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Summary. The wavelength and amplitude of outer rises seaward of sub- 
duction zones and arches surrounding islands and seamounts are used to para- 
meterize flexure profiles in terms of the moment and curvature at the first 
zero crossing. The data show the clear age dependence in the mechanical 
thickness of the lithosphere up to 60-100Myr. Saturation of moment at 
large curvature is interpreted in terms of a depth-dependent yield strength 
for the lithosphere using relations adopted from laboratory experiments of 
rock deformation. A comparison of theoretical curves with observed 
moments indicates that old oceanic lithosphere has no long-term strength 
below about 40 km depth, with no difference between 100 and 165 Myr old 
crust. Moderate axial loading forces (+200 MPa) can explain most variations 
in the moment/curvature observations, except in the case of the Kuril Trench 
which appears anomalous given the age of the crust. Regional tension causes 
greater variability in moment as compared to regional compression because of 
the greater slope in the brittle failure envelope under tension. The obser- 
vations point to a lithosphere weaker than the prediction from experimental 
deformation of rocks. Of the possible weakening mechanisms, elevated pore- 
fluid pressure on faults does not predict the correct age dependence and is 
incompatible with earthquake focal mechanisms. Our favoured explanation is 
that the activation energy, Q, appropriate for ductile flow at geological strain 
rates is lower than the values derived from laboratory extrapolations of dry 
olivine data taken at high temperatures. If recent oceanic geotherms are 
reliable, Q in the lower lithosphere must be lower than lOOkcal mol-'. The 
method used here is most appropriate for trench profiles with curvatures 
greater than lO-'rn-'. For lower curvatures, such as along seamount profdes, 
small errors in the curvature estimate cause large changes in rheological para- 
meters. 

*Present address: 54-1018 Department of Earth and Planetary Sciences, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139, USA. 
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Introduction 

The bending of the oceanic crust in the vicinity of many islands and seamounts (Vening 
Meinesz 1941 ; Walcott 1970; Watts & Cochran 1974; McNutt & Menard 1978) and seaward 
of subduction zones (Hanks 1971; Watts & Talwani 1974; Caldwell et  al. 1976) represents 
an excellent opportunity to study the deformation of rock at geological strain rates. To a 
good first approximation, the behaviour of older seafloor when subjected to surface loads, 
horizontal tension or compression, or applied bending moments is largely elastic with an 
effective elastic thickness of the lithosphere ranging between about 20 and 40km. Further- 
more, Watts, Bodine & Ribe (1980) have shown that the effective elastic thickness increases 
roughly as the square root of age of the lithosphere when loaded (Fig. 1). Such a dependence 
could have been anticipated from plate and half-space cooling models which describe the 
evolution of the oceanic lithosphere (Turcotte & Oxburgh 1967; McKenzie 1967; Parker & 
Oldenburg 1973) and points to thermal control for the base of the elastic layer. 

When plotted as a function of lithospheric age, the estimates of effective elastic thickness 
(T,) lie between the 300 and the 600°C isotherms (Fig. 1) according to the thermal plate 
model of Parsons & Sclater (1977). It is unlikely that this factor of 2 uncertainty in the 
temperature at the base of the elastic layer is caused solely by errors in the data. In t h i s  
study we investigate to what extent the apparent variations in temperature can be attributed 
to the inadequacy of the purely elastic plate model for describing the mechanics of the 
oceanic lithosphere. For more physically realistic rheologies in which the elastic strength of 
the lithosphere is limited by brittle rock failure at shallow depths and ductile flow at the 
base, the observed T,  will be a function of both the curvature of the deformed plate and the 
magnitude and sign of axial loading forces. 
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Effect of yield strength on T, 
The homogeneous equation describing the bending of a plate subject only to mechanical 
equilibrium is 

d 2 M / d x 2 - N d 2 w / d x 2 - A p g w = 0  (1) 

AGE OF OCEANIC L ITHOSPHERE AT T I M E  
OF LOADING (M.Y.) 

Figure 1. Elastic thickness of the lithosphere versus age of the lithosphere at the time of loading. After 
Watts ef QI. (1980). Data sources: (1)  Cochran (1979); (2) McNutt (1979); (3) McKenzie & Bowin (1976); 
(4) Caldwell (1979); (5) Watts (1978); (6) McNutt & Menard (1978); (7) Watts e l  al. ( I  975); ( 8 )  McAdoo 
et al. (1978); (9) Caldwell et 01. (1976); (10) Suyenaga (1977); (1 1) Walcott (1970). 
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in which M is the bending moment, x is the horizontal coordinate, N is the axial load (+ for 
tension, - for compression), Apg is the buoyancy force arising from a density difference 
between fluids below and above the plate, and w is the plate deflection. Consistent with 
standard usage, M’ is positive upward, z is positive downward, and the restoring force Apg is 
positive for density increasing with depth. At any point x, the axial load can be obtained by 
integrating the stress differences A o  through a vertical cross-section of the plate with thick- 
ness H :  

N=JoH A a d z .  

