
static pressure over a ‘level’ surface within the earth. The second is a more flexible condition, 
in that it can be applied to both local and regional compensation models, and only requires 
that stresses within the earth are hydrostatic below some depth. 

The Bouguer gravity anomalies associated with topographic features contain information 
about the distribution of compensating mass, even though they do  not determine it 
uniquely. If plausible limits can be placed on the maximum density differences involved, for 
instance, bounds can be established on the depth of the compensating mass (Parker 1975). 
More powerful constraints on the distribution of compensation are possible if a mechanical 
model of the compensation process can be specified. 

The earliest, and still the most commonly used, isostatic models are those of Pratt and 
Airy. They have tended to  dominate geophysical thinking about the processes by which 
isostasy is achieved, and about the definition and computation of isostatic gravity anomalies. 
Both are local compensation models: a topographic load is assumed to be supported only by 
the hydrostatic pressure at a point on the surface of compensation directly beneath it,  or 
conversely, the compensating density at any point within the earth is determined only by 
the topographic elevation directly above it. The classic picture of local compensation is of 
a set of rigid blocks floating in a denser liquid, entirely independent of one another, and free 
to move vertically so as to achieve individual hydrostatic equilibrium. In the Pratt model, 
the blocks have different densities, the value of the density determining the elevation; in the 
Airy model, the blocks are of equal density, but different length. Consequently, the distri- 
butions of compensating density are different. In the Pratt model, it is distributed uniformly 
with depth down to the level of compensation, which is typically found to  be 60-1 10 km. 
In the Airy model, the compensating density contrast occurs at the base of the block (at 
depths of 30-60 km), where the low-density material displaces the high-density fluid. A 
more general Airy model can be envisaged in which the density of the blocks changes conti- 
nuously with depth, rather than there being a single jump at the base. In that case, the 
compensation will be distributed vertically beneath the topography, and for certain density 
distributions, will look like the Pratt model (Jeffreys 1970). 

The difficulty with such local compensation models is that they involve unreasonable 
assumptions about the mechanical behaviour of the crust and upper mantle in response to 
surface loads. In the Airy model, for instance, any topographic load, however localized and 
however small its spatial scale, must give rise to vertical movements of the crust in order that 
local compensation be reachieved. Such a response implies that the crust has no strength at 
all for vertical loads. Movements along vertical fractures or some form of creep must take 
place in response to extremely small stress differences. Yet isostatic gravity anomalies with 
magnitudes of several hundred pm s - ~  and spatial scales of up to  100 km or more are 
common features of the continental crust. Such anomalies are often produced by igneous 
intrusions with welldetermined ages that may exceed 100 Myr. Despite the length of time 
that has ‘elapsed since their emplacement, they are still not locally compensated. The 
continued existence of the gravity anomalies implies that the crust is able to sustain stress 
differences of up to 100 kbar or more for a significant fraction of geological time. 

Considerations of this kind have led geophysicists to investigate various forms of regional 
compensation. The mechanical model that has been most often used is one in which the 
outer shell of the earth is treated as a thin elastic plate, floating on the surface of a liquid. 
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Vening Meinesz (see Heiskanen & Vening Meinesz 1958) has used such a model as the basis 
for the computation of isostatic gravity anomalies. His approach was to calculate the 
distribution of compensation in a crustal column according to the Airy-Heiskanen scheme, 
then to redistribute the compensation laterally in accordance with the deformation that 
would be expected for an elastic plate subjected to the known topographic load. It does 
not seem to have been satisfactorily established that the fit of such a model to the data (as 
measured by the size of the residual isostatic anomalies) is any better than that of the local 
compensation models. 

In this paper, we attempt to establish by formal statistical tests whether a local or 
regional compensation model is more satisfactory in accounting for the relationship between 
Bouguer gravity and topography determined over a region of continental scale. We agree 
with Jeffreys (1970) that ‘the proper line of progress now is to start from what we know, 
namely, the heights and the values of gravity and try to find out what distributions of 
density underground are needed to explain them.’ We do not share the pessimism of Hayford & 
Bowie (1912), when they say ‘there is little hope of determining by the use of gravity obser- 
vations the manner of the distribution of the isostatic compensation with respect to depth.’ 

The first steps along the lines proposed by Jeffreys were taken by Dorman & Lewis 
(1970, 1972) and Lewis & Dorman (1970), when they showed how to summarize in the 
most effective way the relationship between gravity and topography, by calculating an iso- 
static response function relating the gravity anomaly of the compensation to the elevation of 
topographic features of a given wavenumber. The isostatic response they computed was 
derived from data covering the whole of the continental United States. By averaging over an 
area of continental scale, they eliminated relationships between gravity and topography that 
are only applicable to specific geographical regions. We should not, therefore, expect to 
derive information from their response data about compensation processes that involve 
complex lateral variations in the structure of crust and upper mantle. Such processes may be 
important in a local context, but what we are concerned to discover is just how much of the 
compensation process is explicable in terms of a single model that is valid for an entire 
continent. From that point of view, the elimination of locally specific relationships between 
gravity and topography is a considerable advantage. 

Dorman & Lewis (1970, 1972) show that their isostatic response estimates can be 
inverted to yield the compensating density distribution, provided local compensation is 
assumed. When they inverted the United States response, they found that the data required 
negative densities down to 150 km or so, and positive densities at greater depths. They 
accepted the positive densities as a genuine feature of the local compensation process; we 
prefer to interpret them as an indication that compensation is regionally rather than locally 
distributed. If this assumption is correct, tests of the statistical significance of the positive 
densities are equivalent to tests of the validity of the local compensation model. Using 
linear and quadratic programming techniques, we are able to show that the hypothesis that 
everywhere negative local compensation density models fit the data can be rejected at the 
90 per cent level. 

The regional compensation model that we then adopt in our attempts to satisfy the data 
is the thin elastic plate over a liquid. Its response can be inverted to yield the absolute 
density in the plate, provided the flexural rigidity of the plate and the density contrast 
between topography and mantle are specified. The model gives acceptable fits to the data 
provided the flexural rigidity and density structure of the plate lie within certain bounds. 
If the model is accepted as a realistic representation of the Earth, the bounds enable con- 
clusions to be drawn about the rheology and density structure of the crust and upper 
mantle. 



