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S U M M A R Y  
Topographic flexural signatures on Venus are generally associated with the outer edges 
of coronae, with some chasmata and with rift zones. Using Magellan altimetry pro- 
files and grids of Venusian topography, we identified 17 potential flexure sites. Both 
2-D Cartesian and 2-D axisymmetric, thin-elastic plate models were used to establish 
the flexural parameter and applied load/bending moment. These parameters can be 
used to infer the thickness, strength and possibly the dynamics of the Venusian 
lithosphere. Numerical simulations show that the 2-D model provides an accurate 
representation of the flexural parameter as long as the radius of the feature is 
several times the flexural parameter. However, an axisymmetric model must be used 
to obtain a reliable estimate of load/bending moment. 12 of the 17 areas were 
modelled with a 2-D thin elastic plate model, yielding best-fit effective elastic 
thicknesses in the range 12 to 34 km. We find no convincing evidence for flexure 
around smaller coronae, though five possible candidates have been identified. These 
five features show circumferential topographic signatures which, if interpreted as 
flexure, yield mean elastic thicknesses ranging from 6 to 22 km. We adopt a yield 
strength envelope for the Venusian lithosphere based on a dry olivine rheology and 
on the additional assumption that strain rates on Venus are similar to, or lower than, 
strain rates on Earth. Many of the flexural signatures correspond to relatively high 
plate-bending curvatures so the upper and lower parts of the lithosphere should 
theoretically exhibit brittle fracture and flow, respectively. For areas where the 
curvatures are not too extreme, the estimated elastic thickness is used to estimate 
the larger mechanical thickness of the lithosphere. The large amplitude flexures in 
Aphrodite Terra predict complete failure of the plate, rendering mechanical 
thickness estimates from these features unreliable. One smaller corona also yielded 
an unreliable mechanical thickness estimate based on the marginal quality of the 
profile data. Reliable mechanical thicknesses found by forward modelling in this 
study are 21 km-37 km, significantly greater than the 13 km-20 km predictions 
based on heat-flow scaling arguments and chondritic thermal models. If the 
modelled topography is the result of lithospheric flexure, then our results for 
mechanical thickness, combined with the lack of evidence for flexure around smaller 
features, are consistent with a Venusian lithosphere somewhat thicker than pre- 
dicted. Dynamical models for bending of a viscous lithosphere at low strain rates 
predict a thick lithosphere, also consistent with low temperature gradients. Recent 
laboratory measurements indicate that dry crustal materials are much stronger than 
previously believed. Corresponding time-scales for gravitational relaxation are 
108-109 yr, making gravitational relaxation an unlikely mechanism for the genera- 
tion of the few inferred flexural features. If dry olivine is also found to be stronger 
than previously believed, the mechanical thickness estimates for Venus will be 
reduced, and will be more consistent with the predictions of global heat scaling 
models. 

Key words: axisymmetric, elastic, rheology, topographic flexure, Venusian litho- 
sphere, viscous. 
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INTRODUCTION 

Lithospheric flexure can result from static or dynamic 
processes and provides constraints on spatial and/or 
temporal variations in lithospheric thickness and strength. 
Lithospheric thickness may be determined solely from 
modelling topographic flexure or by combining gravity and 
topography data. On Venus, the highest resolution Magellan 
gravity data is insufficient for modelling all but the longest 
wavelength flexural features so we rely heavily on altimetry 
data (Ford & Pettengill 1992) for information about 
lithospheric thickness. Lithospheric flexure on Venus was 
first inferred from the Pioneer Venus altimetry data over 
Freyja Montes (Solomon & Head 1990). Magellan altimetry 
has revealed additional sites of possibje flexural signatures; 
these are associated with coronae (Johnson & Sandwell 
1992a, 1993; Sandwell & Schubert 1992a), chasmata 
(McKenzie et al. 1992) and rifts (Evans, Simons & Solomon 
1992). 

Coronae are unique to Venus and are circular to elongate 
features, at least partially surrounded by an annulus of 
ridges and grooves (Pronin & Stofan 1990). They have 
complex interiors, which often exhibit substantial tectonic 
deformation and volcanism. The interior elevations range 
from local topographic highs to local topographic lows 
surrounded by an elevated ring. Some larger coronae have 
an elevated outer ring or elevated interior surrounded by a 
trench outer-rise signature that is characteristic of plate 
flexure. 

On Earth, flexure is predominantly observed at seamounts 
and subduction zones. If the flexure has persisted on 
geological time-scales, models involving the bending of a 
thin elastic or elastic-plastic plate may be appropriate and 
may provide an estimate of the elastic plate thickness. A 
purely elastic flexure model also assumes that the 
lithosphere can sustain infinite stresses; however, laboratory 
studies suggest that the strength of the upper lithosphere is 
limited by pressure-dependent brittle failure (Byerlee 1978) 
and the strength of the lower lithosphere is limited by 
temperature and strain-rate dependent ductile flow (Goetze 
& Evans 1979). We are interested in that part of the 
lithosphere which can support stresses over geological 
time-scales: this is known as the mechanical lithospheric 
thickness. McNutt (1984) developed a method for using 
inferred elastic-plate thicknesses and plate curvatures to 
estimate mechanical thicknesses; this has been applied to 
many terrestrial examples of flexure (for a review see 
Wessel 1992). While purely elastic models can explain 
trench/outer rise topography at most subduction zones 
(Caldwell & Turcotte 1979), they predict that the thin elastic 
part of the lithosphere must maintain large fibre stresses 
over long time-scales. To reduce the maximum stress and 
also account for plate motion at subduction zones, several 
authors (e.g. DeBremaecker 1977; Melosh 1978) have 
proposed dynamical models in which the observed 
topography is supported by the horizontal motion of a thick 
viscous/viscoelastic lithosphere. The important parameters 
are the strain rate, viscosity and viscous/viscoelastic plate 
thickness as compared with the strain, flexural rigidity and 
elastic-plate thickness of the elastic models. Both static and 
dynamical models fit the observations equally well, and so 
cannot discriminate between these models using topography 
data alone. 

Preliminary results involving simple 2-D Cartesian elastic 
plate models (Solomon & Head 1990; Evans et al. 1992; 
Johnson & Sandwell 1992a, 1993; Sandwell & Schubert 
1992a; Brown & Grimm 1993) and 2-D axisymmetric models 
(Moore, Schubert & Sandwell 1992) have been reported for 
some topographic flexures on Venus. In this paper we 
present the results of a global study of possible flexural 
features as identified in the Magellan data. Initially we 
model seven features using a 2-D Cartesian elastic model and 
summarize the results for five features previously modelled 
in this way (Sandwell & Schubert 1992a). Many of these 
flexural signatures are associated with the outer edges of 
coronae and thus the question of the validity of a 2-D 
Cartesian model is important. Axisymmetric models for 
simple loading geometries have previously been derived 
(Brotchie & Sylvester 1969; Brotchie 1971; Turcotte 1979), 
and we address quantitatively the limiting cases for which a 
2;D Cartesian model is valid. Based on these results we 
re-examine the topography around one corona with an 
axisymmetric model and compare these results with the 
earlier 2-D results. Flexure associated with smaller coronae 
requires either a full 3-D model, or a 2-D axisymmetric 
model: we consider a few 2-D axisymmetric cases. Elastic 
thicknesses and curvatures obtained from these models are 
used to estimate mechanical thicknesses (Solomon & Head 
1990). Mueller & Phillips (1992) suggest modifications to the 
approach used in the conversion of elastic to mechanical 
thickness (McNutt 1984) which result in a more reliable 
estimate of mechanical thickness. We discuss these different 
approaches applied to our study areas. We consider flexure 
of a viscous lithosphere, using a simple model developed for 
terrestrial flexure (DeBremaecker 1977). Time-scales for 
viscous relaxation consistent with the number and form of 
the inferred flexural signatures are derived, and the 
corresponding viscous plate thicknesses calculated. Finally 
we discuss the implications of gravitational relaxation as a 
mechanism for generating flexural topography. 

DATA 

Locations of all our study areas are shown in Fig. 1 (Ford & 
Pettengill 1992). 23 potential flexure areas were initially 
identified in the gridded topography images. Results from 
five of these sites have been reported elsewhere (Sandwell & 
Schubert 1992a). All altimetry profiles crossing each site 
were extracted from the publicly available Magellan CDs 
(Saunders et al. 1992). We selected features with a large 
planform radius of curvature which could be approximated 
as 2-D Cartesian (Fig. 1, squares); smaller quasi-circular 
features were also selected (Fig. 1, circles). One restriction 
on our selection of areas was that we looked for topographic 
flexures with profiles oriented roughly along the satellite 
ground tracks, so that original profiles could be used rather 
than the gridded topography. The gridded data are 
smoother than the profiles and may contain cross-track 
errors due to radial orbit error. Inspection of the topography 
map shows that in practice this restriction was not too 
severe: the strike of most of the major features modelled has 
a significant E-W component. The main disadvantage of 
this approach is in the modelling of small axisymmetric 
features where it would be much easier to take radial 
profiles from a regular grid than to work with the original 
along-track profiles. 
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a bending moment applied to  the end of a plate 
(c, # c, # 0). The load and/or bending moment are applied 
at x , )  and a is the flexural parameter. Given a particular 
flexure profile we can solve for x o ,  a, c,, c2 .  However, in 
practice the position of the load is known at least 
approximately and so it is not necessary t o  solve explicitly 
for x g .  When fitting the Magellan profiles we also included 
the mean and regional gradient terms. A regional gradient 
term was included because many of the larger amplitude 
flexures have a prominent regional slope that is downward 
away from the trench axis. The complete solution is 

Profiles were selected based on their trench outer-rise 
signature that consists of a topographic low (generally 
referred to  in flexure literature as a moat or  trench) adjacent 
to a lower amplitude topographic high. In practice, however, 
topographic noise can mask the low amplitude outer rise. 
Another complication is that faulting on  the outer trench 
wall can lead to  very rough topographic profiles that are 
difficult to  model. After examining the altimetry profiles 
across all of the 23 areas initially identified as potential 
flexure sites, we rejected six areas because topographic noise 
would have made it difficult to  obtain any reliable estimates 
of lithospheric thickness based on  flexure models. 

Magellan synthetic aperture radar (SAR) data is also 
useful in flexure modelling as the fracture patterns may 
reflect the regional tectonics. For each area chosen, we 
superposed the SAR and altimetry data to  produce an image 
with topography represented by colour and S A R  backscatter 
represented by brightness. This facilitated correlation of 
surface stresses and topography and allowed comparison 
with the locations of stresses predicted by the various flexure 
models. 

A summary of each of the 12 new areas retained for 
modelling (after examining the gridded topography and the 
profile data) is provided in Appendix 1. (Descriptions of the 
five areas previously modelled are  given in Sandwell & 
Schubert 1992a.) A brief description of the topography and 
the S A R  characteristics of the possible flexure and the 
feature with which it is associated are  given. 

T H I N  ELASTIC PLATE MODELS 

Thin elastic plate models are based on the assumption that 
the plate thickness is small compared with the flexural 
wavelength. While this type of model provides a good 
first-order fit to  the available data, Turcotte (1979) has 
noted that the 'thin' plate approximation is often only 
marginally valid. We have modelled flexural features on 
Venus using either Cartesian models in which the 
topography is assumed to  be continuous along-strike or  
axisymmetric models (ring or  disk loads). 