We assume that the horizontal and vertical stresses, oh and o,, are principal stresses so that 
Aa = oh - a,. The moment is defined by the vertical integral of the fibre stresses uf weighted 
by the distance from the neutral plane of bending at a depth z ,  : 

Since the fibre stresses must sum to zero over the thickness of the plate, in the absence of 
axial loading af = A a  = q, - a,. 

Consider first the fibre stresses which develop in an elastic plate in pure bending, shown 
in Fig. 2(a). Stress differences A a are linearly proportional to distance from the neutral axis 

/’‘--:j 50 KILOMETERS 
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Figure 2. Stress differences versus depth within the bending lithosphere for low (horizontal lines) and high 
(shaded) plate curvature. (a) Elastic plate; (b) elastic-perfectly plastic plate; ( c )  elastic-perfectly plastic 
plate subjected to axial compression. 
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and reach maxima at the surface of the plate and at its base located at z = T,. For a thin 
elastic plate, 
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M ( x )  = - D K ( x )  (4) 
where 

D = E T2/12(1- v’) = the flexural rigidity, 

E = Young’s modulus, 

v = Poisson’s ratio, 

K = d’ w/dx2 = the curvature of the plate. 

For both the low and the high curvature cases shown in Fig. 2(a), we would find from 
equations (3) - (5)  that the base of the plate H equals T,. 

There is no limit to the maximum stress differences allowed in a purely elastic plate. 
Since real Earth materials do have a finite strength, a more realistic stress difference profile 
is shown in Fig. 2(b) for an elastic-perfectly plastic rheology. The plate behaves elastically up 
to the yield stress noo, at which point the plate fails. Additional strain causes no increase in 
stress. When the plate has low curvature such that the maximum stress differences are every- 
where less than the yield stress, there is no observational way to distinguish the elastic-plastic 
plate from the purely elastic one in Fig. 2(a). However, at higher curvatures the stress- 
difference profile in the elastic-plastic plate does differ from the elastic case because the 
uppermost and lowermost sections of the plate fail. Suppose we let 

H = 4 0 k m ,  

z ,  = 20 km, 

K = - 5 x 

Aoo = 500 MPa, 

and calculate the moment in the elastic-plastic plate using equation (3). According to equa- 
tion (4), a purely elastic plate with the same moment and curvature would be less than 
37 km thick. Thus a lithospheric plate which is more sharply bent will appear thinner than 
an identical plate with lower curvature if finite yield strength in not taken into account. Tn a 
similar manner, axial loading forces can cause an apparent plate thinning even for relatively 
low curvatures, as shown in Fig. 2(c). 

m-’, 

The yield envelope 

The elastic-perfectly plastic plate shown in Fig. 2(b) is useful for illustrative purposes but is 
simplistic in the sense that the yield strengh Aoo in the oceanic lithosphere must be depth- 
dependent. A map of the yield strength in tension and compression as a function of depth in 
the lithosphere is called a yield envelope. The particular envelope that we adopt in this study 
is constrained by the results from experimental deformation of olivine and accounts for the 
effects of variations in pressure, temperature and strain rate on rock strength. Since the 
adaptation of olivine rheologies to lithospheric conditions and geological strain rates has 
been discussed in several recent publications (Mercier, Carter & Anderson 1977; Kirby 1977; 
Post 1977; Goetze & Evans 1979; Brace & Kohlstedt 1980;Kirby 1980), we only provide a 
brief discussion here. 

Following Kirby (1980), we consider three regimes of rock behaviour: brittle, semi- 
brittle and ductile. 
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THE B R I T T L E  Z O N E  

In the uppermost, cool regions of the lithosphere, we assume that rocks fail by movement 
along localized fractures. Strength increases with overburden pressure but is relatively 
insensitive to temperature, strain rate and rock type. The shear stress T necessary to over- 
come static friction on a surface with normal stress an is (Byerlee 1968, 1978) 

r = 80 t 600 un (MPa). (6) 

With a Mohr diagram, it can be shown easily that as differential stress increases, frictional 
sliding first occurs on faults oriented at about 30" to the largest compressional stress. 
Assuming that fracture surfaces with the proper 30" orientation are available, in terms of 
differential stress at first yielding, (6) becomes 

AUO = - 2.17 pgz - 283 MPa 

Auo = 0.68 pgz t 89 MPa 

( A a <  0), 

(Aa > 0) 

in which pgz is the overburden pressure in units of 10-6N m-*. Use of (6) implies that the 
upper lithosphere is already fractured, and the validity of (7) and (8) depends on some of 
the fractures having the most favourable orientation for frictional sliding (Goetze & Evans 
1979). In the absence of weakening effects from elevated pore-fluid pressures, (7) and (8) 
represent a lower bound on the yield stress in the top 20 km or so of the lithosphere. Note 
that the upper plate is significantly stronger in compression as compared to tension. Other 
factors being equal, a plate with negative curvature (concave downward) will appear to have 
a smaller T, than a plate with positive curvature. 