434 

2 The isostatic response data 

The isostatic model to which Lewis & Dorman fit their topographic and gravity data is 
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G ( k )  = e ( k ) H ( k )  -k NG ( k )  ( 1 )  

G(k),  H ( k )  are the two-dimensional Fourier Transforms of the Bouguer gravity and topo- 
graphic maps respectively. The isostatic response function, Q ,  depends on the modulus k 
of the horizontal wavenumber k .  Q ( k ) H ( k )  is the part of the Bouguer anomaly map at wave- 
number k that can be attributed to the compensating density distribution. N G ( ~ ) ,  the 
residual Bouguer anomaly, or 'isostatic anomaly', does not correlate on the average with 
H ( k ) ,  and is due to lateral density variations, mainly of relatively small scale, in the crust 
and possibly in the upper mantle. 

The best estimate of Q ( k )  is given by 

where the brackets denote averaging of the cross spectrum and power spectrum around 
annuli in the wavenumber domain. 

The assumptions that are inherent in this model are discussed by Dorman & Lewis 
(1970), Lewis & Dorman (1970) and Banks & Swain (1977). The relationship between 
gravity and topography is assumed to be linear. Dorman & Lewis point out that this is not 
exactly true for some isostatic models. In particular, the variation of the depth of the com- 
pensating density in the Airy model makes it non-linear, though only slightly so. The 
method used to stabilize the spectral estimates, forcing Q to be a function of I k I ,  allows 
only isostatic models in which the compensation of a point topographic load is distributed 
with cylindrical symmetry beneath it. Neither of these assumptions is unduly restrictive. 

Wavelength (km)  

I0 ' 10 

Wavenumber ( k m  ' 1  
Figure 1. Isostatic response estimates for the United States. Bars represent +_ 1 standard error in the data. 
Continuous curve is the response of the local compensation model with both negative and positive 
densities; dashed curve is the response of the local compensation model with only negative densities and 
smallest one-norm misfit to  the data. 
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Fig. 1 shows the isostatic response estimates for the continental United States, as plotted 
by Dorman & Lewis (1972), together with their associated standard errors, which play an 
important role in the assessment of the goodness of fit of isostatic models. It should be 
noted that the size of the errors is, except at the shortest wavelengths, a measure of N G ,  the 
component of the gravity spectrum not fitted by the linear model. 

3 Local compensation 

In the analysis of both local and regional compensation, we shall use a plane rather than 
spherical geometry. In the case of local compensation, i t  is just as easy to write down the 
isostatic response of the spherical earth model as that of the plane earth model (see Dorman 
& Lewis (1970, 1972) for details). However, the problem of the elastic deformation of the 
plate that must be solved in the analysis of regional compensation can be handled more 
easily using plane geometry, so we have chosen to work with a plane earth model through- 
out. This simplification leads to inaccuracies in the computation of the gravity anomalies 
associated with the compensation. However, it turns out that the maximum depth of the 
compensating density is small compared to the radius of the Earth. In consequence, the 
effect of the incorrect geometry on the response is generally smaller than the estimated 
errors in the data, except at the very longest wavelength (4096 km) where it is of 
comparable size. 

3.1 R E S P O N S E  O F  T H E  L O C A L  C O M P E N S A T I O N  M O D E L  

There is no necessity for a precise specification of the mechanical characteristics of the local 
compensation model - whether blocks of rigid lithosphere niove along vertical faults, or 
deformation takes place by some form of creep, etc. All that we need require is that the 
compensating density contrast (relative to the normal earth) at any point within the earth is 
determined only by the elevation of the topography directly above it. In addition, the 
compensating density, p c ,  must be a linear function of the topography h(r) to produce a 
linear response; a density model that satisfies these criteria is 

P, (r, z )  = P ( z ) h  (r) (3) 

where r is the projection of the position vector on to the x, y plane, and ~ ( z )  is the 
compensating density associated with unit topographic load. 

Such a definition of the local compensation model is compatible with both the Pratt and 
Airy mechanisms. For the Pratt model, p(z) = po/H, ,  where p o  is the density of the 
topography, and H ,  is the depth of the level of compensation. The compensation is 
uniformly distributed in the depth range (0, H , ) .  In a simple Airy model, with compensation 
by varia'ions in the thickness of the crust, the corresponding density anomalies can be 
replaced (in a linear approximation) by a distribution with the form of equation (3), in 
which p(z)  is a spike of magnitude po in a layer of unit thickness, located approximately at 
the mean depth of the Mohorovicic discontinuity. More sophisticated forms of Airy 
compensation, involving the displacement of boundaries within the crust, or of regions 
with more gradual vertical density gradients, will give rise to corresponding structure in 
P ( Z ) .  

For complete local compensation, we must have 

1,- P, (f, z ) d z  = -Poh (r) 

15 



436 

(the minus sign arises because h(r) is measured positive upwards, z is positive downwards). 
The model defined by equation (3) satisfies this requirement provided 
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P o  = - jo- P (z)dz. 

Dorman & Lewis (1 970) show that the response of the local compensation model is 

Q (k) = 2 nY /amp (z) exp (- 277 kz) dz 

Hence 

(4) 

Q(0)  = 2nY Jomp (z)dz 

= -2nYpo 

if the compensation is perfect. It follows that if we make use of an estimate of Q(0) in 
inverting the data, we are in fact specifying the completeness of the compensation. Making 
a reliable estimate of Q(0) may not be a straightforward matter (Banks & Swain 1977). The 
mean free air anomaly over the area analysed by Lewis & Dorman is 0.4 pm s-’; the mean 
elevation is 684 m. These figures suggest that compensation is almost perfect, and that we 
ought to be able to set Q(O)= -2 n’3po= -!.1190 x 10-6s-2 with very high accuracy. 
However, the mean Bouguer anomaly is -816.6 pm s-’, corresponding to Q(0) = - 1.1934 x 
1 0-6 s-’. The discrepancy might be caused by the spherical rather than the plane geometry 
of the compensation. We have attempted to allow for it by making a more liberal estimate of 
the uncertainty, setting Q(0) = -(1.1190 k0.04) x 

The integral in equation (4) is evaluated over a finite range of depth. The maximum 
depth, z,, was chosen to be 400 km, and k and z were normalized in terms of z,. 
Substituting ~i = kjz, (kj is the wavenumber of the j th response estimate Qj) and < = 
zfz,, we find 

s-’. 