2-D Cartesian model 

The differential equation for flexure problems where there is 
no in-plane force is 

d4w 
dx4 

D- + Apgw = 0 ,  

where x is horizontal distance perpendicular t o  the strike of 
the trench, w is the vertical deflection, Ap is the density 
difference at the upper horizontal boundary, g is the 
gravitational' acceleration and D is the flexural rigidity. (1) 
has the following general solution 

In terrestrial problems the flexure is usually modelled as 
due to: (a) a line load on a continuous plate (c, = c2), o r  (b) 
a line load on a broken plate (c2 = a), or  (c) a line load and 

0 cos (3 w ( x )  = d ,  exp 

+ d ,  exp (E) sin (f) + d,x + d ,  ( 3 )  

where d ,  and d ,  now incorporate both the magnitude of the 
sinusoidal terms and small changes in the estimated origin 
position, and d, and d ,  are the gradient and mean 
respectively. It is important to  note that in any flexure 
problem we cannot obtain independent estimates of the 
load, origin position and flexural parameter as the individual 
terms in (2) and (3) are not orthogonal even though they are 
linearly independent. 

Expressions for the flexural parameter a (in terms of the 
elastic plate thickness he) ,  the bending moment, M ,  and the 
surface stresses grX, are given in Turcotte & Schubert 
(1982), and in eqs (2)-(5) of Sandwell & Schubert (1992a). 
Values for all the parameters used in this paper are given in 
Table 1. 

The Cartesian solution was used to  model features having 
large planform radius; profiles across each feature were 
modelled by setting h ,  and then minimizing the RMS misfit 
between the model and the observations, thereby solving 
linearly for the coefficients d, -d , .  This procedure was 
repeated for a range of he to establish the RMS misfit versus 
elastic thickness. Surface stress, bending moment, and 
curvature were also computed for the minimum misfit 
model. Plate curvature a t  the first zero crossing of the model 
topography profile (or the maximum curvature) was used 
with the elastic plate thickness estimate to  convert elastic 
thickness to  mechanical thickness. 

2-D axisymmetric model 

The model presented above is valid for linear loads or loads 
with a sufficiently large radius of curvature. However, most 

Table 1. Parameters relating to Venusian lithosphere. 

Parameter Ya!!E 

mantle temperature. 
temperature at base of mechanical lithosphere 
surface temperature 
thermal expansivity 
Young's modulus 
mantle density 
thermal conductivity 
Poisson's ratio 
gravitational acceleration 

14CQOC 
74OOC 

455OC 
3.1 10-5 K-1 

65 GPa 
3000 kg m-3 
3.3 W m-1 K-I 

0.25 
8.87 m s-2 



630 C. L. Johnson and D.  T. Sandwell 

coronae have an elevated outer ring, or partial ring (Stofan 
et a/ 1992; Squyres et al. 1992; Janes et al. 1992), so a 2-D 
axisymmetric model or even a full 3-D flexure model may be 
more appropriate. To establish the validity of the linear load 
geometry, we investigate flexure due to an axisymmetric 
load for which some solutions have already been derived 
(Brotchie & Sylvester 1969; Brotchie 1971; Turcotte 1979). 
On Venus, where there is a large range in the size of 
coronae, it is important to determine how large the 
planform radius of curvature needs to be before a Cartesian 
approximation is valid. For readers primarily interested in 
the Venusian results we suggest skimming over this section 
briefly. The results are summarized in Fig. 3 which illustrates 
the percentage errors introduced in estimating the load and 
flexural wavelength from a 2-D model when the real load 
geometry is axisymmetric. Note that our analysis does not 
take into account failure of the plate. 

Consider a topographic flexural signature due to a ring 
load of outer radius a and ring width h a ,  on a continuous 
plate (Fig. 2). For a given radius a, as Aa increases the ring 
load behaves more and more like a disk load of radius a. 
Alternatively we can imagine fixing Aa and increasing a. As 
a becomes very large relative to h a  the ring can be 
approximated by a bar load of width Aa. In fact, it can be 
shown that as a tends to infinity the limit of the ring load is 
indeed a bar load of width Aa (Fig. 2)-the proof is given in 
Appendix B. 

We investigated the effect of approximating a ring load by 
a bar load for different ring load geometries using the 
following approach. First, a synthetic flexure profile due to a 
ring geometry of known outer radius. width and load was 
generated. The deflection due to a ring load, outer radius a 
and width Aa can be derived by subtracting the effect of a 
disk load, radius a - Aa from that of a disk load, radius a. 
The deflection due to a disk load, radius u is given by (4) 
and that due to a ring load, outer radius a and width Aa is 
given by ( 5 ) :  

w ( r )  = La [ ber' ($) ker id) + bei' ($) kei (f)) 
hPg a 

r ? a  (4) 

( 5 )  

a - ha a - Aa 
c i  = [(:) ber' (x) - (7) her' ( 7 1 1  

u - AU u - ha' 
c2 = [ (7) bei' (7) - ($1 bei' (%)I. 

Here p o  is the loading force per unit area; ber, bei, ker, kei 
are Besw-Kelvin functions of zero order and r IS the radial 
distance from the centre of the ring or disk load. 

A5 the outer ring radius increases, the ring load behaves 
more like a bar load if the outer ring radius is also large 
compared with both the flexural parameter, a,  and the ring 
width, Aa. I t  should be noted that the flexural parameter 
defined in the literature for axisymmetric models a,,, (eqs 4 
and 5 )  differs from that defined for Cartesian models a,.,, 
(eqs 2 and 3) by a constant factor: 

(a) Ring Load: 
outer radius = a, width = Aa 

(b) Bar Load: 
width = Aa 

Figure 2. Schematic demonstrating the Cartesian approximation of a 
ring-load outer radius a and width Aa by a bar load with width ha. 
As the ratio of outer radius to flexural parameter tends to infinity 
the ring load behaves like the equivalent bar load. 

To avoid confusion, results quoted for the flexural 
parameter a in this paper will always refer to the Cartesian 
flexural parameter or the axisymmetric parameter multiplied 
by q 2  to facilitate comparisons between different models. 

Flexure due to a bar load can be described by convolving 
a bar-load geometry with the response due to a line load 
(Green's function for a Cartesian flexure model): 

w ( x )  = B ( x ) * s ( x )  (7) 

where s (x )  describes the response due to a line load (YJ on 
a coptinuous plate 

and B ( x )  describes the bar load, width 21 and centred on the 
origin (box-car function) 

B ( x )  = II(;) 

Thus flexure due to a bar load is given by 

(9) 

where p o  is defined earlier. 
To investigate the effect of approximating a truly 

axisymmetric load by a Cartesian load we next modelled the 
synthetic data profile with a bar load solution (10). The 
best-fit profile in a least-squares sense was sought, 
simultaneously solving for the load ( p o )  and origin position 
(x(J of the assumed bar load and for the flexural parameter. 
This procedure was repeated for several different ratios of 
ring load width to flexural parameter (hula); for each ratio 
a series of profiles was generated where the ratio of outer 
ring radius to the flexural parameter ( a / a )  was varied. 
Results for four choices of Aa/a  and for a disk load are 
shown in Fig. 3. In all cases we expect that as a/a increases, 
our approximation of a truly axisymmetric load by a 
Cartesian load is increasingly valid and so we should be 
better able to retrieve xo, p,) and a. This can indeed be seen 
to be the case from Figs 3(a)-(c). The misfit of the 
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Figure 3. The effect of the Cartesian approximation to an axisymmetric geometry on estimating the model parameters-flexural parameter (a), 
load magnitude (b), load position (c). The horizontal axis is the ratio of the outer-ring radius to the true flexural parameter (axisymmetric 
flexural parameter). The vertical axis is normalized to indicate relative error in the particular parameter being estimated. Comparison of the 
curve shapes in (a), (b) and ( c )  demonstrates the inability of the flexure model to estimate the parameters independently. Fig. (d) represents a 
'goodness of fit' criteria of the Cartesian model to the axisymmetric geometry. Misfit over the outer rise was calculated and expressed as a 
percentage of the maximum deHection over the outer rise. Different curves in each figure correspond to different ratios of ring width to Hexural 
parameter: the value of this ratio is indicated next to each curve. The results for a disk load are also shown. Three study areas have also been 
plotted on each figure, to investigate the validity of the Cartesian approximation. 

Cartesian model to the synthetic profile generated from a 
ring load decreases as u / a  increases for a given A u / a  (Fig. 
3d). For a given u / a  both pt, and a are better estimated for 
a thin ring as expected. While a can always be estimated to 
within about 10 per cent of the true value using a Cartesian 
model, the magnitude of the load is severely under- 
estimated. For example, modelling a disk load with u/a = 2 
using a Cartesian model results in less than a 10 per cent 
error in esttmating the flexural parameter but approximately 
a 40 per cent error in estimating the magnitude of the load. 
It can be seen that the validity of a Cartesian 

approximation to an axisymmetric geometry is dependent on 
the specifics of the axisymmetric geometry. Say we choose 
certain 'acceptable' limits to the errors introduced in 
estimating x g ,  pa and a. Our study suggests that the errors 
introduced in estimating a are always less than 10 per cent 
for any detectable axisymmetric load, providing virtually no 
constraint on when the Cartesian approximation is valid. 

When modelling real topographic flexure profiles, noise in 
the data usually results in variations much greater than 10 
per cent in the flexural parameter estimated for a particular 
feature. It should also be noted that we have not taken into 
account the fact that topographic profiles may not pass 
through the centre of the axisymmetric feature. This is the 
case for most of the Magellan orbit tracks across Venusian 
features. In these cases the topographic profile may change 
considerably when elevation is plotted against distance from 
the centre of the feature rather than against distance along 
the profile. Plotting topography versus distance along the 
profile, rather than topography versus radial distance, gives 
an apparent flexural wavelength which is longer than the 
true flexural wavelength. 

In contrast to the results concerning the flexural 
parameter, errors in estimating the magnitude of the load, 
p o ,  can be large. If we choose a cut-off of say 20 per cent for 
our allowed error then we see that we need u / a  > -2 for a 
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thin ring load and >-6 for a disk load. In estimating the 
origin position a sensible choice of allowable error is 25 per 
cent, i.e. we are specifying that the origin position must be 
correctly estimated to within a quarter of the flexural 
parameter. This means we require u / a  to be >-3.S for any 
axisymmetric load-ring or disk. The misfit of the Cartesian 
model to the axisymmetric synthetic shown in Fig. 3(d) is 
the root mean square (RMS) misfit calculated over the outer 
rise expressed as a percentage of the maximum true 
deflection on the outer rise (i.e. we are looking at the RMS 
misfit relative to the signal). This misfit is always less for a 
disk load than for a ring load of the same outer radius since 
the outer rise is larger for the disk load. Thus if we choose 
say 40 per cent as our cut-off we would require a/a-2 for a 
disk and >-3 for a thin ring. 