T H E  S E M I - B R I T T L E  Z O N E  

The transition between brittle and ductile behaviour is marked by a region in which both 
brittle and ductile processes occur. State of stress and temperature are both important 
environmental parameters, in that increasing pressure tends to inhibit stable microfracturing, 
and semi-brittle deformation halts at temperatures too low for plasticity in the specimen. 
Semi-brittle yielding is the principal mode of failure at intermediate depths where high 
pressure and low temperature would require stress differences exceeding 800-1 000 MPa for 
either brittle or ductile deformation (Kirby 1980). 

In this study, we do not include semi-brittle failure in formulating the yield envelope for 
the following reason. The observation that the neutral axis of bending occurs at mid-plate 
depths and the fact the regions of most intense curvature are concave downward conspire 
to render semi-brittle failure inconsequential to the bending lithosphere. In Fig. 3 we have 
superimposed the stress versus depth profile for the highest plate curvature considered in this 
study on to the yield envelope of Kirby (1980) modified for a strain rate or s-'. No 
adjustment was made in Kirby's semi-brittle region based on the prediction that strain rate- 
independent brittle processes control semi-brittle behaviour (S. H. Kirby, private communi- 
cation). The straight line through the neutral axis which represents the magnitude of elastic 
fibre stresses intersects the yield envelope at approximately 27 km depth in extension, which 
is too shallow for semi-brittle behaviour. In compression, semi-brittle deformation occurs at 
lower pressures corresponding to depths less than 20 km and could be an important weaken- 
ing mechanism directly under seamounts where the upper lithosphere is under relative 
compression. 

The elastic portion of the stress curve intersects the lower boundary of the yield envelope 
just below the region referred to by Kirby (1980) as 'ductile-low temperature', a process 
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Figure 3. Yield envelope showing strength versus depth within the lithosphere for a brittie/elastic/ductile 
rheology. Solid curve: mode1 proposed by Kirby (1980) modified for a strain rate of 10-l6s-'. Dashed 
curve: simplified form of yield envelope adopted in this study, generated assuming the same activation 
energy, temperature structure and strain rate as in Kirby's model. Shaded region shows stress differences 
versus depth for a plate with large curvature. 

controlled by intercrystalline glide. According to Fig. 3, this deformation mechanism will 
not enter into this study, nor will it be observed for plate curvatures of the opposite sign. 
Trenchward of the first zero crossing most flexure profiles displace curvatures larger than 
those considered here, and it is in this region that ductile-low temperature flow may be 
important. 

T H E  D U C T I L E  Z O N E  

At higher temperatures, the dominant mechanism for failure is ductile flow. Yield strength is 
fairly insensitive to pressure effects but decreases with decreasing strain rate. The transition 
from high strength (> 1OOOMPa) to low strength (< 10MPa) occurs over a limited depth 
range due to the extreme temperature sensitivity of the process, hence giving rise to plate- 
like behaviour. 

For the range of A a <  200MPa, we adopt a power-law relationship between yield 
strength Aao and strain rate P (Goetze 1978; Evans & Goetze 1979): 

Aao = exp(QJRT)]"" 

in which 

B1 = 7.0 x 

QL = the activation energy, 

R = 1.987 x 

T = temperature in degrees Kelvin, 

n - 3. 

For A a > 200 MPa, 

A o ~ =  UH (1 - [RT/QH 1n(Bz/6)]"*> 

in which 

s-l Pa-n, 

kcal (mol K)+, 

= 8.5 x 109pa, 

QH is slightly larger than QL to ensure continuity at A a  = 200 MPa, 

B 2 =  5.7 x 10" s-'. 

(9) 
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To account for the well-accepted age-dependence of the thermal structure in the oceanic 

lithosphere, we assume that the temperature is related to depth via a linear gradient which 
decreases as the square root of age, t :  

T ( f ,  z )  = To t a/&z (11) 

where To has units K and cy is the temperature gradient in K m r  km'-'. 
The strain rate sensitivity of (9) and (10) requires that P be known only to within an 

order of magnitude. The specification of the activation energy Q and the temperature T is 
critical; Q/RT should be accurate to w i t h  10 per cent, but is not known at present to that 
precision. Without specifying the exact values for Q and T, we can see from (9) that the base 
of the mechanical lithosphere, defined here as the depth at which the yield strength at 
geological strain rates is less than 50MPa, corresponds to Q/RT = 60. In this study, we use 
actual observations of lithospheric deflection to constrain the depth, as a function of litho- 
spheric age, at which Q/RT falls to 60. 