3.2 I N V E R S I O N  O F  T H E  R E S P O N S E  A S S U M I N G  L O C A L  C O M P E N S A T I O N  

Equation (5) can be inverted for the density distribution p ( 5 )  using the spectral expansion 
method described by Parker (1977). The details of its application to the isostatic response 
problem are given by Banks & Swain (1977). The misfit of the theoretical response of a 
model to the observations is traded-off against the errors in the inverted density distribution. 
If  too good a fit is required, these errors become unacceptably large and the model is 
meaningless. The model that we selected by this procedure has a squared two-norm misfit 
to the data of x’ = 3.92. It is shown in Fig. 2, together with the associated standard errors. 
The effective number of degrees of freedom is 13, so that the model is acceptable at better 
than the 99 per cent level. 

Two points should be borne in mind in assessing the model plotted in Fig. 2. First, that 
it is a highly smoothed version of the actual density distribution. Second, that p(z) is the 
compensating density for 1 m of topography. To obtain the actual density changes, p(z) 
must be multiplied by the elevation. Thus topography 1000 m high would require density 
reductions of 4s much as 100 kg m-3 for its Compensation. 
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Figure 2. lsostatic density model for the USA, obtained by inverting the response data in Fig. 1 ,  assuming 
local compensation. Ordinate is density contrast per unit topographic elevation. 

The essential features of the density model are a negative density lobe at depths of 10- 
100 km, and a positive lobe at depths of 100-300 km. Mass deficiencies to compensate the 
excess mass above sea level are a necessary feature of all isostatic models. However, it is 
usually assumed that only density reductions are involved, not positive densities as well. 
Dorman & Lewis (1972) also found that they needed positive densities to fit their response 
data. They accepted them as an integral part of the compensation mechanism, and 
attempted to substantiate them by comparing their density model with differences between 
seismic velocity structures beneath regions of the United States with high and low mean 
elevations. However, a second interpretation of the positive densities is possible: that the 
local compensation model is not valid. As Jeffreys (1970) has pointed out, any density 
distribution derived under the assumption of local compensation can be replaced by a lateral 
distribution at shallower depths that produces exactly the same gravity anomaly. Such a 
lateral distribution in response to a localized load constitutes regional compensation. Thus, 
it is certainly possible to replace a local compensation model that involves positive densities 
by a regional compensation model that only involves negative densities. Such a model must 
fit the response data equally well, though the problem remains whether any reasonable 
mechanical model of the Earth’s response to surface loads can give rise to the required lateral 
density changes. 

Hence, if we can demonstrate that the positive density lobe is an essential feature of the 
local compensation model, it must follow that either (a) positive density changes really exist 
or (b) compensation is regional rather than local. 

3.3 T E S T I N G  T H E  SIGNII ; ICANCE O F  T H E  P O S I T I V E  D E N S I T I E S  

The errors shown in Fig. 2 do not completely specify the uncertainty in the density distribu- 
tion. The inverted model is a highly smoothed version of the true density structure, obtained 
by convolving it with certain kernels. The shape of the kernels determines how well structure 
at a given depth is resolved, and whether the smoothed density estimates are appropriate 
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to the depth to which they are attributed. Dorman & Lewis (1972) have computed the 
resolving kernels associated with their United States response data. They are broad (50- 
100 km in width for structure in the depth range 0-100 km), so that the vertical resolution 
is poor, and they are asymmetric; the peaks are displaced from the depth at which the 
density contrasts actually occur. These features indicate that it is unlikely to be profitable 
to approach the problem of the significance of the positive densities by way of the resolving 
kernels. 

The resolving kernels attempt to give answers to very specific questions about the density 
structure. The information content of the data is quite inadequate to  supply these answers. 
However, for our. purposes, all that is required is the answer to a much more general 
question: is a model that involves only negative densities compatible with the data? More 
specifically, what we wish to know is the confidence level at which we can reject the 
hypothesis that the data were generated by a structure involving only negative densities. 

To do this we first construct the entirely negative model fitting the data best; for the 
moment we shall suppose that x2, the standard statistic, measures the mismatch between 
model and observation. We then hypothesize that the best-fitting model is indeed the true 
structure, and now we calculate the probability that the misfit would be as big or bigger 
than the one observed, given the standard errors in the data. If this probability is very small, 
we may reject the hypothesis and, more important, we can reject a similar hypothesis con- 
cerning any other everywhere-negative model, because this was the best-fitting model of its 
kind. 

The computation of the probability is explained best by examination of a simple two- 
data problem (see Fig. 3), in which the two-dimensional data plane can be readily depicted. 
The set of data compatible with entirely negative models is the shaded wedge which is the 
mapping of the set of points ~ ( z )  G 0 on to Ql, Q2 via the functionals (4). Because no  such 
model satisfies the data exactly, the actual observations lie outside the wedge at D ;  the 
hypothetical structure gives rise to data at B.  Since we have normalized Ql and Q2 by their 
standard errors, circles in this plane represent contours of equal x2; the probability that the 
observed misfit be as bad or worse than that observed is clearly the integral of the 
probability density function of the misfit measure over the whole plane outside the circle 
centre B radius BD. It can easily be confirmed that this is the standard xi integral with 
v = 2. For N data, v will be equal to N .  

The discussion in this section has shown that two problems are involved in testing the 
hypothesis that positive densities are a necessary feature of local compensation models: 
finding the everywhere negative model with the smallest misfit t o  the data, and defining and 
evaluating the characteristics of the probability distribution of the chosen measure of mis- 
fit. 
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3.4 T H E  APPLICATION O F  LINEAR A N D  Q U A D R A T I C  P R O G R A M M I N G  

If the chosen measure of misfit is a linear function of the observed and theoretical responses, 
the problem of finding the everywhere negative model with the smallest misfit to the data 
can be solved by linear programming. If a quadratic measure such as x2 is used, quadratic 
programming techniques are required. 