The above discussion demonstrates that it is not easy to 
establish a generhl rule for when an axisymmetric model is 
required. If we can assume that the flexural parameter 
estimated by a Cartesian analysis is roughly correct, as Fig. 
3(a) suggests, we can use a,,, to get an estimate of u / a  and 
Au/a  for a given feature. Then the curves in Fig. 3 can be 
used as master curves and our given feature plotted on each 
figure. Using this approach a more quantitative estimate of 
the validity of the Cartesian approximation to the 
axisymmetric geometry can be obtained. It should be 
remembered that this is a 'best-case' scenario, assuming that 
(a) the profiles pass though the centre of the feature and (b) 
that the effect of topographic noise is negligible. 

Our results contrast somewhat with those of Watts et al. 
(1988), who investigated the effect of the assumed load 
geometry on flexure inferred from SEASAT gravity data 
across the Louisville Ridge. They investigated only the effect 
on the flexural parameter of incorrectly using a Cartesian 
approximation where the data warrant an axisymmetric 
model. Their analysis was based on the fact that there is a 
significant difference in the theoretical gravity/topography 
admittance corresponding to Cartesian and axisymmetric 
topography (Ribe 1982). Their gravity/topography analysis 
found that the Cartesian approximation could lead to 
overestimation of the flexural parameter and the effective 
elastic thickness. As mentioned above our topography 
analysis using synthetic profiles illustrated that the Cartesian 
approximation results in estimating the flexural parameter to 
within 10 per cent. The gravity/topography analysis is more 
sensitive to the model geometry because it attempts to 
match the gravity amplitude, especially over the load. Thus 
in these analyses the load is matched at the expense of the 
flexural parameter. We also show that load estimates are 
very sensitive to the radio of a /a .  Thus, topographic studies 
attempting to estimate the flexural wavelength are less 
sensitive to an accurate geometrical representation of the 
load than are grauity/topography studies. 

Flexure due to a disk load or a ring load is given by (4) or 
( 5 )  respectively. The corresponding bending moment is 
given by 

d2w u d w  
dr2 r dr 

M ( r )  = -D- f--. 

Again when modelling Magellan altimetry data we include 
the mean and regional gradient and the fitting procedure is 
analogous to that performed for the Cartesian model. As 

discussed later only one feature was modelled with an 
axisymmetric load geometry. 

ELASTIC PLATE MODELLING RESULTS 

Cartesian features 

Inspection of the gridded Magellan topography led to the 
identification of 10 new candidates for Cartesian flexure 
modelling. Of these, three were rejected after analysing the 
altimetry orbit data, based on a lack of clear evidence for 
flexure. The best-fit Cartesian elastic models and the 
altimetry profiles are shown in Fig. 4. The results for best-fit 
thickness, RMS misfit, the first zero crossing of the profile 
(x") and the curvature (K,J and bending moment (M,,)  at 
this position are tabulated in Table 2. The best-fit elastic 
thicknesses for each feature and the range of acceptable 
thicknesses are given in Table 3. The best-fit elastic 
thicknesses range from 12 km for Nishtigri Corona to 34 km 
for West Dali Chasma. We defined the range of acceptable 
thicknesses to be that over which the RMS misfit was within 
10 per cent of its minimum value. It a n  be seen that there is 
a wide variation in the goodness of fit of the models to the 
profiles (Fig. 5). The absolute value of the RMS misfit 
increases in topographically rough areas. The predicted 
surface stresses at five of the seven areas are extremely high 
and could not be sustained by the lithosphere. Fracturing at 
these locations (Neyterkob Corona, Demeter Corona and 
W. Dali Chasma) is evident in the SAR images. At 
Nightingale Corona and Nishtigri Corona lower surface 
stresses are predicted, although they are still sufficiently high 
to suggest some faulting. At Nightingale Corona no 
concentric fractures associated with the flexure can be 
identified in the SAR images. There is evidence for 
volcanism postdating the flexure with polygonal fracture 
patterns possibly related to this later lithospheric reheating, 
(Johnson & Sandwell 1992b); these fractures may obscure 
earlier flexure-related deformation. Concentric fractures 
possibly associated with the flexure are seen at Nishtigri 
Corona. On the north side of Demeter Corona there 
appears to be extensive tectonism and volcanism and the 
relative stratigraphy of the different events is difficult to 
identify. West Dali Chasma lies in an intensely tectonized 
region. This, coupled with the very high curvatures and 
surface stresses predicted by the flexure model, implies that 
either the lithosphere here was indeed flexed, but was flexed 
past its elastic limit, or that the faulting and lithospheric 
failure is associated with some other tectonic process. 

Table 3 shows the best-fit elastic thickness, the 
corresponding values of the flexural parameter a,  and the 
disk radius u, and ring width Au, for the seven areas 
modelled in this paper with a Cartesian model. Four of the 
features are coronae; however, the inferred flexure north 
and south of Demeter corona corresponds to a part of the 
elevated rim that is almost linear in geometry. Thus there 
are three features (Nishtigri, Nightingale and Neyterkob 
coronae) for which the validity of the Cartesian approxima- 
tion is important and u/ac,, and A U / ( Y ~ ; , ~  are also given for 
these features. We use the results from the numerical 
simulations to justify the assumption that the ratio u/ty,,, is 
approximately equal to a/az,xi  and similarly for Aa/a,.,,. The 
parameters a/a,,, and Aa/acar can then be used together 
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Figure 4. Results of Cartesian flexure modelling of seven areas. Vertical and horizontal scales are the same in all the figures, except the vertical 
scale for W. Dali Chasma. For each area the lower plot shows altimetry orbits modelled (solid line), with the best-fit Cartesian elastic model 
(dashed line). Distance is calculated relative to the highest point of the topography inboard of the flexural moat. Elastic thickness 
corresponding to the best-fit model is given at the end of each profile. The upper figure shows the surface stresses predicted by the best fit 
models. The three anomalous surface-stress profiles for Nightingale Corona correspond to the upper two and lowermost altimetry profiles in 
the lower figure (those fit by a thicker plate). 
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with the master curves in Fig. 3 to investigate errors in the 
estimated parameters (load and flexural wavelength) 
introduced by assuming a Cartesian geometry. 

Nishtigri Corona has the largest errors associated with 
estimating the parameters xo, po and a. The Cartesian model 
appears only marginally valid, consistent with the small 
corona size and the fact that it is better approximated by a 
disk load as compared with the ring load geometry of 
Neyterkob and Nightingale Coronae. We remodelled the 
topography to the south of Nishtigri Corona as flexure due 
to  a disk. First, distance along each orbit track was 
recalculated as distance from the corona centre (effectively 
radial distance) and then a flexure profile described by (4) 
but including the mean and regional gradient was fit to  the 
recalculated profile. A gray-scale image of Nishtigri corona 
with the orbits modelled is shown in Fig. 6(a). The results of 
the Cartesian modelling are shown in Fig. 6(b), where 
distance is calculated from the highest point just inboard of 
the coronal moat. In the Cartesian models the profiles are 
always projected onto the normal to  the topographic moat. 
The results of the axisymmetric model are shown in Fig. 
6(c), where distance is radial distance. The main point to  
notice is that plotting elevation against radial distance 
effectively compresses the profile more at  small radial 
distances than at large radial distances, having a marked 
effect on the best-fit elastic thickness, We recalculated 
distances along the profile using this method rather than the 
simpler reprojection used for the Cartesian model as the 
corona is not perfectly circular. Thus the normal to  the moat 
will not necessarily pass through the corona centre and 
distance along a normal is not radial distance. Also the 
profiles shown in Figs 6(b) and (c) are only marginally 
acceptable in terms of being regarded as  flexure because 
they have topographic noise on a critical part of the flexure. 
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This last point is common to altimetry orbits across many of 
the smaller coronae, rendering these features unsuitable for 
detailed flexural modelling. 

Axisymmetric features 

Initially eight small coronae were identified from the 
gridded topography as possible candidates for flexure 
modelling. Three of these were rejected after inspecting the 
orbit data, as the signal-to-noise ratio meant that it was 
difficult to identify a clear consistent flexural signature. Brief 
descriptions of the remaining five features and the 
surrounding areas are given in Appendix 1. The five coronae 
are shown in Fig. 7; for each feature a gray-scale image of 
the topography is given, together with the altimetry orbits 
analysed. As in Fig. 6(c), distance is calculated relative to  
the corona centre. The gray scale image for each corona 
suggests a fairly continuous moat around the corona which is 
easily identified in the orbit data. However, although some 
of the profiles exhibit flexure-like signals, these signals can 
vary substantially from one orbit to  the next. In some cases 
the amplitude of the topographic signal is small making it 
difficult to  distinguish, e.g. the north side of Fatua Corona. 
Other features have more periodic topography with 
amplitudes which d o  not decay exponentially with radius as 
predicted by simple flexure models. As a result, we consider 
these data unsuitable for detailed flexure modelling. Never- 
theless, there does appear to be a characteristic wave- 
length associated with these smaller features. We use this 
characteristic wavelength to  provide a crude estimate of the 
elastic plate thickness. The distance between the deepest 
part of the moat around the corona and the maximum 
deflection outboard of the moat, i.e. the peak of the possible 
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Table 2. Best-fit 2-D models 

Feature 

Demeter (N) 
Demeter (N) 
Demeter (N) 
Demeter (N) 
Demeter (N) 
Demeter (N) 
Demeter (N) 

Demeter ( S )  
Demeter ( S )  
Demeter ( S )  
Demeter ( S )  
Demeter ( S )  

Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 
Nightingale 

Nishtigri 
Nisht igri 
Nishtigri 
Nishtigri 

Neyterkob 
Ney t er kob 
Neyt erkob 
Ney t er kob 

Ridge 
Ridge 
Ridge 
Ridge 
Ridge 

W Dali 
W Dali 
W Dali 
W Dali 
W Dali 

Orbit 

2 0 3 6  
2037 
2 0 3 8  
2039 
2 0 4 0  
2 0 4 1  
2042 

2 0 1 8  
2 0 2 0  
2 0 2 1  
2022 
2 0 2 3  

1 2 1 2  
1 2 1 4  
1 2 1 6  
1 2 1 8  
1 2 2 0  
1 2 2 2  
1 2 2 4  
1 2 2 6  
1 2 2 8  
1 2 3 0  

8 7 4  
8 7 5  
87 6 
877 

1 5 7 0  
1 5 7 1  
1 5 7 2  
1 5 7 3  

877 
8 7 8  
8 7 9  
8 8 0  
8 8 1  

1 3 1 5  
1 3 1 6  
1 3 1 7  
1 3 1 8  
1 3 1 9  

he 
( k m )  

2 6 . 0  
2 8 . 0  
2 4 . 0  
2 2 . 0  
2 2 . 0  
1 8 . 0  
1 8 . 0  

2 4 . 0  
2 2 . 0  
2 2 . 0  
2 2 . 0  
e 2 . 0  

2 8 . 0  
1 8 . 0  
1 8 . 0  
1 8 . 0  
1 6 . 0  
1 6 . 0  
16.0 
16.0 
2 2 . 0  
2 2 . 0  

12.. 0 
1 0 . 0  
1 2 . 0  
1 0 . 0  

1 2 . 0  
1 4 . 0  
1 4 . 0  
1 4 . 0  

2 2 . 0  
1 8 . 0  
1 6 . 0  
1 6 . 0  
2 0 . 0  

4 5 . 0  
3 0 . 0  
2 5 . 0  
3 5 . 0  
3 5 . 0  

RMS xo 
(m) ( k m )  