The moment-curvature formulation 

The most straightforward, but time-consuming, method of fitting observed flexure profiles 
using non-elastic rheologies is to integrate equation (1) from large x in towards the flexed 
region. At each step, the moment for a given rheology is calculated from equation (3) and 
transformed into an effective flexural rigidity D,ff by equation (4). D,R varies as the curva- 
ture changes along the profile. The yield envelope which determines the stresses in (3) can be 
adjusted until the deflection w agrees with the data (McAdoo, Caldwell & Turcotte 1978; 
Bodine & Watts 1979; Bodine, Steckler & Watts 1981). 

When the object of the investigation is simultaneously to consider the rheological impli- 
cations of numerous flexure profiles, the problems can be quickly parameterized using an 
extension of the method of Goetze & Evans (1979). Integrating equation (1) twice yields 

M(xo) = Ly Apgw(x) (x- -xo)  dx + N  w(x0) 

which measures the moment at a point xo regardless of rheological assumptions. Physically, 
(12) sums up the torques about xo caused by the weight of the deformed plate and the axial 
load, as illustrated in Fig. 4. While (12) is a rheologically independent measure of the 
moment at xo, the equal-but-opposite moment M ( x o )  in (3), arising from fibre stresses in 
the plate, is extremely dependent on rheology, in particular, on the depth H a t  which stress 
differences become insignificant. By equating the moments from equations (12) and (3), we 
can use deflection profiles w to constrain the stress differences in a vertical cross-section of 
the lithosphere at the point xo. 

Ideally, we want (12) to depend only on observable quantities, with no assumptions. For 
this reason, the optimal choice for xo in parameterizing trench profiles is the first zero 
crossing seaward of the trench axis. To begin with, because w(xo)  = 0, even if axial loading 
N is appreciable, it will not be a factor in equation (12). Only observed quantities, either the 
bathymetric profile w or the free air gravity anomaly Apgw,  directly determine M ( x o ) ,  and 
this measure of the moment is insensitive to small errors in w. In addition, in order to 
calculate M ( x o )  in (3) ,  we must specify the curvature K at xo, which then determines the 
stress differences in the non-yielded portion of the lithosphere. While the integration in (12) 
may be quite stable, the second derivative of w, the curvature, is notoriously unstable. Fig. 5 
shows some examples of this effect: small changes in the bathymetric curve cause very large 
changes in curvature. In the example from Liu (1980), the difference in deflection for an 
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I W  

(b) I 
Figure 4. Illustration of physical basis for calculation of observed moments from flexed lithosphere. 
Shading shows area over which moment integral is performed. (a) Subduction zone case for arbitrary 
x , .  In this study, x, is chosen to lie at the first zero crossing so that N w ( x , )  = 0. (b) Seamount loading 
case. 
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Figure 5. Comparison of deflection, curvature and strain rate for elastic and elastic/plastic models of 
plate flexure at subduction zones proposed by Liu (1980) and Chapple & Forsyth (1979). Close agree- 
ment on plate deflection for elastic and elastic/plastic models does not ensure agreement on curvature 
and strain rate, particularly landward of the Tist zero crossing. 
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elastic plate compared to his model for an elastic/plastic plate is less than the width of the 
line, but curvature on the outer trench wall varies by a factor of 2. The discrepancy in curva- 
ture estimates is more drastic in Chapple & Forsyth’s (1979) study, but the similarity 
between w-profiles for elastic and elastic/plastic models was not impressive to begin with. 
Note, however, that in both studies the two plate models essentially agree on the curvature 
estimate at the first zero crossing seaward of the trench axis. 

Likewise for flexure profiles caused by the loading of islands and seamounts, the optimal 
xo corresponds to the first zero crossing seaward of the load (Fig. 4b). Although axial forces 
N may not be as important in the seamount case, we still require a reliable estimate for K. 
More importantly, inboard of the first zero crossing, sediments, volcanic flows and the load 
itself add additional moments and obscure the flexure profile, violating the requirement that 
w be an observed quantity. 

Parameterizing the data 
The moment integral (12) becomes unstable at large values for (x -xo) if there is noise in 
the bathymetric or gravity profile. In this paper, ‘noise’ is defined as any features unrelated 
to plate flexure. Smoothing the data with an analytical curve removes this problem, and as 
far as (12) is concerned, the choice of curve is immaterial as long as it fits the data. The 
curvature estimate is, however, sensitive to the choice of analytical function because, as we 
discussed earlier, displacements which appear arbitrarily close can correspond to vastly 
different curvatures. The observation that the deformation of old oceanic lithosphere 
appears to be at least partly elastic suggests that the curvature estimate from the solution for 
bending a thin elastic beam may not be too much in error: 

w(x) = A  exp(-x/a) sin(x/cu). (13) 

The wavelength a and the amplitude A of this damped sinusoid are chosen so that (13) 
provides a best fit to the data in the least squares sense. 