The way in which the linear programming problem is set up is described by Banks & 
Swain (1977); see also Gass (1975). As in that paper, the measure of misfit we use is the one 
norm; the sum of the absolute values of the individual misfits: 

M 

j= 1 
Y = I(Qj -Tj)/ojl 
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Qj is the observed value of the response, the theoretical value for a particular model, and 
uj the standard error of the j th estimate. With this choice of misfit measure, the contours or 
surfaces of constant misfit in data space are diamonds or cross polytopes rather than circles 
or hyper-spheres, but otherwise the approach discussed in Section 3.3 remains the same. 

The model is parameterized by dividing the slab z = 0, z ,  into layers of uniform density: 

P(t) = P I  t1 < t < t r + 1  I = l , L  

so that the theoretical response is given by 

where 

Ki 

The model is required to fit the data with misfit ei, i.e. 

(Qj -Tj)/uj = ej 

and the model that we seek is that with the minimum value of 

The densities pI are all constrained to be negative, and, in addition, bounds are placed on 
the depth-integrated density 

For perfect local compensation, this sum should be equal (and opposite in sign) to the 
topographic density po. Exact equality is not desired; po is not known exactly, and some 
measure of under or over-compensation may be allowable. The constraint was relaxed by 
requiring that the sum, or po, lie in the range 2500-2700 kg m-3. 

z ,  was chosen to be 100 km, and the slab divided into 20 equal layers (initial tests 
showed that non-zero densities below 100 km were not required). The solution with the 
minimum one-norm misfit to the data, and which satisfies the above constraints, turned 
out to have only one non-zero component: the compensating density in the layer between 
30 and 35 km depth was -0.540 kg m-4. Note that this solution corresponds to the upper 
bound on the crustal density; the lower bound is redundant. Reducing the upper bound 
must make the misfit worse. The misfit of this model is ym = 15.766. 

The second part of the problem is to evaluate the probability P that the one-norm 
exceeds this value. Tables of the probability density function for the one-norm have been 
computed for values of M up to 10, using the method described by Hartley (1945) and 
Hartley & Godwin (1945). We find that, with 10 or more data, y can be treated as a 
normally distributed variable with mean 4 = M ( ~ / T ) " ~  and standard deviation s = 
[M( 1 - 2 / n ) ]  'I2. Then the probability that the one-norm of M data exceeds ym is 

P {y > ym;M) = 1 -1 J exp ( - ~ / 2 ) d x  
X 

6 - m  
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where 
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x = (Ym -w. 
In this case, P { y  > 15.77; 16) = 0.1 1.  It follows from the discussion in Section 3.3 that the 
hypothesis that the data are compatible with an everywhere negative model can be rejected 
at the 89 per cent level. 

The level of confidence is quite sensitive to the choice of upper bound on the topo- 
graphic density; for example, if po is allowed to be as large as 2800 kg m-3, the confidence 
level is reduced to 59 per cent. 

The responses of the model obtained by inversion, and of the all-negative model with 
minimum misfit, are plotted in Fig. 1 for comparison with the observations. The fit of the 
twosign model is obviously very good; that of the all-negative model is poor. Although the 
misfits of individual points are never very large, they show a consistent behaviour with 
wavenumber that would not be judged acceptable on the basis of a visual appraisal. At 
wavelengths greater than 200 km the misfits are consistently negative, while below 200 km 
they are consistently positive. The overall shape of the response curve is clearly incorrect. 
The difficulty in achieving a satisfactory fit arises because d2Q/dk2 never changes sign for 
all-negative local compensation models, although the data obviously require such a change 
(this is not obvious in Fig. 1 because of the logarithmic wavenumber scale). 

Quadratic programming was used to find the model with the smallest x2 misfit, subject 
to the same constraints imposed in the linear case. The minimum misfit models were 
identical; xh was 20.86. It turned out, in this case, that the squared two-norm misfit did not 
discriminate more strongly than the one norm against the hypothesis of negativity. 

3.5 G E O P H Y S I C A L  S I G N I F I C A N C E  O F  T H E  E V E R Y W H E R E  N E G A T I V E  M O D E L  

We have shown that no local compensation model that involves only negative densities fits 
the observations adequately. However, the best-fitting negative model is of considerable 
interest. If the layer thickness is 5 km, non-zero densities are only required in the layer at 
30-35 km depth. The model may be refined by introducing thinner layers in this depth 
range. However, when this is done, the minimum misfit model is still found to have finite 
densities only in one layer (or sometimes in two adjacent layers). It is clear that the 
optimum negative model is a delta function, at a depth of 32 km. 

Such a distribution of density is obviously incompatible with the Pratt mechanism of 
compensation. Forcing the compensation to  be uniformly distributed with depth would lead 
to a worse misfit to the data. The form of p ( z )  for the optimum local compensation model 
clearly corresponds to that we would expect from the linear approximation to the Airy 
mechanism. The depth of the density spike corresponds very well to usually accepted 
estimates of the mean thickness of the continental crust, as determined by seismic refraction 
measurements. The implication, if we chose to ignore the misfit to the data, would be that 
local compensation was achieved by lateral variations in the thickness of the crust. 

The approach we took in Section 3.3 in setting up the statistical tests can be used to 
throw an interesting light on the question of why Airy compensation at a single depth 
emerges as the best -fitting local compensation model. In the previous discussion of Fig. 3 ,  
we ignored the structure of the density model. Let us suppose that the density distribution is 
parameterized by dividing the slab (O,z,) into L layers. The L constraints generated by 
requiring the density of each of these layers to be negative, define L hyperplanes in data 
space; projected on to a two-dimensional data space, they appear as L lines through 0, 
such as OC1, OC,, etc. However, for the purpose of measuring the minimum distance of a 
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Figure 3. Schematic diagram to illustrate misfit of negative density local compensation models (shaded 
region) to response data. For explanation, see Section 3.3 of the text. 

point such as D from the region of negative models (i.e. the misfit of the data to the best- 
fitting negative model), we are only interested in the lines OC1 and OC, that bound the area 
containing all the others such as OC, and OC,. 

As the twodata example shows, if the everywhere negative model does not fit the data, 
i.e. if D lies outside the shaded region, the best fitting model B must lie on one of the lines 
OC. But these lines are the projections of the axes in model space defined by p l =  p f  (I = l f ) ,  
P I =  0 (I + I f ) .  B has only one non-zero component. In the limit as the number of layers 
becomes large, the minimum misfit model will be a delta function. It follows that, simply 
because the negative local compensation model is inadequate, any attempt to interpret 
gravity and topographic data using such a model will yield, as the best-fitting model, Airy 
compensation at a single depth. 