60 1 3 4 . 6 5  
56  1 0 5 . 6 5  
63 9 6 . 9 8  
7 0  9 1 . 8 9  
7 6  9 2 . 9 4  
65 1 0 7 . 4 4  
52 1 0 8 . 1 5  

4 8  4 6 . 2 3  
5 3  4 3 . 3 1  
62 4 3 . 3 1  
6 5  4 3 . 3 1  
77 4 3 . 3 1  

3 6  1 5 3 . 8 9  
3 5  1 1 1 . 7 8  
33  1 0 8 . 2 8  
36 1 1 1 . 7 8  
4 5  1 0 2 . 3 3  
46  1 0 2 . 3 3  
37  1 0 1 . 8 8  
3 5  1 0 2 . 3 2  
30 8 9 . 0 0  
27 9 1 . 5 3  

3 1  8 0 . 4 8  
39  7 1 . 9 3  
4 1  1 6 . 5 8  
42 6 7 . 2 2  

89 8 2 . 4 1  
1 0 3  9 2 . 5 8  

9 1  9 2 . 5 8  
93  9 2 . 5 8  

24  8 6 . 6 2  
1 9  7 5 . 7 5  
1 9  1 2 . 4 8  
24  7 3 . 1 0  
34 8 5 . 6 5  

1 4 8  1 6 5 . 4 1  
1 5 3  1 4 3 . 9 0  
1 4 6  1 4 3 . 0 1  
1 9 4  1 2 5 . 4 1  
1 6 6  1 2 2 . 7 1  

Table 3. Best-fit 2-D models for larger features. 

Feature Name w 
Best-FiL Range 

Nishtigri Corona 12 10- 16 

Neyterkob Corona 14 12 -  18 

Ridge 18 14 - 22 

Nightingale Corona 22 16 - 30 

S. Demeter Corona 22 16 - 32 

N.Derneter Corona 24 18 - 28 

W. Dali Chasrna 34 2 6 - 4 0  

1 . 7 0  
4 . 3 7  
4 . 4 5  
3 . 9 1  
4 . 2 5  
1 . 5 1  
1 . 3 3  

1 . 5 0  
1 . 8 9  
2 . 1 2  
2 . 2 1  
2 . 3 9  

0 . 8 8  
0 . 5 1  
0 . 5 7  
0 . 5 6  
0 . 4 3  
0 . 4 5  
0 . 3 9  
0 . 4 6  
1 . 2 0  
1 . 4 3  

0 . 2 6  
0 . 1 8  
0 . 2 5  
0 . 1 7  

0 . 5 8  
0 . 8 3  
0 . 8 7  
1.11 

0.64  
0 . 5 5  
0 . 4 7  
0 . 7 8  
1 . 3 1  

8 . 8 3  
5 . 5 4  
4 . 6 8  

2 5 . 6 0  
1 6 . 4 4  

1 6 . 7 0  
3 4 . 4 5  
5 5 . 7 7  
6 3 . 5 9  
6 9 . 1 2  
4 4 . 9 4  
3 9 . 4 2  

1 8 . 7 9  
3 0 . 6 6  
3 4 . 3 9  
3 5 . 9 3  
3 8 . 8 0  

6 . 9 7  
1 5 . 0 5  
1 6 . 9 8  
1 6 . 7 7  
1 8 . 1 8  
1 8 . 8 1  
1 6 . 2 8  
1 9 . 3 1  
1 9 . 5 3  
2 3 . 2 3  

2 6 . 1 6  
3 1 . 8 5  
2 4 . 7 4  
3 0 . 0 9  

5 8 . 3 1  
5 2 . 4 4  
5 4 . 5 6  
7 0 . 3 2  

1 0 . 4 1  
1 6 . 3 9  
1 9 . 8 9  
3 2 . 9 3  
2 8 . 3 1  

1 6 . 7 7  
3 5 . 4 8  
5 1 . 8 6  

1 0 3 . 3 3  
6 6 . 3 5  

3 0 . 0  
3 9 . 0  
3 6 . 0  
3 5 . 0  
3 4 . 0  
2 6 . 0  
2 5 . 0  

2 6 . 0  
2 5 . 0  
2 6 . 0  
2 5 . 0  
2 7 . 0  

3 0 . 0  
2 1 . 0  
2 1 . 0  
2 1 . 0  
1 9 . 0  
1 9 . 0  
1 9 . 0  
1 9 . 0  
2 5 . 0  
2 6 . 0  

1 4 . 5  
1 4 . 0  
1 4 . 0  
1 4 . 0  

1 8 . 0  
2 1 . 0  
2 2 . 0  
2 3 . 0  

2 4 . 0  
2 1 . 0  
1 9 . 0  
2 1 . 0  
2 6 . 0  

5 7 . 0  
4 5 . 0  
4 0 . 0  
6 7 . 0  
6 6 . 0  

dT/dz 
( K / k m )  

9 . 7  
7 . 4  
8 . 1  
8 . 3  
8.5 

11.1 
1 1 . 6  

11.1 
1 1 . 6  
11.1 
1 1 . 6  
1 0 . 7  

9 . 7  
1 3 . 8  
1 3 . 8  
1 3 . 8  
1 5 . 3  
1 5 . 3  
1 5 . 3  
1 5 . 3  
1 1 . 6  
12.1 

2 0 . 0  
2 0 . 7  
2 0 . 7  
2 0 . 7  

1 6 . 1  
1 3 . 8  
1 3 . 2  
1 2 . 6  

1 2 . 1  
1 3 . 8  
1 5 . 3  
1 3 . 8  
11.1 

5 . 1  
6 . 4  
7 . 3  
4 . 3  
4 . 4  

35.0 140 Disk 

39.3 105 50 

47.4 ---- 

55.1 280 100 

---- 

-___ 55.1 ---- 

58.8 ---- 

76.4 ---- 

-___ 
---- 

4.0 Disk 

2.7 1.3 

5.1 1.8 



636 C. L. Johnson and D. T. Sandwell 

I 180 '., 

140 

2 L 120 
u 
q 

l o o  

80 

'. 
60 

40 

- _...__.. - - -  _ _ _ _ - - - -  -....-- ___.-- 
_,_.- Neyterkob 

- - N. Demeter - -  
< '  .- 

r 

S. Demeter 
'\ r, \ 

Nishtidii - 
. Nightingale 
/ 

Ridge 

I \  / 

' J, ' 

20' 1'0 20  30 410 5!0 61 

Elastic Thickness  ( k m )  
Figure 5. RMS miqfit versus elastic thickness for each of the seven 
areas. Misfit was calculated for 2 km increments in elastic thickness. 
Solid triangles denote average best-fit elastic thickness for each 
feature. Figs 5 and 4 together demonstrate the increase in the 
minimum RMS misfit in topographically rough areas and Fig. 5 
shows the variation in how well constrained the best-fit models are. 

outer rise is given by the following approximate expression 

Ira p = r,, - r, = - 
2 

where r, is the distance to the point of maximum deflection 
on the outer rise and r, is the distance to the deepest part of 
the moat. We can thus obtain the equivalent elastic plate 
thickness he. The distances r,, and r, were determined for as 
many profiles as possible for each of the five coronae and 
then a and h, were calculated. The results are given in Table 
4. If the topography represents flexure of the lithosphere the 
mean elastic plate thickness varies from -6 km to -22 km. 
Note that the result of -8 km for Fatua Corona differs from 
the 15 km derived previously by Moore et a[. (1992). This 
could be due to the fact that the topography north of Fatua 
has a longer wavelength than the topography that we 
modelled on the south side. However, on the north side the 
amplitude of the outer rise (and also the moat) is extremely 
small rendering it difficult to obtain a well-constrained 
flexural wavelength for the corona as a whole. 

MECHANICAL THICKNESS ESTIMATES 

The parameters of the best-fitting thin elastic plate models 
can be used to estimate the depth to the base of the 
mechanically strong layer. Assuming this corresponds to an 
isotherm, the geothermal gradient can also be calculated. 
However, this conversion from elastic thickness to 
mechanical thickness is highly dependent on the rheological 
properties of the ductile lower lithosphere. Without a good 

0 100 200 300 400 500 

D i s t a n c e  f r o m  C o r o n a  Center  ( k m )  

/ 
-0.5 1 I I 1 I J 

0 100 200 300 400 500 

D i s t a n c e  ( k r n )  

Figure 6. Comparison of Cartesian and axisymmetric flexure models 
for Nishtigri Corona. The lower figure (a) shows the corona with the 
tracks of the altimetry orbits modelled. Altimetry profiles with the 
best-fit Cartesian models (as in Fig. 4) are shown in the middle plot. 
The upper plot shows the profile data replotted SO that distance is 
now calculated from the centre of the corona. The best-fit elastic 
models calculated using a disk model are shown by the dashed lines, 
with the best-fit elastic thickness given at the end of each profile. 

knowledge of lithospheric rheology on Venus, one can only 
adopt characteristic values used for the Earth's oceanic 
lithosphere (Goetze & Evans 1979; Brace & Kohlstedt 
1980). Here we follow McNutt (1984) and Solomon & Head 
(1990) where they characterized the strength of the upper 
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Figure 7. Topography with orbit tracks and profile data for the five smaller axisymmetric features discussed in the text. Again distance along 
the profile is calculated relative to the corona centre. Gaps in the profiles are due to the fact that the orbit tracks pass at different distances 
from the corona centre. Distances north of the corona centre are negative, distances south of the corona centre are positive. The triangles mark 
the positions of the possible outer rise measured and tabulated. Also measured was the distance to the trench just inboard (closer to the origin) 
of the outer rise. The topographic highs inboard of the trench are the interior of the coronae. The orbit number is given at the end of each 
profile. 

brittle portion of the lithosphere using a frictional sliding corresponds to the 740°C isotherm, and is consistent with 
law, zero pore pressure, (Byerlee 1978) and the strength of the observation that the maximum depths of earthquakes in 
the lower lithosphere using a ductile flow law for dry olivine the oceanic lithosphere correspond roughly to the 740°C 
(10-”s- ’  strain rate). These two failure criteria define a isotherm. 
yield strength envelope (YSE) (Goetze & Evans 1979), When the lithosphere is flexed, the largest deviatoric 
where the base of the YSE is defined as the depth where the stresses occur at the top and bottom of the layer. For 
ductile yield strength drops below 50-100 MPa. This moderate plate curvatures (-lo-’ r n - I ) ,  significant yielding 
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occurs in both the uppermost and lowermost parts of the Complete lithospheric failure occurs when the plate 
mechanical lithosphere which are weak. This yielding causes curvature exceeds about 10-'m-'. Solomon & Head (1990) 
the effective elastic thickness of the lithosphere (i.e. that adapted this YSE model for the parameters appropriate t o  
derived from flexure modelling) to be less than the actual Venus and provide a diagram to map the elastic thickness 
mechanical thickness of the lithosphere McNutt (1984). into mechanical thickness using the plate curvature at the 



Lithospheric flexure on Venus 639 

I n d r a n i  Corona 

Figure 7. (Continued.) 