Caldwell et al. (1976) show that A and (Y are related to the height wb of the outer rise 
seaward of a subduction zone and the distance x b  from the first zero crossing to wb by 

wb = Aexp(-x/4)/42, 

xb = n(Y/4. 

The point xo where we have chosen to calculate the moments corresponds to x = 0 in the 
notation of (13). In terms of wb and xb, the moment kf and curvature K are: 

M(X = o)= lm A/3gW(X)XdX =A&?b’b(4Xb/71)2 eXp(?r/4)/42, 

K(Xxo)=d2W/dX2=-fit/Zn2 Wb eXp(?T/4)/8Xg. 

The strain rate averaged over the thickness of the plate H is 

d e = -  (H/4d2w/dx2). 
d t  

Assuming that the flexure profile is steady state, 
d d d x  d 

dt dx d t  dx 

6 = Hv/4  d w/dx3 

---.-=up - 

=fi(r/xb)5’3 eXp(77/4) u wb {12 Apg(1 - v 2 ) / E )  ”’/32 
14 
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Table 1. Assumed values for physical parameters. 

A p  = (asthenosphere-water) density = 2300 kg m-3 
g = 9.8 m s-' 
u = 0.25 
E = 8 X 10"N m-' 

in which u is the plate velocity normal to the subduction zone. When M'b is expressed in m, 
xb in km, and u in mm yr-' , the above equations become: 

M(o)=5 .67x  1O'Owb xi@), (14) 

using the parameters in Table 1. 

seamount loads: 
A similar parameterization exists for the moment at the first zero crossing seaward of 

in which the values for C1 and C, depend upon the geometry. For a chain of seamounts that 
approximate a line load, C ,  and C2 are identical to the values in (14) and (15) regardless of 
whether the plate is continuous or fractured beneath the load. For an isolated seamount 
with circular geometry, 

C ,  = 9.06 x lo'', (19) 

C,  = -2.58 x (20) 

The derivation of these values is given in Appendix A, along with a brief demonstration 

(1) for a given flexural rigidity D and density contrast A p ,  xb and the wavelength of the 
bulge are virtually independent of the details in loading geometry landward of the first zero 
crossing; 

of the observations that: 

(2) for a constant load volume, wb (andM) decrease as the load radius increases; 
(3) the reduction in moment compared to the point load approximation becomes appreci- 

able when the radius of the load approaches (D/Apg)' l4 .  

We see from (14), (15), (17) and (18) that estimates of wb and xb should directly yield 
estimates of moment and curvature at the first zero crossing. While trench profiles are 
commonly parameterized in terms of these two quantities, corresponding values are hardly ever 
reported for seamount profiles. Because the total strain beneath seamounts is an order of 
magnitude less than trench deformations, their peripheral bulges tend to be lower in ampli- 
tude and more diffuse than outer rises seaward of trenches, making it difficult to accurately 
estimate xb and wb. As shown in Appendix A, knowledge of the load P, its distribution and 
the flexural rigidity D can be converted into estimates of xb and wb , except for the unfortu- 
nate fact that most attempts to determine D have not actually dealt with the total load, 
equal to the sum of the volcano, its root, the archipelagic apron and any sediments in the 
moat. As pointed out in McNutt & Menard (1979), for a given xb, the artifice of including 
the unknown root and moat material in the buoyancy term with A p  = (3300-2800) kg m-3 
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results in an underestimate of D by a factor of approximately 50 per cent and a - 40 per 
cent overestimate of w b  when compared to the more realistic treatment in which d l  root 
and moat material are placed in the loading term P and the Ap over the rise equals 
(3300-1000)kgm-3. Therefore, we shall confine the seamount data set to include only 
examples in which w b  and x b  are reasonably well constrained. 

The strain rate estimate for seamount flexure is fundamentally different from that of 
trenches. In (16) we assume that the outer rise is steady and fured with respect to the trench 
axis. A given plate element experiences strain as it travels up the outer rise and down into 
the trench, with strain rate proportional to plate velocity and change in curvature. For the 
seamount case we assume that the flexure is fured with respect to the plate and that the 
strain rate is proportional to the loading rate. The second assumption is valid if the load's 
growth through dyke injection and upward transport of magma is fairly steady state and 
occurs over a time span longer than the relaxation of the lower lithosphere (several tens of 
thousands of years). 

The loading rate for a volcano, equal to (volume)/(duration of activity) is difficult to 
estimate because the age of the rocks in the root beneath the volcano is poorly known. For 
a feature such as Hawaii, the duration of volcanism must be greater than the age of the 
oldest dated rocks on Kohala Mountain, 0.68 Myr (Dalrymple 1971). Assuming that 
1.5Myr is a reasonable estimate for the total duration of activity and using the volume 
estimate for Hawaii given in Appendix B, we find that 

V =  (2.08 x l O I 4  m3)/(l.5 x 106yr) 

= 1 . 4 ~  1 0 ~ r n ~ y r - l = 4 . 4 r n ~ s - l .  