A complication arises when the isostatic constraint is also imposed. An upper and a lower 
bound is placed on a linear combination of the densities pl .  These bounds define two extra 
hyperplanes that further limit the convex set of allowable models. If the isostatic con- 
straint is applied, the minimum misfit model could lie on one of these planes. In that case 
the best-fitting model would have a number of non-zero components. This is not observed 
in the local compensation problem, but does appear to arise in the case of regional 
Compensation. 

Since all forms of !ocal compensation involving only negative densities are rejected by 
the statistical tests, we are forced to turn to  other compensation mechanisms. We could 
accept the reality of the positive densities, but we prefer first to investigate the possibility 
of explaining the response in terms of a regional compensation model. 

4 Regional compensation 

4.1 A S I M P L E  R E G I O N A L  C O M P E N S A T I O N  M O D E L  

Vening Meinesz (see Heiskanen & Vening Meinesz 19-58), Walcott (1970, 1976), and 
McKenzie & Bowin (1976), among others, have interpreted the gravity anomalies associated 
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with topographic loads in terms of regional compensation. The rheological models which 
they assume in order to compute the deformation produced by topographic loading are 
essentially identical. The outer shell of the Earth is treated as an elastic plate floating on the 
surface of a liquid. In the context of this discussion of regional compensation, the plate will 
be referred to as the lithosphere, and the liquid as the asthenosphere. The details of the 
model are shown in Fig. 4. To illustrate how regional compensation is effected, the response 
of the lithosphere to a spatially localized topographic load is shown. Although short wave- 
lengths dominate the spectrum of the load topography, they are suppressed in the spectrum 
of plate deformation, and long wavelengths dominate there. In spatial terms, the 
concentrated load is supported over an area considerably greater than its own extent by the 
buoyancy forces set up on the base of the plate. 

A reasonable case can be made for such a rheological model of the Earth’s response to 
stresses acting over periods of 104-108yr. The outermost shell deforms by brittle fracture 
and possibly transient creep, but otherwise behaves elastically. At depths greater than 20 km 
or so, where the temperature exceeds half the melting temperature of the rocks, steady state 
(viscous) creep becomes the dominant process of deformation, and the Earth can be treated 
as a very viscous liquid. It should be emphasized that the use of the terms lithosphere and 
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Figure 4. The regional compensation model. 

asthenosphere for the elastic plate and fluid does not imply a correspondence to the 
‘lithosphere’ and ‘asthenosphere’ of plate tectonic terminology. In the context of plate 
tectonics, the properties of the plates are usually assumed to be those determined from 
seismic measurements, i.e. from the elastic response of the Earth to stresses lasting at most a 
day or so. The response to the long term stresses involved in topographic loading may be 
completely different. We should not assume any a priori knowledge from the seismic 
measurements about the thickness and ‘elastic’ properties of the plates involved in regional 
compensation. 

The gravity anomalies that correlate with the topography are attributed to the bending of 
the lithosphere. It is obvious that density anomalies will be produced at horizontal 
boundaries where there is a discrete change in density (for example the Mohorovicic dis- 
continuity). However, any region of the lithosphere in which the vertical density gradient is 
non-zero will, upon deformation, give rise to density anomalies and corresponding gravity 
anomalies. For simplicity, in Fig. 4 we only show the density anomaly created by the de- 
formation of the Moho (assuming it to lie within the plate). 

Walcott (1976) has compared the response of this regional compensation model to 
Dorman & Lewis’ United States response data, but for some reason he assumes that all the 
gravity anomalies originate from sources at the surface of the plate. We shall not impose any 
constraint of this kind on our model, but allow sources at all depths within the plate. 
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4.2 T H E  R E S P O N S E  O F  T H E  P L A T E - L O A D I N G  M O D E L  

The evaluation of the isostatic response of the plate loading model involves three steps: 

(i)  The determination of the plate deformation w(r) in response to topographic load 

(ii) The calculation of the density perturbation, Ap(r, z ) ,  produced by the deformation of 
the plate. 
(iii) The calculation of the gravity anomaly caused by the density perturbation. 

Pogh 0 (4. 

4.2. I Calculation of the plate deformation 

We shall treat the lithosphere as a thin elastic plate; that is, one whose thickness is small 
compared with the wavelength of the deformation. McKenzie & 3owin (1976) give a two- 
dimensional treatment of the thick plate problem, and point out the errors introduced by 
the thin plate assumption. However, in the isostatic response problem, the inaccuracies in 
the data at the short wavelengths are the limiting factor, rather than the errors arising from 
the thin plate approximation. 

The equation for the equilibrium of the deformed plate is (see, e.g. Jeffreys 1970) 

D -V4w(r)  = p ( r )  (6) 
w(r) is the upward deflection of the plate. Strictly speaking, it is the deformation of the 
median plane within the plate, but in the thin plate it will be assumed that all surfaces, 
including the top and bottom, deform similarly. p (r) is the net upward force per unit area 
acting on the plate; it is generated by the topographic load ho(r)  (density p o )  and the 
buoyancy force set up on the base of the plate by the displaced asthenosphere (density 
pm), i.e. 

p(r) = -pogho(r) -P,gw(r) .  (7) 
The measured topography comprises two parts; the load topography and the plate de- 
formation: 

h(r)  = ho(r) + w(r) (8) 
D is the so-called flexural rigidity of the plate. If the plate is continuous, homogeneous, and 
elastic, D can be expressed in terms of its thickness and of the elastic moduli of the material 
that constitutes it.  The relationship is 

ET3 
D =  

12(1 -u2) 

where T is the plate thickness, E is Young’s Modulus, and u is Poisson’s Ratio. However, an 
alternative is to regard D as an experimentally determinable measure of the deformability 
or stiffness of the plate, irrespective of whether we choose to interpret it in terms of an 
elastic model, using equation (9). The ultimate interpretation of the measured value of D 
will depend on the rheological model of the lithosphere that is preferred. 