Table 4. Smaller axisymmetric features (coronae). 

Feature Name Profile # 

Indrani Corona 860 
37SoS, 70.5"E 861 

862 
863 
8 64 
865 

Bhumidevi Corona 435 
17.OoS, 343.0°E 436 

437 
438 
439 

Unamed Corona 1821 
37.0°N, 257.0"E 1822 

1823 
1824 

Fatua Corona 608 
16SoS, 17.2"E 609 

610 

Beyla Corona 6 17 
27.O"N. 16.0°E 619 

-$f!md 

107.5 
106.5 
107.5 
116.9 
112.9 
112.8 

161.6 
189.5 
199.8 
176.8 
162.3 

201.0 
191.2 
197.3 
185.8 

179.3 
178.4 
161.9 

187.2 
177.8 

rtm 

75.1 
79.4 
74.1 
79.2 
80.5 
87.7 

79.8 
96.2 
94.6 
93.5 
93.4 

143.1 
133.1 
132.9 
144.1 

130.8 
135.8 
134.0 

130.0 
137.0 

-200 0 200 
Dis tance  from Corona Center  ( km)  

w 
32.4 
27.1 
33.4 
37.7 
32.4 
25.1 

81.8 
93.3 
105.2 
83.3 
68.9 

57.9 
58.1 
64.4 
41.7 

48.5 
42.6 
27.9 

57.2 
40.8 

m 
20.6 
17.3 
21.3 
24.0 
20.6 
16.0 

52.1 
59.4 
67.0 
53.0 
43.9 

36.9 
37.0 
41.0 
26.5 

30.9 
27.1 
17.8 

36.4 
26.0 

u 
5.9 
4.6 
6.2 
7.3 
5.9 
4.2 

20.4 
24.3 
28.5 
20.9 
16.2 

12.8 
12.9 
14.8 
8.3 

9.9 
8.5 
4.9 

12.7 
8.1 
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first zero crossing of the flexure model (Fig. 4 of their 
paper). Based on synthetic models of bending of plates with 
realistic non-linear rheologies, Mueller & Phillips (1992) 
proposed that it is better to use the maximum curvature 
along the flexure profile, rather than the curvature at the 
first zero crossing, when converting elastic thickness to 
mechanical thickness; we use both the first zero crossing of 
the synthetic profile and the point of maximum curvature of 
the synthetic profile. The results for the seven new features 
modelled with a Cartesian model are shown in Fig. 8, 
together with the five earlier results of Sandwell & Schubert 
(1992a) for comparison. For a given feature the conversion 
was performed using the curvatures and moments 
corresponding to the best-fit model for each profile. The 
uncertainties in Fig. 8 represent the range of h,  for each 
feature. Note that if we used the range in h, given in Table 3 
(based on the 10 per cent increase in misfit criteria) some of 
the uncertainties in h, would be substantially larger. We 
prefer the former method as there is a specific curvature 
associated with each value of h,: we caution that the error 
bars in Fig. 8 are in most cases minimum uncertainty 
estimates. The conversion of h, to h,  was not possible for 
the five smaller coronae, as curvatures could not be reliably 
estimated. However, the crude estimates for elastic 
thickness provide a lower bound on h, at these locations. 

0 2 4 

DISCUSSION 

Static flexure 

The global study presented in this paper has revealed 
surprisingly few examples of lithospheric flexure on Venus. 
(Note that we have excluded flexure at rift zones as this 
study is currently being pursued by Evans et al. 1992). We 
have found only seven areas exhibiting well-defined flexure, 
in addition to the five areas previously found by Sandwell & 
Schubert (1992a). These areas give values for effective 
elastic thickness ranging from 12km to 34km. Of these 
seven examples the result for Nishtigri Corona should be 
regarded with caution based on the profile data and the 
Cartesian versus axisymmetric analysis described earlier. The 
remaining six areas have sufficiently large radii of curvature 
to be modelled with a Cartesian model. The result obtained 
for West Dali Chasma is similar to that obtained for Latona 
and Artemis Coronae by Sandwell & Schubert (1992a). 
Profiles across other parts of Aphrodite were extracted, e.g. 
Diana Chasma to the west of Dali Chasma. Although 
initially appearing very similar to the profiles from W. Dali 
Chasma the profiles from other parts of Aphrodite could not 
be satisfactorily fit with a flexure model due to extensive 
faulting evident in the SAR images and reflected in the 
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Figure 8. Mechanical thicknesses for all 12 areas modelled with a Cartesian flexure model. The area names in italics represent results presented 
previously (Sandwell & Schubert 1992a). Areas whose names are capitalized are believed to be moment saturated and thus do not provide a 
reliable estimate of mechanical thickness. The dashed lines represent the range of mechanical thickness predicted for Venus based on heat-flow 
scaling arguments (Solomon & Head 1982). The solid symbols represent the mean mechanical thickness for each area and the uncertainties are 
the range. The square symbols and error bars represent the mechanical thickness obtained by performing the conversion from elastic to 
mechanical thickness based on the moment and curvature at the first zero crossing of the synthetic profiles (McNutt 1984). The stars and error 
bars represent the same conversion performed at six of the seven new areas using the point of maximum curvature along the synthetic profile 
(Mueller & Phillips 1992). The latter method was not used at W. Dali Chasma as the mechanical thicknesses even from the McNutt method are 
unreliable. 
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topography. It should be noted that the best-fit models for 
West Dali Chasma, Artemis and Latona Coronae d o  not 
extend to the base of what should be the trench. There 
appears to be a step in the topography part way down the 
trench wall, corresponding t o  extensive faulting evident in 
the radar images. If the profiles are fit to  the base of the 
trench the result is unconvincing. These characteristics, 
common to altimetry profiles from several parts of 
Aphrodite, including the larger coronae, suggest that either 
the lithosphere in this area is flexed but moment saturated, 
or has been extensively deformed as  the result of other 
processes. The  five remaining features provide more reliable 
estimates of the mechanical thickness of the lithosphere. 
From Fig. 8 the mean thicknesses are in the range 21-37 km. 
The corresponding range of average thermal gradients is 
14-8Kkm-'  and the range of surface heat flow is 
46.2-26.4 mW m-2 (using the parameters given in Table 1). 
It should be noted that these values for mechanical 
thickness, and the derived thermal gradient and heat flow, 
may not be the current lithospheric conditions, they rather 
reflect the conditions at the time the flexural signature was 
frozen in. 

Predictions for the average surface heat flux/thermal 
gradient/lithospheric thickness were made on the basis of 
heat flow scaling arguments and chondritic thermal models 
(Solomon & Head 1982; Phillips & Malin 1983). Heat-flux 
estimates ranged from 50 mW m-2 from the chondritic 
thermal models, to  74 mW m p 2  from the heat-flow scaling 
argument, with equivalent mechanical thicknesses of 
21-13 km. Our results for static flexure suggest a thicker 
lithosphere than predicted, although not as  thick as that 
proposed by Sandwell & Schubert (1992a). Surface stresses 
predicted by thin elastic plate models are much higher (in 
most cases) than could be supported by the lithosphere, and 
there is evidence in the S A R  images of failure at the 
appropriate locations. A thicker lithosphere is consistent with 
the general lack of evidence for flexural signatures around 
smaller coronae-we would not expect small loads to  be 
able to  deflect a thick plate. Thinner values for elastic 
thickness around two large volcanoes on Venus (McGovern 
& Solomon 1992) could be associated with lithospheric 
reheating and thinning of the plate. Localized thermal 
rejuvenation would explain some of the smaller values for 
elastic thickness in Table 4, and is consistent with plume 
models for coronae formation and evolution. The large 
gravity signatures over some of the smaller coronae require 
either a thick lithosphere (based on  preliminary results from 
isostatic compensation models, Moore, personal com- 
munication 1993) or dynamic support. 

An important consideration is that the assumed 
rheological properties of the Venusian lithosphere are based 
on our knowledge of oceanic lithosphere. The extremely low 
abundance of water at the surface of Venus relative to  the 
Earth (Oyama et al. 1980), suggests that models for the 
Venusian lithosphere require a dry rheology such as that 
used by Solomon & Head (1990). It is known that dry 
olivine is stronger than wet olivine (Goetze & Evans 1979) 
under terrestrial conditions: however it is quite possible that 
the Venusian lithosphere is drier than could be attainable in 
a laboratory. Although the difference in the percentage of 
water present in the Venus lithosphere and terrestrial 
laboratory experiments may be small, it may have significant 

effects on the rheology, especially given the Venusian surface 
conditions. In particular, the Venusian lithosphere could be 
much stronger than predicted. Recent measurements suggest 
that dry diabase is much stronger than previously believed 
(Mackwell et al. 1993); it is quite feasible that the same will 
be found to  be true of dry olivine. 

Flexure of a viscous plate 

The flexure model assumes that the trench/outer rise 
features are statically maintained by large fiber stresses 
within a thin elastic lithosphere. However, it is possible that 
the flexure inferred from topography is the result of 
deformation of a viscous lithosphere. We discuss three 
mechanisms that can produce apparent topographic flexural 
signatures. In the first two cases the lithosphere is currently 
dynamically supported and the estimated viscous plate 
thickness depends upon the assumed strain rate or stress 
distribution. In the third case the process generating the 
flexural signature has ceased recently, relative to  the 
characteristic time-scales for viscous relaxation. 

In the first scenario, flexural signatures can be generated 
by a hydrostatically supported viscous lithosphere, loaded at 
the trench and moving horizontally toward the trench 
(DeBremaecker 1977). This type of model has been applied 
to terrestrial subduction zones, and predicts a thick viscous 
lithosphere (on the order of 120 km) in which the deviatoric 
stresses are lower (Melosh 1978) than the stresses predicted 
by the elastic flexure model. The equation describing the 
vertical deflection is 

W ( X )  = d ,  exp [ - (y) x - x  cos (:)I 
x sin [ (7) sin (:)I + d 2 x  + d3 

(DeBremaecker 1977), where p5 = (vUb:)/(27pg); 17 is the 
viscosity, b, is the viscous plate thickness and U the 
horizontal velocity. As an example we fit such a model to 
Latona Corona as  this has been proposed to  be the site of 
possible subduction on Venus (McKenzie er at. 1992: 
Sandwell & Schubert 1992a, 1992b), and appears to display 
evidence for back-arc-type extension (Sandwell & Schubert 
1993). If we fix the viscosity to  the terrestrial value of 
lo2' Ns mp2, the best-fit model has a viscous plate thickness 
of 80 km for U = 50 mm yr-'  and 172 km for U = 5 mm yr-'. 
Latona has a mean radius of approximately 400 km, and so a 
plate velocity of 50 mm yrp' would imply the corona has 
developed only over the last 8Myr,  whereas the lower 
velocity of 5 mm yr-' would imply development over the 
last 80Myr. The main problem with this kind of model for 
Venus is that a t  most locations with flexural-like topography 
there is n o  evidence for retrograde subduction, and as yet, 
no independent evidence for plate motions has been 
observed. These considerations lead us to favour low 
horizontal strain rates, which in turn imply a thick viscous 
lithosphere at  most of our study areas. Thus, viscous plate 
models, like the elastic plate models, are compatible with 
low temperature gradients in the lithosphere. 