This estimate is only slightly larger than the 10' m3 yr-' calculated by Swanson (1972) from 
recent eruptions on Kilauea and probably represents an approximate sum of contributions 
from intrusive as well as extrusive volcanism. We will assume that other oceanic islands have 
loaded the lithosphere at a similar rate. 

We can now estimate the strain rate using 

assuming that the position of the bulge remains fairly constant while its amplitude increases 
from mass additions. In terms of w b  and x h ,  

6 = 3.03 x 1 0-l8 w b  . (21) 

Equation (21) is theoretically valid only during the period of constant growth of the 
load. When volcanism ceases the strain rate is then controlled by the slow thinning of the 
plate from below by long-term creep under a constant surface load (Bodine et al. 1981). 
Studies have shown, however, that the apparent rigidity of the lithosphere along the 
Hawaiian chain does not decrease with the age of the load (Watts & Cochran 1974; Watts 
1978). We will therefore assume that the slow thinning of the plate after cessation of 
volcanism is not resolvable for relatively recent loads whether active or not and that (21) 
still applies. 

Equations (14)-(21) provide a simple parameterization of flexure profiles in terms of 
observed quantities. With the calculated curvatures and strain rates, the observed moments 
can then be compared to theoretical moments from various yield envelopes which include 
brittle and ductile, as well as elastic, behaviour. The translation of w b  and x b  into M, K 
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and 6 by means of the elastic plate equation is valid only to  the extent to  which changes 
in moment as a function of temperature structure, curvature and strain rate appear as 
variations in effective elastic thickness T,. 

M. K .  McNutt and H. W. Menard 

The data 

For a suite of flexure profiles caused by either plate subduction or seamount loading we 
calculated moment, curvature and strain rate using equations (14)-(21). We selected only 
profiles for which wb and xb can be observed, the age of the lithosphere is known (Sclater, 
Parsons & Jaupart 1981), and (in the case of trenches) the plate velocity is reasonably well 
contrained. The data are summarized in Tables 2 and 3. The underlined values from Caldwell 
et al. (1976) are considered the most reliable because the profiles were corrected for varia- 
tions in sedimentation and age along the profile prior to fitting an equation of the form (13) 
to the data. For situations in which the same profile was modelled in separate studies, the 
amplitude and wavelength data from the sediment- or age-corrected profile is reported. The 
Aleutian Seamap 13-4 profile was the only case in which such corrections produced a 
significant difference in the moment and curvature, and in general separate investigators 
agreed on the values of wb and xb for any given track line. 

Reliable moment/curvature estimates are more difficult to obtain for the seamount 
examples due to the frequent association of off-ridge volcanism with midplate swells. For 
example, the moat and arch caused by the load of the Hawaiian ridge is superimposed on a 
longer wavelength swell (Hamilton 1957) that distorts both the amplitude and wavelength 
of the arch. The observed values for xb and wb may not be the appropriate input for (17) 
and (18). The more successful studies of Hawaiian flexure have dealt with free air gravity 
anomalies rather than bathymetry (Watts & Cochran 1974; Watts 1978). The value for the 
flexural rigidity D is found such that the plate is stiff enough to explain the large-amplitude 
anomalies over the ridge. This technique leads to plate parameters which systematically 
underestimate the amplitude of the gravity anomaly over the arch (Watts & Cochran 1974), 
and in general it is impossible to explain the height of the bulge which exceeds 300m on 
some profiles within the context of a simple plate-flexure model using any reasonable 
density for the Hawaiian ridge. The Great Meteor seamount may rest upon a less obvious 
swell in that, again, the best-fitting plate parameters seriously underestimate the amplitude 
of the free-air anomaly over the peripheral arch (Watts, Cochran & Selzer 1975, fig. 6). 

Table 3 summarizes the seamount data for the three cases with well-documented litho- 
spheric flexure. Values for x b  are the observed distances from the nodal point to the crest of 
the arch in the topography or gravity but are uncertain to the extent that long-wavelength 
swells distort the flexure. The amplitudes wb for Hawaii and the Great Meteor seamount 
represent a guess as to the contribution to the arch from seamount loading alone. For 
Rarotonga, both xb and wb are ‘observed’ quantities deduced from the distribution and 
amplitude of uplifted atolls in the vicinity of the active volcano. If erosion of the uplifted 
atolls is unimportant, there appears to be no discrepancy between observed arch amplitude 
and estimated amplitude from flexure alone (McNutt & Menard 1978). 