The analysis is very much simplified by taking the two-dimensional Fourier Transforms of 
equations (6) ,  (7) and (8). Then we find 

( 2 7 ~ k ) ~ D W ( k )  = -pogHo(k) --p,gW(k) (10)  

where 

W(k)  =Is w(r) exp (i2nk.r) dS 
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etc. When Ho(k) is eliminated by using equation (8), the relationship between the plate 
deformation W(k) and the measured topography H(k) that results is 
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4.2.2 Gdculation of the density perturbation 

The density perturbation produced in a medium of density p (r, z) by a displacement field 
u (r, z) is 

Ap(r,z) = div(p(r,z)u(r,z)) 

= p(r,z)divu(r,z) t u(r ,z) .  Vp(r,z). 

We shall assume that the plate is effectively incompressible by putting div u (r, z )  = 0. 
Furthermore, the normal density distribution in the plate will be assumed to be a function 
only of depth. In that case 

a P (Z) 

az  
Ap(r, z )  = w(r) - 

where the vertical component of the displacement is assumed to be the same at all depths in 
the plate. We shall require the two-dimensional Fourier Transform of equation (12); it is 

a P  
Ap (k, Z) = W(k) - 

az 

4.2.3 The gravity anomaly and the response 

The approach taken by Parker (1973) can be used to write down the Fourier Transform of 
the gravity anomaly produced by the density perturbation A p (k, z). It is 

ou 

G(k) = ZnYI0 Ap(k,z) exp(-2nkz)dz 

and when the substitution is made from equation (1 3), we find 

G(k) = 2n9fW(k)J72 exp(-2nkz)dz. 
0 az  

When the deformation W(k) predicted in equation (11) by the thin plate theory is 
substituted into equation (1 5), the isostatic response function can be written down directly: 

If a new response function is defined by 

it can be written as 

- a P  
R(k) = 2 n 9 I o  az exp(-2nkz)dz. 
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The form of equation (18) is identical to that of equation (4), the response of the local 
compensation model. However, the property of the Earth that determines the response is 
now the absolute vertical density gradient in the lithosphere, rather than a compensating 
density contrast relative to the normal structure. If R ( k )  can be determined from the 
measured response Q (k) ,  it can be inverted for a p / a z  using exactly the same techniques as 
were employed in the analysis of the local compensation model. 

4.3 ESTABLISHING B O U N D S  O N  D A N D  P m  

Direct inversion of the response Q ( k )  assuming local compensation did not lead to very 
concrete conclusions about the density distribution, because of the poor resolution of the 
kernels, and it is unlikely that more satisfactory results would be achieved by inverting 
equation (18). The linear programming approach proved to be much more fruitful, and we 
turn to it immediately in attempting to establish whether a regional compensation model 
involving a plausible density distribution and plausible values of D ,  p m  etc. is compati'ole 
with the data. 

As before, we parameterize the model , replacing the continuous density gradient a p / a z  
by a series of discrete density jumps A p l  located at depths z l r  1 = 1, L .  The response of such 
a model is 

L 

I =  1 
R ( k )  = 2 7 7 9 1  A p l  exp(-2nkzl). (19) 

Non-zero density jumps are limited to the finite depth range (0, zm); and the wavenumbers 
and depths are normalized in terms of 2,. The theoretical response at the j th wavenumber 
can be written as 

where 

The linear programming problem is set up in much the same way as before. Constraints 
must be placed on the class of acceptable density models; otherwise the inverted structure, 
because it attempts to fit the inaccurate data exactly, will be geophysically meaningless. In 
the local compensation problem, we constrained the density contrast to be negative at all 
depths, and found the minimum misfit model. A comparable constraint on the regional 
compensation model is to require that the density gradient be positive at all depths, i s .  we 
seek the minimum misfit model (in the one-norm sense) subject to the set of constraints 
A p l >  0, 1 = 1, L .  A reasonable case can be made for the imposition of this constraint on 
theoretical models. Density models derived from seismic velocities typically show positive 
density gradients in the crust and upper mantle down to 200 km depth. Density inversions 
may occur in the crust, but they are unlikely to be of very great vertical extent. Their 
effect on the response will consequently be small, since the contributions from the top and 
bottom of the layer will almost cancel. In any case, we can take positive density gradients 
as a working hypothesis, and use the response data and the regional compensation model as a 
means of testing its validity. 

The principal difficulty in setting up the linear programming problem is that the data to 
be inverted are not the observed responses, Qj, but the modified responses Rj. The derivation 
of R j  from Qj requires knowledge of D, p m ,  and po .  For consistency, the topographic density 
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po should be the standard density of 2670 kg m-3, used in the reduction of the gravity data 
to Bouguer anomalies. We would prefer to derive the other two parameters, D and p,, 
from the data, rather than assign to them some arbitrary values based on other geophysical 
arguments. The obvious way around the difficulty is to find the minimum misfit model 
for each pair of values, D and p,. It may then be that the misfit is always unacceptable, for 
any plausible combination of D and p,. In that case, we may conclude either that the 
regional compensation model is incorrect, or that density decreases are also required. If, 
on the other hand, the minimum misfits are acceptable for certain values of D, p,, bounds 
on these quantities can be established, provided that we accept the correctness of the 
regional compensation model, and of the hypothesis that density always increases with 
depth. 

With this approach, some care is necessary to ensure that the constraints are mutually 
consistent. Once p, and po have been fixed, the density distribution should be chosen to 
satisfy the constraint. 
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The imposition of such a constraint on pt is equivalent to requiring perfect compensation 
at zero wavenumber. However, the two requirements, of isostasy and self-consistency, must 
be carefully distinguished. In order to separate them, it is preferable to introduce isostasy 
as a piece of observational data. The fact that the mean free air gravity anomaly is close to 
zero establishes the value of Q ( O ) ,  as explained earlier. To achieve self-consistency, once 
P, and po are chosen, the density models are also required to satisfy equation (20). 

z ,  was chosen to be 40 km after tests showed that non-zero densities at greater depths 
were not required by the data. The model consisted of the unknown density jumps Apl  
at 2 km intervals from sea level to 40 km depth. Models with the minimum one-norm 
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misfit were found for pairs of values of D and pm lying in the ranges 10l6 Q D Q 4 x 10’’ 
N m and 3000 G pm f 3600 kg m-3. In Fig. 5 ,  contours of the minimum misfit are plotted 
as a function of log,,D and p m .  They are approximately parallel to the pm axis, indicating 
that the misfit is effectively independent of the value of pm over the range of values in- 
vestigated. It is, however, sensitive to changes in D; the misfit surface is an asymmetric 
trough, asymptotically approaching a value of 16.6 as D tends to zero, and increasing very 
rapidly once D exceeds 10” N m. 