In a second scenario, the inferred flexural signatures result 
from vertical stresses, acting on the base of a viscous 
lithosphere. Flexure inferred around coronae would imply a 
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ring geometry to  the stress field; it is difficult to  imagine how 
this could be generated by a mantle flow field consistent 
with models for coronae evolution. Regardless of the 
mechanism by which the stresses could be generated, the 
resulting models would produce results analogous to  those 
of the previous discussion. That  is, low bending stresses 
would imply a thick viscous lithosphere, high stresses would 
correspond to  a thin viscous lithosphere. 

In a third scenario, the inferred flexures are  the result of 
dynamic processes which are n o  longer active. One  concern 
with an elastic plate flexure model is that only a small 
percentage of coronae exhibit topographic signatures 
consistent with flexure. The size distribution of coronae is 
described by a power-law decay (Stofan et al. 1992). Smaller 
loads (coronae) will result in a smaller deflection of an 
elastic plate and it is possible that the topography around 
many coronae contains a low-amplitude flexural signature 
which is masked by topographic noise. It is very likely that 
coronae are at different stages of evolution, and also that 
different coronae may be generated by different processes, 
so we would not expect flexural signatures to  be associated 
with all coronae. However, it is possible that a topographic 
flexural signature, associated with most or all coronae when 
they are formed, relaxes due to  viscous flow, once it is n o  
longer dynamically maintained. If this is the case, then we 
can make some predictions concerning the characteristic 
time-scales for viscous flow, based on the percentage of 
coronae with associated inferred flexure. 

The governing equation for flexure of a viscous plate is 

d'W 

d l  ax4 
F -  + Apgw = 0, 

where F = ~ h 1 / 2 7  is the instantaneous flexural rigidity. We 
assume that sinusoidal topography of wavelength a decays 
exponentially with time with a time constant of A: 

~ ( x ,  t )  = A  cos ( x / a )  exp ( -At) .  (15) 
The characteristic decay time of this topography is given by 

1 vh: 
7 =-=- 
'I A 27Apga4 

Thus an initial flexural signature will be undetectable (due 
to  viscous flow) after a time that depends upon the initial 
amplitude of the flexure. If we assume that typical initial 
outer rise heights are on  the order of 100-300 m (consistent 
with the larger inferred flexural signatures from Aphrodite 
Terra), then the outer rise will be undetectable after a time, 

equal to  twice the characteristic decay time. If we also 
assume that the production rate of coronae has been 
uniform over the mean surface age of the planet, then we 
can calculate Tf from the number of coronae with inferred 
flexural signals, N,, and the total number of coronae, N, 
(approximately 250, Stofan er al. 1992): 

T*N, q =- 
N, 

T is the mean surface age of the planet, which we take to 
be 500Myr (Phillips et al. 1992; Schaber et al. 1992). This 
gives Tf = 18Myr, so r = 9 M y r .  Thus if we assume the 
flexural wavelength has not changed significantly as the 
topography has relaxed, we can use (16) and the flexural 

wavelengths given in Tables 3 and 4 to obtain the 
corresponding viscous plate thickness for each feature. 
Values for h, calculated in this manner (assuming 
17 = lo2' Pa s) are  in the range 69-291 km. 

It is evident that we can calculate viscous plate thicknesses 
consistent with the observed number and form of inferred 
flexural features, however, the results are dependent on 
many assumptions that cannot be independently verified. 
Relaxation time-scales consistent with the observed number 
of inferred flexural features predict a thick lithosphere at 
most of the sites, again consistent with a low-temperature 
gradient in the lithosphere. If the viscous plate thicknesses 
are lower than this analysis suggests, the corresponding 
time-scales for relaxation would be much shorter. It is 
possible that there are  smaller lateral variations in viscous 
thickness than the above analysis suggests; however, we 
would then expect a larger percentage of short-wavelength 
flexural signatures compared with the long-wavelength 
flexural signals, due to  the shorter characteristic decay time 
of long-wavelength topography. Our study has not revealed 
such a distribution of features, however, the statistics may 
be biased by the fact that low-amplitude, short-wavelength 
signals are not easily detectable above the topographic 
noise. 

The  above discussion concerns relaxation of a flexural 
signature previously generated in a viscous lithosphere. 
Gravitational relaxation of surface topography produces 
vertical stresses that can result in very similar topographic 
signatures to  those which would be generated by flexure of 
an elastic, viscoelastic or viscous plate. This mechanism has 
been proposed to  account for the topography around 
coronae on Venus (Stofan et al. 1991; Janes et al. 1992). The 
time-scales for crustal flow for Venus are 10,000-100,000 yr 
(Smrekar & Solomon 1992), based on previous experimental 
results for diabase rheology. However, recent measurements 
on dry diabase (Mackwell et al. 1993) suggest a much 
stronger rheology, comparable to that previously published 
for websterite. Smrekar & Solomon (1992) found that the 
time-scales for gravitational relaxation assuming a webster- 
ite rheology were on the order of several hundred million 
years. These long time-scales would predict a much higher 
abundance of flexure-like topographic signals than is 
observed. 

CONCLUSIONS 

We have presented results from a global study of flexure on 
Venus, excluding flexure at  rift zones and around volcanoes. 
Most prominent examples of downward flexure are 
associated with the outer edges of coronae. A s  coronae vary 
considerably in diameter, we investigated the validity of a 
Cartesian approximation to an axisymmetric load geometry. 
The important parameters are the ratio of outer load radius 
to  the flexural parameter a/a, and, if a ring load is 
appropriate, the ratio of ring load width to  the flexural 
parameter Aa/a. Our analysis indicates that for a given a / a ,  
loads with a smaller value of Aa/a (thin rings) are better 
approximated with a Cartesian model than loads with a 
larger value of Aa/a  (wide rings or disks). A s  a / a  increases 
for any given h a  / a  the Cartesian approximation becomes 
increasingly valid, especially for estimating a when a / a  is 
greater than about two. In contrast, the magnitude of the 
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load is severely underestimated even when a / a  is about five; 
this is important as it directly translates into an 
underestimation of the bending moment. Modelling of 
profiles which do not pass through the centre of the 
axisymmetric feature with a Cartesian model can overestim- 
ate the flexural wavelength. Criteria can be set up specifying 
the acceptable error in each of the parameters estimated by 
the flexure model-load magnitude, load position and 
flexural parameter. These criteria can then be used together 
with the curves in Fig. 3 to establish critical values of a /a  
and A a l a  for which a Cartesian approximation to a ring load 
or disk load geometry is acceptable. We modelled seven 
features, in addition to five previously modelled, with a 
Cartesian model. We remodelled one of these features, 
Nishtigri Corona, with a disk load model and found 
significantly different results. The difference c3n be partly 
attributed to the fact that the Cartesian approximation was, 
in this case, a poor approximation, and partly to the fact that 
this was a poor example of flexure. Based on the curvatures 
and surface stresses obtained from thin elastic plate models, 
the topography at W. Dali Chasma, Latona and Artemis 
Coronae is either representative of extreme flexure (the 
lithosphere is moment saturated) or it is the result of a 
tectonic history not involving lithospheric flexure. Mean 
mechanical thicknesses calculated for the remaining 
examples fall in the range 21 km-37 km, reflecting 
lithospheric thicknesses at the time of loading. We found no 
clear examples of flexure around smaller corona, though five 
areas could not be completely ruled out. Estimates of 
effective elastic thickness based on a flexure model for these 
examples fell in the range 4 km-28 km and did not correlate 
with corona diameter. The elastic thicknesses provide a 
lower bound on mechanical thickness at these sites. Of these 
five examples, only Fatua Corona has a strong gravity signal 
which is well correlated with the topography (Moore, 
personal communication 1993). 

An alternative interpretation of the apparent flexural 
signatures modelled in this paper is that they are the result 
of flexure of a viscous lithosphere. A dynamical model 
derived for terrestrial subduction zones (DeBremaecker 
1977) was applied to the topographic profiles from Latona 
Corona. The viscous plate thickness corresponding to low 
strain rates was found to be 170km, greater than the 
comparable thickness derived for terrestrial subduction 
zones. The number of observed apparent flexural signatures 
is consistent with characteristic time-scales for viscous 
relaxation of 9 Myr. Based on these time-scales the derived 
viscous plate thicknesses are again high. Thus, viscous plate 
models are also consistent with low temperature gradients in 
the lithosphere. The main problem with viscous models is 
that there is a trade-off between the strain rate (or stress 
distribution or relaxation time-scales) and the viscous plate 
thickness. Unfortunately, we have almost no information on 
time-scales on Venus, so if a viscous rheology is appropriate 
we can, at best, propose a family of models consistent with 
the observations. 

Models for the formation of coronae have suggested that 
an apparent flexural signature may form during the late 
stages of evolution, as a result of gravitational relaxation 
(Stofan et al. 1991; Janes et al. 1992). However, recent 
measurements on dry diabase indicate that dry crustal 
materials are much stronger than previously believed 

(Mackwell 1993). Time-scales for gravitational relaxation of 
a strong Venusian crust are on the order of 10X-lO'yr 
(Smrekar & Solomon 1992), comparable to the inferred 
average surface age of approximately 500 Myr (Phillips et ul. 
1992; Schaber et al. 1992). Thus, based on the current 
available information, it is unlikely that flexural topography 
is generated by gravitational relaxation. 

Another possibility is that the trench and outer-rise 
signatures could be Airy compensated and simply reflect 
variations in crustal thickness. The improved gravity- 
anomaly data being collected by Magellan may shed light on 
this final possibility. On Earth, gravity-anomaly data are 
used to reject this hypothesis. 

Assuming the trench and outer rise topographic features 
that we have identified are supported by larger fiber stresses 
within a thin plate, our results indicate that the Venusian 
elastic lithosphere is thicker than predicted based on the 
global heat-scaling argument. This has implications for the 
style and timing of tectonic activity on Venus. Scenarios 
consistent with a thick lithosphere have been proposed in 
which either most of the heat escapes through localized heat 
pipes (Turcotte 1989), or mantle convection on Venus is 
highly episodic (Turcotte 1992; Parmentier & Hess 1992). 
The localized heat-pipe model is problematic as it predicts a 
global volcanic flux much greater than that inferred from 
radar observations (Solomon & Head 1991; Head et al. 
1992). Also a natural choice of locations for such heat pipes 
would be the coronae themselves and this model would then 
predict hotter, thinner lithosphere at coronae. Current 
episodic convection models require global synchroneity of 
the initiation and termination of convection. I t  is more 
realistic to expect regional variations in the extent and 
duration of the episodes of increased convection. Such 
modifications to the current models would be more 
consistent with the range in lithospheric thicknesses 
reported here and with the fact that many coronae do not 
exhibit any flexural signature. A recent tectonic model for 
resurfacing on Venus has been proposed in which a period 
of rapid crustal deformation existed in the past due to a 
higher surface heat flux than at present and a correspond- 
ingly weaker lower crust (Solomon 1993). In this model a 
gradual decrease in surface heat flux can lead to a much 
more abrupt change in the crustal deformation rates because 
of the exponential dependence of strain rate upon 
temperature. High strain rates would be expected to persist 
over a longer time period in elevated regions, (compared 
with the lowlands) due to a weaker crust. Our results are 
broadly consistent with this model as the features exhibiting 
apparent flexural signatures are mostly in or around the 
edge of the lowlands, where a lower heat flux and thicker 
lithosphere would be expected. Recent laboratory experi- 
ments on terrestrial diabase indicate that dry crustal 
materials are significantly stronger than previously believed 
(Mackwell 1993). If similar results are found for dry olivine, 
this will suggest a strong Venusian lithosphere, and the 
mechanical thickness estimates in this paper will be reduced. 
Finally, although it will not be able to directly model flexure 
profiles using the Magellan gravity data we hope that it will 
provide more information on variations in lithospheric 
thickness on Venus and on the relative contributions of 
static and dynamic processes to the support of topographic 
features. 