Results 

The nioment/curvature information from the data in Table 2 for old oceanic lithosphere is 
plotted in Fig. 6. An obvious feature from the data points is that there is little distinction 
between observations from 100 and 165 Myr old lithosphere (points 1-11). If the oceanic 
lithosphere were to continue cooling and thickening at ages beyond 100Myr, we would 
expect to see higher moments (corresponding to a thicker plate) for the very oldest 
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Figure 6 .  Plot of log (moment) versus curvature at the first zero crossing for trench flexure profiles on 
crust older than 100 Myr. Numbers correspond to entries in Table 2. Filled-in circles are considered the 
most reliable. Smooth curves are theoretical moment/curvature relationships from a yield envelope with 
the form of Fig. 7. 

examples. These data, therefore, support the plate model as opposed to a boundary layer 
model for thermal evolution of the oceanic lithosphere. 

For curvatures of the order of 7 x low7 m-I, the yield envelope shown in Fig. 3 produces 
a moment of 4 x 1017N, which is clearly too large to explain most of the data in Fig, 6 .  The 
two most obvious means of weakening the lithosphere to the point of agreeing with the data 
are : 

(a) decreasing the depth of the base of the yield envelope by increasing the geothermal 
gradient or reducing Q; 

(b) increasing the slope of the yield envelope in the brittle zone by invoking elevated 
pore-fluid pressure to offset the increase in strength with increasing overburden pressure. 

The solid curves in Fig. 6 show theoretical moment/curvature relations corresponding to 
the first tactic, moving the base of the yield envelope in Fig. 3 from 70 to 40 km depth, as 
shown in Fig. 7. By postulating modest t200MPa axial loading forces (Fig. 7), the 
theoretical curves encompass seven out of 11 of the data points. The uncertainty in the data, 
however, would preclude making any definite statements about the sign of the horizontal 
thrust at any particular trench. 

All four data points (4, 7, 9,  10) which lie beyond the t 200 MPa bounds correspond to 
ship tracks which sample the trench and outer rise near the intersection of different trench 
systems (Fig. 8), and all except profile 10 from the Kuril trench require projection of the 
data through a large angle to produce a profile normal to the trench axis. Since trench 
systems are arcuate rather than linear, the projection operation is not strictly valid. 
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Figure 7. Yield envelope for the 100 Myr old curve in Fig. 8. Stress differences are given as a function of 
depth for lithosphere subjected to axial loading. Region with horizontal striping show A u  versus depth for 
plate curvature 0.5 X lo-' m-' . Shaded region is A u  versus depth for a curvature of 9 X lo-' m-I. 

10 

Figure 8. Index map of the Pacific Ocean showing the location of the ship tracks listed in Table 2 .  H 
corresponds to Hawaii and R to Rarotonga. Dashed lines give location of trench axis. Modified from Jones 
et al. (1978). 

Especially for large projection angles, the estimates of xb and wb will not correspond to the 
same trench cross-section and maybe not even to the same trench. A glaring example of this 
problem is illustrated by the intersecting proftes 4 and 7 from the Bonin trench (Fig. S ) ,  
which indicate anomalously large and small moments, respectively. If the trench system were 
linear, after projection the two profdes should have been identical, which is clearly not the 
case. It makes more sense to assume that either the xbs or the wbs should be exchanged for 
profiles 4 and 7, thereby producing moment/curvature estimates clustering with the other 
Bonin values. 
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Although breakdown of the linearity assumption is an unlikely error source for the Kuril 
profiles, other investigators have also suggested that subduction at this trench might be 
anomalous. Using the same data, Goetze & Evans (1979) proposed that the Kurd lithosphere 
either has an abnormally warm geotherm or is subjected to tensile stresses in excess of 
l00MPa. Our estimate from this study is that either the thermal gradient is equivalent to 
that of 40 Myr old lithosphere or horizontal tension exceeds 200 MPa. However, the Zetes 
2 profiles are not representative of the Kurd system as a whole. In a very thorough analysis 
o f  10 profiles sampling the entire length of the Kuril system, McAdoo et al. (1978) conclude 
that axial compressive loads vary between 250 and 500 MPa, plate thickness varies from 25 
to 47km, and yield stress varies from 500 to 720MPa within the context of an elastic- 
perfectly plastic plate model such as in Fig. 2 (b and c). Even if the data were interpreted in 
terms of the yield envelope used here, we would have to postulate rapid, factor 2 fluctua- 
tions in some combination of parameters such as geothermal gradient, axial loading forces, 
Q values and pore pressure. Such variability is not required along other trench systems. For 
example, Bodine & Watts (1979) find that 25 profiles along the Izu-Bonin and Mariana 
trenches do not require variations in H or in the yield criteria but can be explained by 
modest (?I00 MPa) changes in axial loading. Clearly the Kuril trench is more complicated 
than our simple models. The possibility also exists that plate structures unrelated to bend- 
ing confuse the analysis. 