The hypothesis to be tested is that regional compensation models with everywhere 
positive density gradients can be rejected, provided D and pm lie outside certain limits. 
With 17 data, in order that the probability P should be less than 0.1, the one-norm misfit 
must exceed 16.75. Thus, if the hypotheses of regional compensation and positive density 
gradients are accepted, values of D and pm corresponding to models lying outside the 16.75 
contour can be rejected at the 90 per cent level. Fig. 5 shows that values of D greater than 
4 x lozz N m can be rejected at this level. It is not possible to reject low values of D at the 
90  per cent level. As D tends to zero, the regional compensation model becomes the original 
local compensation model that was rejected at just less than the 90  per cent level. If the 
confidence level is reduced to 80 per cent, the required misfit is 15.66. Values of D less than 
4 x loL8 N m can be rejected at this level. 

When we turn from judging our ability to reject a model, to judging its acceptability, an 
additional problem is created. The measure of the overall misfit between model and data 
that we use may not discriminate against certain forms of misfit. In particular, a measure 
like the one-norm does not discriminate strongly against models for which the individual 
misfits show consistent runs of a particular sign. This creates no difficulty when the 
hypothesis we are testing is that a model can be rejected; it merely means that the model 
can be rejected at a higher confidence level than we claim. However, when a model is being 
tested for its acceptability, the reverse is true. The result is that a model that is apparently 
acceptable at the 80 per cent level, say, on the basis of the probability estimate P, may look 
completely unacceptable when subjected to a visual comparison with the data. In Fig. 6, 
the responses of two models are compared with the data. They have misfits of 11.47 and 
9.48, which would be judged acceptable at the 80 and 95 per cent levels respectively on the 
basis of P. Neither is completely satisfactory, in that the residuals tend to be consistently 
negative. What is needed for a visually satisfactory fit are randomly distributed residuals 
that do not correlate with their neighbours. Although the apparent difference between the 
two responses is slight, the 95 per cent acceptable model represents a significant improve- 
ment in this respect. On the basis of such arguments, we decided that, to be acceptable, a 
model should have a misfit of less than 9.48. The shaded area in Fig. 5 delineates the region 
of such models, and defines the range of acceptable values of D and p m .  pm is unbounded, 
whereas D is quite tightly constrained to the range 10’’ Q D Q 10’’ N m. 

The inability of the data to set tighter bounds on pm can be explained by considering 
the following form of the response: 

The value of pm inside the square brackets does not affect the ability of Q ( k )  to match the 
data. The misfit is determined by the ratio A p l / ( p m  -po) ,  and A p ,  can be adjusted to 
correspond to a chosen value of pm . The other influence of pm on the misfit is through the 
term in the curly brackets. D and (pm -pO)-’ are equivalent in their influence on the 
response. D can vary over 20 orders of magnitude, and is only determined to one order of 
magnitude accuracy. pm -po must likewise change by an order of magnitude to affect the 
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Figure 6. Fit of regional compensation models to the response data. Both models maximize the density 
below 26 km. Fits to the data are 80 per cent (dashed curve) and 95 per cent (continuous curve) 
acceptable. 

response significantly. This means that pm would have to drop below 2800 kg m-3 before 
the misfits became unacceptable. 

4.4 B O U N D S  O N  DENSITY S T R U C T U R E  

In Section 4.3 we were able to show that the class of regional compensation models that 
involved only positive density gradients contained a subset that satisfied the observational 
data at an acceptable confidence level. Allowed values of D are in the range 102'-1022 N m; 
any reasonable value of pm is possible, and we may certainly choose the generally accepted 
value of 3300 kg m-3. 

However, no other characteristic of the subset of acceptable models has as yet been 
specified. It may be that none of the models has a density structure that is compatible with 
other geophysical data, derived, for instance, from seismology. Alternatively, if seismic data 
can be used tQ constrain features of the model, it may be possible to draw stronger con- 
clusions about acceptable values of D, or acceptable density structures. Our approach to 
this problem is to define features which all 'acceptable' models share in common. All 
'acceptable' models are required to have a one-norm misfit that is less than a specified 
value. With this as one of the constraints, the linear programming problem is to find the 
model that has the smallest or greater total density in a given range of depths. In this way, 
bounds can be established on the density distributions of all 'acceptable' models. Of course, 
the procedure must be repeated for all values of D in the range 102'-1022 N m. 

An interesting problem is to try to determine the part played by the Mohorovicic dis- 
continuity in isostatic compensation, and the magnitude of the density contrast between 
crust and mantle. Compilations of the depth of the Moho beneath continental crust that is 
at or near sea level show a wide scatter. Woollard (1970) gives 33 ? 7  km as the depth. It 
is certainly extremely rare for seismic refraction experiments on normal continental crust 
to yield Moho depths of less than 26 km. We can therefore begin our attempts to set bounds 
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on the density contrast at the Moho by finding the models that have the greatest and least 
total density increase ps at depths of 26 km or more. The minimum value of ps turns out to 
be zero, whatever the value of D .  The maximum value is plotted in Fig. 7(a) as a function 
of the flexural rigidity, for different values of the misfit 7. In the previous section, we 
suggested that a misfit of 9.48 or less, corresponding to P=O.95, was necessary for the 
model to be acceptable. With this choice, the maximum bound on the total density increase 
at or below 26 km is approximately 580 kg m-3. 