644 C. L. Johnson and D. T. Sandwell 

ACKNOWLEDGMENTS 

We would like to thank Dan McKenzie, Chris Small, Cathy 
Constable, Bill Moore and Jerry Schubert for many valuable 
discussions throughout the duration of this project. Marc 
Parmentier and Mark Simons provided constructive reviews, 
which improved the clarity of the paper. In particular Marc 
Parmentier made helpful suggestions regarding the discus- 
sion of viscous models. This research was supported by 
NASA under the Venus Data Analysis Program NAGW- 
3503 and the Jet Propulsion Laboratory under the Magellan 
Project, Contract No. 958950. 

REFERENCES 

Brace, W.F. & Kohlstedt, D.L., 1980. Limits on lithospheric stress 
imposed by laboratory experiments, J .  geophys. Res., 85, 
6248-6252. 

Brotchie, J.F., 1971. Flexure of a liquid filled spherical shell in a 
radial gravity field, Mod. Geol. 3, 15-23. 

Brotchie, J.F. & Silvester, R., 1969. On crustal flexure, J .  geophys. 
Res., 74, 5240-5252. 

Brown, C.D. & Grimm, R.E., 1993. Flexure and the role of implane 
force around coronae on Venus, Lunar & Planetary Science 
Conference, XXIV, 199-200. 

Byerlee, J.D., 1978. Friction of rocks, Pageoph., 116, 615-626. 
Caldwell, J.G. & Turcotte, D.L., 1979. Dependence of the thickness 

of the elastic oceanic lithosphere on age, J .  geophys. Res., 84, 
7572-7576. 

DeBremaecker, J.C., 1977. Is the oceanic lithosphere elastic or 
viscous?, J .  geophys. Res., 82, 2001-2004. 

Evans, S.A., Simons, M. & Solomon, S.C., 1992. Flexural Analysis 
of Uplifted Rift Flanks on Venus, International Colloquium on 
Venus, LPI Contribution No.  789, 30-32. 

Ford, P.G. & Pettengill, G.H., 1992. Venus topography and 
kilometer-scale slopes, J .  geophys. Res., 97, 13 103-13 114. 

Goetze, C. & Evans, B., 1979. Stress and temperature in the 
bending lithophere as constrained by experimental rock 
mechanics, Geophys. J.R. astr. Soc., 59, 463-478. 

Head, J.W., Crumpler, L.S., Aubele, J.C., Guest, J.E. & Saunders, 
R.S., 1992. Venus volcanism: classification of volcanic features 
and structures, associations and global distribution from 
Magellan data, J .  geophys. Res., 97, 13 153-13 197. 

Janes, D.M., Squyres, S.W., Bindschadler, D.L., Baer, G., Schubert, 
G., Sharpton, V.L. & Stofan, E.R., 1992. Geophysical models 
for the formation and evolution of coronae on Venus, J .  
geophys. Res., 97, 16 055-16067. 

Johnson, C.L. & Sandwell, D.T., 1992a. Flexure on Venus: 
implications for lithospheric elastic thickness and strength. 
Lunar & Planetary Science Conference, XXIII, 619-620. 

Johnson, C.L. & Sandwell, D.T., 1992b. Joints in Venusian Lava 
Flows, J .  geophys. Rex ,  97, 13601-13610. 

Johnson, C.L. & Sandwell, D.T., 1993. Estimates of lithospheric 
thickness on Venus, Lunar & Planetary Science Conference, 
XXIV, 721 -722. 

Mackwell, S.J., Kohlstedt, D.L., Scherbcr, D.S. & Zimmerman, 
M.E., 1993. High temperature deformation of diabase: 
Implications for Tectonics on Venus, EOS,  Trans. Am. 
geophys. Un., 74, 378. 

McKenzie, D.P., 1967. Some remarks on heat flow and gravity 
anomalies, J .  geophys. H a . ,  72, 6261 -6273. 

McKenzie, D., Ford, P.G., Johnson, C., Parsons, B., Pettengill, 
G.H., Sandwell, D., Saundcrs, S. & Solomon, S.C., 1992. 
Features on Venus generated by plate boundary processes, J .  
geophys. Res.. 97, 13 533-13 544. 

McNutt, M.K., 1984. Lithospheric flexure and thermal anomalies, J .  
geophys. Res., 89, 11 1XGl I 194. 

McNutt, M.K. & Menard, H.W., 1992. Constraints on yield strength 

in the oceanic lithosphere: derived from observations of 
flexure, Geophys. J.R. astr. Soc., 71, 363-394. 

Melosh, H.J., 1978. Dynamic support of outer rise topography, 
Geophys. Res. Lett., 5, 321-324. 

McGovern, P.J. & Solomon, S.C., 1992. Estimates of elastic plate 
thicknesses beneath large volcanoes on Venus, International 
Colloquium on Venus, LPI Contribution No. 789, 68-70. 

Moore, W., Schubert, G. & Sandwell, D.T., 1992. Flexural models 
of trench/outer rise topography of coronae on Venus with 
axisymmetric spherical shell thin elastic plates, I~fernatjonal 
Colloquium on Venus, LPI Conrrihution No. 789, 72-73. 

Mueller, S. & Phillips, R.J., 1992. Inelastic lithospheric flexure, 
Geophys. J .  Int., submitted. 

Oyama, V.I., Carle, G.C., Woeller, F., Pollack, J.B., Reynolds, R.T. 
& Craig, R.A., 1980. Pioneer Venus gas chromatography of the 
lower atmosphere of Venus, J .  geophys. Res., 85, 7891-7902. 

Parmentier, E.M. & Hess, P.C., 1992. Chemical differentiation of a 
convecting planetary interior: Consequences for a one plate 
planet such as Venus, Geophys. Res. Left., 19, 2015-2018. 

Parsons, B. & Sclater, J., 1977. An analysis of the variation of ocean 
floor bathymetry and heat flow with age, J .  geophys. Res., 82, 
803-827. 

Pettengill, G.H., Ford, P.G. & Wilt, R.J., 1992. Venus surface 
radiothermal emission as observed by Magellan, J .  geophys. 
Res., 97, 13091-13 102. 

Phillips, R.J. & Malin, M.C., 1983. The interior of Venus and 
tectonic implications, in Venus, eds Hunten, D.M., Colin, L., 
Donahue, T.M. & Moroz, V.I., University of Arizona Press, 
Tucson, AZ. 

Phillips, R.J., Raubertas, R.E., Arvidson, R.E., Sarkar, I.C., 
Herrick, R.R., Izenberg, N. & Grimm, R.E., 1992. Impact 
craters and Venus resurfacing history, J .  geophys. Rex ,  97, 

Pronin, A.A. & Stofan, E.R., 1990. Coronae on Venus: morphology 
and distribution, Icarus, 87, 452-474. 

Ribe, N.M., 1992. On the interpretation of frequency response 
functions for oceanic gravity and bathymetry, Geophys. J .  R. 
astr. Soc., 70, 273-294. 

Sandwell, D.T. & Schubert, G., 1992. Flexural ridges, trenches and 
outer rises around Venus coronae, J .  geophys. Res., 97, 

Sandwell, D.T. & Schubert, G., 1992. Evidence for retrograde 
lithospheric subduction on Venus, Science, 257, 766-770. 

Sandwell, D.T. & Schubert, G., 1993. A global survey of possible 
sites of subduction on Venus, EOS, Trans. Am. geophys. Un., 
74, 376. 

Saundcrs, R.S., Spear, A.J., Allin. P.C., Austin, R.S.. Berman, 
A.L., Chandlee, R.C., Clark, J., DeCharon, A.V., DeJong, 
E.M., Grifith, D.G., Gunn, J.M., Hensley, S., Johnson, 
W.T.K., Kirby, C.E., Leung, L.S., Lyons, D.T., Michaels. G.A., 
Miller, J., Morris, R.B., Morrison, A.D., Piereson, R.G., Scott, 
J.F., Shatfer, S.J., Slonski, J.P., Stofan, E.R., Thompson, T.W. 
& Wall, S.D., 1992. Magellan mission summary, J .  geophys. 
Res., 97, 13 067- 13 090. 

Schaber, G.G., Strom, R.G., Moore, H.J., Soderblom, L.A., Kirk, 
R.L., Chadwick, D.J., Dawson, D.D., Caddis, L.R., Boyce. 
J.M. & Russell, J., 1992. Geology and distribution of impact 
craters on Venus: What are they telling us?, J .  geophys. Res., 
97, 13257-13301. 

Smrekar, S.E. & Solomon, S.C., 1992. Gravitational sprcading of 
high terrain in Ishtar Terra, Venus, J .  geophys. Res.. 97, 
16 121-16 148. 

Solomon, S.C. & Head, J.W., 1982. Mechanisms for lithospheric 
heat transport on Venus: implications for tectonic style and 
volcanism, J .  geophys. Res., 87, 9236-9246. 

Solomon, S.C. & Head, J.W., 1990. Lithospheric flexure beneath 
the Freyja Montes foredecp, Venus: constraints on lithospheric 
thermal gradient and heat flow. Geophys. Res. Lett., 17, 
1393-1396. 

15 923-15 948. 

16 069-16 083. 



Lithospheric flexure on Venus 645 

substantial volcanism associated with Nightingale both 
interior to  and exterior to  the corona. In particular there is 
evidence for flows possibly postdating the flexure on the 
south side of the corona. Polygonal fracture patterns rather 
than fractures concentric to the corona are seen. 

Solomon, S.C. & Head, J.W., 1991. Fundamental issues in the 
geology and geophysics of Venus, Science, 252,252-260. 

Solomon, S.C., 1993. The geophysics of Venus, Phys. Today. 46, 
48-55. 

Squyres, S.W., Janes, D.M., Baer, G., Bindschadler, D.L., Schubert, 
G., Sharpton, V.L. & Stofan, E.R.. 1992. The morphology and 
evolution of coronae and novae on Venus, J .  geophys. Res., 97, 

Stein, S., 1994. Introduction to seismology, earthquakes, and earth 
structure, in press. 

Stofan, E.R., Bindschadler. D.L., Head, J.W. & Parmentier, E.M., 
1991. Corona structures on Venus: models of origin, 1. gcophys. 
Res., 96, 20 933-20 946. 

Stofan, E.R., Sharpton, G., Schubert, G., Baer, G., Bindschadler, 
D.L., Janes, D.M. & Squyres, S.W.. 1992. Global distribution 
and characteristics of coronae and related features on  Venus: 
implications for origin and relation to ,'mantle processes. J .  
geophys. R e x ,  97, 13 347- 13 378. 

13 61 1-13 634. 

Turcotte, D.L., 1979. Flexure, Adu. Geophys., 21, 51-86, 
Turcotte, D.L., 1989. A heat pipe mechanism for volcanism and 

tectonics on Venus, J .  geophys. Res., 94, 2779-2785. 
Turcotte, D.L., 1992. Episodic plate tectonics on Venus, EOS, 

Trans. A m .  geophys. Un., 73, 332. 
Watts, A.B., Weissel, J.K., Duncan, R.A. & Larson, R.L., 1988. 

Origin of the Louisville Ridge and its relationship to the 
Eltanin fracture zone system, J .  geophys. Re%, 93, 3051-3077. 

Wessel, P., 1992. Thermal stresses and the bimodal distribution of 
elastic thickness estimates of the oceanic lithosphere, J .  
geophys. Res., 10, 14 177-14 193. 

A P P E N D I X  A: DESCRIPTIONS OF 
F L E X U R E  LOCATIONS 

Ala Larger features modelled with a Cartesian flexure 
model 

Nishtigri Corona (24.5"S, 72.0OE) 

Asymmetric corona with maximum radius of 140 km. The 
interior is elevated about 1 km above surrounding plains 
regions. The topographic moat around the corona is about 
45 km wide. The  topography to the north of the corona is 
elevated and rough, so no flexure signature could be 
detected. Possible flexure is visible on the south side of 
Nishtigri. A moderate number of volcanic features 
associated with Nishtigri are evident in the S A R  image 
(ClMIDR 30S063;l) mostly small domes in the elevated 
interior and flows surrounding the corona. Concentric 
fractures around Nishtigri coincide with the location of the 
outer rise in the flexure profiles. 

Nightingale Corona (63.0°N, 132.0OE) 

Concentric corona (a well-defined tectonic annulus, Stofan 
et al. 1992) with a maximum radius of -280km. The 
tectonic annulus is elevated up to -2.5 km above the 
surrounding plains. This elevated rim is extremely 
tectonically disturbed as evidenced in the S A R  images (e.g. 
C l M I D R  60N125E;l). Tessera-like terrain to  the north of 
the corona masks any flexure which may have been 
associated with Nightingale. There is a well-defined flexural 
signature to the south, superposed on a regional sope that is 
downhill in the SSE direction. No concentric fractures 
associated with the flexure are seen, however, there is 

Demeter Corona (55.0°N, 295OE) 

Concentric elongate corona with maximum radii -35 km 
(NE-SW direction) and -165 km (NW-SE direction). The 
corona interior is at approximately the same elevation as the 
surrounding plains but the corona rim is elevated by up to  
1 km. Flexure is evident to the north and south of the 
corona and the coronal rim at these locations is almost 
straight. Concentric fractures associated with the rim and 
the flexural moat are evident in the SAR images (e.g. 
C l M I D R  60N291). To the north of the corona there is 
considerable tectonism probably unassociated with the 
corona. Volcanism is visible in the form of small volcanoes 
in the corona interior and flows in the surrounding plains. 

Neyterkoh  Corona (49.OoN, 203.0"E) 

Neyterkob is defined as a multiple corona (Stofan et a/ .  
1992), the east and west parts being distinct. The interior of 
both parts of the corona is not elevated but there is a 
topographically high rim defining the edge of the corona. 
The topography surrounding the corona is very rough. 
However, to  the south and south-east of the eastern part of 
the corona the topography is relatively flat and there is 
evidence for flexure associated with the coronal outer rim. 
Volcanism is evident in the S A R  images (e.g. ClMIDR 
45N2012;l) and there is extensive tectonism associated with 
the corona and with the ridge belts in the surrounding 
plains. Concentric fractures possibly associated with the 
topographic flexure can be seen though they are somewhat 
masked by other tectonic features and lava flows. 

Ridge ( I  9.0 ON, 70.0 "E) 

This is a narrow E-W-trending ridge reaching a maximum 
height of about 1 km above the plains to the north. There is 
no evidence of a flexural moat to the south but a possible 
low-amplitude flexure to  the north can be seen in the 
gridded topography. Some fracturing parallel to  the ridge 
and to  the north can be identified in the SAR image 
(ClMIDR 15N077;l). Volcanism in the areas immediately 
adjacent to  the ridge is mainly in the form of flows of small 
areal extent. 

W .  Dali Chasrna (ISON, 16OOE) 

West Dali Chasma is located in Eastern Aphrodite Terra 
and is an extremely deep (-2-4 km) roughly E-W-trend- 
ing asymmetric chasma. The highest part of the topography 
is just to  the north of the chasma. The topography on the 
south side of the chasma was identified as a possible 
example of flexure. The region is extremely tectonically 
deformed as evidenced in the S A R  images of this area. The 
tectonic deformation appears to post-date several volcanic 
flows. An extremly bright region in the SAR image 
correlates with the highest topography in agreement with 
previous observations of an increase in reflectivity at high 
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elevations (Pettengill, Ford & Witt 1992). Extensive closely 
spaced fractures on the south side of the chasma and parallel 
to  it  are easily identified in the S A R  data. 

Alb Smaller axisymmetric features (coronae) 
Fatua Corona (16.5 "S, 17.2 "E) 

Concentric corona with interior high ring (up to -1 km), 
surrounding moat and outer elevated ring. Maximum radius 
is -155 km. Gridded topography suggests outer lower 
amplitude ring may be a flexural feature, although the part 
of the outer ring to  the SW of the corona has too high an 
amplitude to be flexure caused by the inner corona load. 
SAR image (ClMIDR 1SS026;l) shows conqentric fractures 
associated with the corona moat and outer elevated rim. 
Small volcanoes are evident in the corona interior and flows 
associated with the corona can be seen. 

Beyla Corona (27.0°N, 16.O"E) 

Asymmetric corona (elongate in a NW-SE direction) with 
maximum radius of 145 km. Has little associated volcanism. 
The centre of the corona is less than 500m above the 
surrounding plains. There is a pronounced moat around the 
northern edge of the corona, although the topography to the 
north is too rough to  distinguish any topographic flexure. 
The gridded topography suggests possible flexure to  the 
south. The S A R  image (ClMIDR 30N009;l) shows almost 
no concentric fractures around the southern edge of the 
corona. Quasi-concentric fractures are seen associated with 
the moat around the northern edge. Corona interior exhibits 
roughly NW-SE-trending bright lineations. 

Indrani Corona M7.5 "S, 70.5 "E) 

Concentric corona with a maximum radius of -100 km. The 
topography surrounding the corona is moderately rough 
making flexure difficult to  identify. There is a narrow moat 
which is almost continuous around the corona. There are no 
distinguishing features associated with the corona evident in 
the S A R  images (ClMIDR 45S074;l). 

Bhumideui Corona ( I  7.05, 343.O"E) 

Concentric corona with maximum radius of l00km. The 
centre of the corona is low relative to the surrounding 
plains, but there is an elevated rim (up to  -1 km) 
surrounded by a moat that is continuous except on the 
south-east side of the corona. There is evidence in the 
gridded topography for possible flexure associated with the 
moat around the north-west side of the corona. A narrow 
band of concentric fractures around the outer edge of the 
corona are visible in the S A R  image (ClMIDR 1SS352;l). 

Unnamed Corona (.?7.OoN, 257.0"E) 

Concentric corona with maximum radius of -100 km. 
Moderate volcanism is associated with the corona, although 
the corona itself is difficult to identify in the S A R  data 
alone. The corona lies to  the north of a region of rough 

topography. The interior is at approximately the same 
elevation as the plains to  the north but there is an elevated 
ring surrounded by a topographic low on the northern side 
of the corona. Possible flexure to  the north. 

APPENDIX B: THE BAR LOAD 
APPROXIMATION TO THE R I N G  LOAD 

In this appendix we demonstrate that in the limit of large 
a J a  a ring load of outer radius a and width Au can be 
approximated by a bar load width ha.  

The expression for deflection due to a ring load outer 
radius a and width h a  (eq. 5 in the main text) can be written 
explicitly as  the deflection due to  a disk load of radius a 
minus the deflection due to a disk load of radius a - h a :  

[d ber' ( d )  ker (x) - 6 ber' (6) ker (x) 

1 + [S bei' (6) kei (x) - d bei' ( d )  kei (x) 

x > = a J a  (Bl )  

where 

a - h a  r d = a J a ;  6=-; x = -  
ff ff 

We are interested in the limit of w(r )  as a / a  becomes 
very large. The limit of each of the terms inside the square 
brackets can be taken using the following relations 

x - d  

ber' ( d )  ker (x) = 
2 6  

x [S,,(d) cos (dd) - 7;,(d) sin (dd)j  

x [L,,( -x) cos (xx) + M,)( -x) sin (xx)] 

(B2) 

x {q , (d)  cos (dd)  + S,,(d) sin (dd)]  

x [M,,( -x) cos (xx) - L,)( -x) sin (xx)] 

(B3) 
where 

1.3 
l !  8x 

1 '. 3*.5.7 

S,,(x) = 1 - -cos 

_____ cos ($1 - 
3! (Xx)" 

1.3 
l! 8x 

?;,(x) = -sin 

1*.3*.5.7 
3! ( 8 x y  

+-sin ($1 + 
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Eq. (B13) gives the ring load solution as a / a  becomes very 
large, for an origin at the centre of the ring. The origin, 
r = 0, for the ring load solution is defined as being the centre 
of the circles defining the inner and outer edges of the ring 
load. For the bar load solution the bar load is centred on the 
origin, x = 0. Thus to compare the two solutions we need to 
make a shift of origin to r = a  - Aa/2. With Ad = Aa/a eq. 
(B13) then becomes 

1’ 
! 8x 

1 ’. 3’. 5’ 

L,(x) = 1 + - cos 

+-cos (?) + . . . , (B7) 3! (8x)3 

sin ($) 1’ 1’.3’ 
~ , ( x )  = --sin (f) - __ 

l! 8x 2! (8x)’ 

1’.3’.5’ 
3! ( 8 ~ ) ~  sin($)- . . . ,  (B8) -- 

For large x, d, and S the expressions (B2) and (B3) reduce 
respectively to 

1 x - d  
ber’ (d) ker (x) = __ cos (dd) cos (xx) 

and 

1 x - d  
bei’ (d) kei (x) = - - exp [ - ( T)] sin (dd) sin (xx ) .  

Thus eq. (Bl) reduces to 

2 6  
(B10) 

As the flexural parameter defined for axisymmetric 
geometries differs from that defined for Cartesian geometries 
by a factor of d 2  (eq. 6 in main text) then (B14) can be 
rewritten 

w ( x ) = - -  P o  [ exp [ -($,)]cOs($) 
APg 2 

- exp [ - ( 5)] cos ( 311. (B15) 

Eq. (B15) is simply the bar load solution (eq. 10 in the main 
text with 1 replaced by Aal2). Thus in the limit of large a / a  
the ring load geometry is identical to a bar load of the same 
width. We used a similar procedure to calculate the limit of 
a disk load as a / a  becomes very large. 