Twenty-six kilometres represents a minimum estimate of the Moho depth beneath the 
continents. If the depth is increased, the allowable density change is reduced. Fig. 7(b) 
shows the maximum allowed total density below different levels, plotted as a function of D. 
All the models are constrained to have a misfit to the data of 9.48 or less. If we have 
confidence that the Moho depth is 34 km or more, Fig. 7(b) tells us that the density contrast 
at the Moho must not exceed 470 kg m-3. The other possible way of estimating the density 
difference between crust and mantle is from the seismic velocity structure, making use of the 
empirical relationship between P-wave velocity and density. However, interpretations of 
seismic refraction experiments conventionally assume that the crust is composed of a small 
number (generally not more than two) of layers of uniform velocity, and do not allow for 
the possibility of continuous vertical velocity gradients. Such interpretations can therefore 
only yield a maximum bound on the velocity contrast, which turns out to be approximately 
1.5 km/s. The corresponding upper limit on the density contrast is 500 kg m-3, which is 
even more liberal than our estimate. If it were possible to tighten the bound on the density 
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contrast, it would help to establish the reality of vertical density gradients in the lower crust. 
However, as it is, it is reassuring to find that regional compensation models that fit the data 
at a satisfactory level are compatible with density distributions derived in an entirely 
different way. 
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5 Discussion 

We have shown that no local compensation model that involves only negative density 
contrasts beneath topographic loads fits the isostatic response function for the United 
States. Any form of local compensation, whether of the Airy or Pratt kind, can be dismissed 
if we are prepared to deny the reality of the positive density contrasts that are required 
to achieve an acceptable fit. For our part, we prefer to interpret the positive densities as an 
inaication that the compensation mechanism is regional rather than local in character. We 
have studied a simple regional compensation model that treats the lithosphere as a thin 
elastic plate overlying a liquid. Only positive vertical density gradients are allowed in the 
plate. Such a model fits the United States response, provided the flexural rigidity of the 
plate lies in the range 1021-1022 N m. The constraints that must be placed on the density 
structure of the plate in order to achieve an acceptable fit are compatible with what we 
know it to be from other geophysical measurements. 

The bounds thus established on the flexural rigidity of the lithosphere deserve some 
comment. If the lithosphere really is a homogeneous and perfectly elastic plate, the 
seismically determined values of E and u can be substituted into equation (9), and bounds 
placed on the plate thickness T. If E = 9.2 x 10"N m-2, u = 0.267 (Bullen 1975), T must 
lie between 5.0 and 10.7 km. Such a result might suggest that we ought to constrain all our 
models to have zero density gradients below 11 km. It is certainly possible to find acceptable 
models that only involve such shallow compensating densities. However, seismic refraction 
experiments have shown that the depth of the Moho beneath the United States roughly 
mirrors the topography (e.g. Pakiser & Zietz 1965), so that deformations must be taking 
place in response to surface loads at depths of 3040 km. It is not easy to determine 
whether deformation is also occurring at greater depths, because density and seismic velocity 
gradients in the upper mantle between 40 and 100 km depth are small. With this limitation 
in mind, it would appear from Fig. 8 that the isostatic response data are incompatible with 
density anomalies below about 80 km. 

If the lithosphere is defined to be that part of the crust and upper mantle which deforms 
in response to surface loads, its thickness must be at least 30 or 40 km; much greater than 
the value obtained by assuming it to be elastic. It follows that the lithosphere does not 
behave as a homogeneous elastic plate in response to long term loading. The elastic plate 
model, with seismically determined elastic parameters, has been used to estimate the 
maximum stress difference within the Earth caused by topographic loading (e .g. Jeffreys 
1970). Such an approach leads to values of several kilobars for the maximum stress 
difference. Our results indicate that these estimates are too large by a factor of four or more, 
because of the inadequacy of the rheological model. This lower value for the tectonic stress 
is much more nearly comparable with the stress drops in earthquakes as estimated by seismic 
studies (Brune 1971). 

Walcott (1970, 1976) has proposed that the lithosphere be treated as a uniform visco- 
elastic plate with the properties of a Maxwell solid. The deformation in response to topo- 
graphic loads is then timedependent; the instantaneous response is elastic, and the 
compensation regional, but viscous flow leads ultimately to perfect local compensation. If 
such a model is correct, measurements of the deformation of the lithosphere in response to 
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loading will only yield apparent values of the flexural rigidity, which will decrease with the 
time that has elapsed since loading, i.e. according to the age of the topography. Walcott has 
made a number of estimates of D for topographic features in different parts of North 
America. In most cases, the deformation he measures is at the surface, and is assumed to 
have been caused by a topographic load that had subsequently disappeared, e.g. lakes such as 
Bonneville and Agassiz. His estimates of D range from 5 x N m (Lake Bonneville) to 
9 x 10% N m (Lake Agassiz), and a plot of D against the estimated age of the load does show 
an apparent decrease with elapsed time. 

The effective age of topographic features in the United States may range from zero to 
more than 100 Myr. According to Fig. 5 of Walcott’s (1970) paper, the corresponding range 
of values of D is from lo2’ to N m. The effect of the variation should be to produce 
large standard errors in the response data, particularly at the wavelengths at which the iso- 
static response curve rolls off. The observed errors are, in fact, relatively small. A possible 
reason might be that the dominant topography of the western United States is of relatively 
uniform age. Even within this region, however, a considerable spread of ages still seems 
probable. Altogether, we dislike explanations of the observed response that rely on a 
fortuitous combination of widely different local circumstances. 

We prefer an explanation that involves laterally consistent vertical variations in the 
rheology of the crust and mantle. The discrepancy between our estimate of D and those 
made by Walcott could arise from the different methods used to determine the deformation. 
In most of the examples he analyses, the deformation is measured at the surface, whereas 
ours is measured at depth by means of the gravity anomaly it produces. The lower value of 
D that we obtain could be taken to imply that the deformations associated with topographic 
loading are greater at depth than at the surface. This could be because the surface de- 
formation had remained constant, and still represented the ‘instantaneous’ elastic value, 
whereas below 10 km, the initial elastic deformation had been converted by creep into that 
appropriate to local compensation. Thus we would favour a model with an elastic surface 
layer up to 10 km thick and with finite creep strength, rather than treat the entire 
lithosphere as a viscoelastic slab with, presumably, zero creep strength. 

There is still considerable scope for improvement, both in the theory and the data. 
Further developments could include the use of a spherical earth model, ‘thick plate’ treat- 
ment of the loading problem, and the use of more realistic rheological models. Estimates of 
the isostatic response at shorter wavelengths would help to place tighter limits on both 
the flexural rigidity and the density structure. 
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