Since profiles 4, 7, 9 and 10 appear to be poorly suited for an analysis of flexure, we will 
exclude them from the remainder of the discussion. As shown in Fig. 6, the moment/ 
curvature estimates corresponding to these ship tracks are either unreliable or unrepresen- 

I c 

0 

ELASTIC ( 6 0 )  

100 M.Y. 
H = 4 0 K M  

60 M Y .  
H = 3 0 K M  

ELASTIC ( 2 0 )  

20 M.Y. 
H = 1 8 K M  

t 1 0 0 M Y  

5 0 - 6 0 M Y  

id\ 20-30 M Y  

A SEAMOUNT 

CURVATURE ( METERS-'  1 

Figure 9. Fit between moment/curvature data and predictions from preferred yield envelope in which the 
base of the mechanical lithosphere is constrained to lie at 40 krn depth for 100 Myr old lithosphere and 
vary as the square root of age for younger lithosphere. Dashed curves are theoretical relations for purely 
elastic plates with the same plate thickness ( Te = H ) .  
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tative, and furthermore are not predicted by the elastic plate (dashed curve), brittle/elastic/ 
ductile model (solid curves), or any other simple rheology. 

From Fig. 6 we conclude that it is possible to satisfy the moment/curvature information 
from old oceanic lithosphere by supposing that Q/RT = 60 at 40 km depth for 100 Myr old 
lithosphere. Combined with equation (1 l), this result implies that H / d t  = a constant = 4 
for H in km and t in Myr. Therefore, at t = 2OMyr,H= 18 km and at t = 60Myr, H = 30km. 
In Fig. 9 we show that the moment/curvature relations from the yield envelope model with 
its base at these depths does give a reasonable fit to the data from younger lithosphere. 

Three seamount examples are included in Fig. 9 for comparison with the trench data, but 
for several reasons we will not weight the data too strongly. To begin with, the curvature at 
the first zero crossing seaward of the load is small compared to the examples from trench 
profiles, and falls in a region in which small errors in curvature cause very large changes in 
the rheological plate model. Secondly, the seamount data must be plotted without reference 
to lithospheric age, since the associated swells are good evidence for thermal rejuvenation 
petrick & Crough 1978). Although this reheating is probably confined to the lower litho- 
sphere, it causes a small, but observable, reduction in the elastic plate thickness relative to 
normal oceanic lithosphere of similar age (Menard & McNutt 1982). Finally, a more 
representative strain rate for the seamount examples would be a factor of 10 less than the 

s-' used in calculating the theoretical curves in Fig. 9. However, the lower strain rate 
would only result in a 2-3 km reduction in H.  

i I /  

. D,, = + 200 MPo 

L l l l l i J  15.5 
- 2  -4  -6 - 0  -10~10-~  

CURVATURE (METERS-') 
Figure 10. Same as Fig. 6 except that in computing the theoretical curves the brittle portion of the plate 
is assumed to have pore pressure equal to 0.7 times the lithostatic pressure (see inset of yield envelope 
for Oh = 0 case). 
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While it is possible to explain the moment/curvature data by modifyinr: the depth to the 
base of the laboratory yield envelope in Fig. 3, we must investigate whether the same result 
might be achieved through pore-fluid effects in the brittle zone without shoaling the high 
strength/low strength transition. Suppose we let h = (pore pressure)/pgz, and take the 
extreme case in which h = 0.7 (Brace & Kohlstedt 1980). The effective overburden pressure 
is then pgz (1 - A), so that the strength increase with depth is not nearly so rapid. The result- 
ing yield envelope and moment/curvature relations for old oceanic lithosphere are shown in 
Fig. 10. Even for this extreme case, the elevated pore pressure has not sufficiently reduce6 
the moments, so that all trenches would appear to be in relative tension. The fit is even 
worse for crust of younger age, as shown in Fig. 11, assuming that H/.\/t = 7. Elevated pore 
fluid pressure is a less efficient way of reducing the moment simply because the greatest 
contribution to M comes from stress differences at large (2-2,). In the upper lithosphere 
the stress difference at the maximum (z-2,) is small regardless of pore pressure. In addition, 
this model predicts that the neutral axis of bending for 100Myr old lithosphere lies below 
40 km, which is inconsistent with the compressional focal mechanisms at 40 km reported 
by Chapple & Forsyth (1979). 

We conclude that elevated pore pressure cannot be the primary weakening mechanism 
that brings the laboratory-derived yield envelope (Fig. 3) into agreement with the flexure 
data. The high strength/low strenth transition must occur at depths less than 70 km in old 
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Figure 11. Comparison between moment/curvature data and predictions from yield envelope with pore 
pressure equal to 0.7 times lithostatic pressure for several different ages of crust. The base of the 
mechanical lithosphere is constrained to lie at 70 km depth for old oceanic lithosphere. 
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oceanic lithosphere, but our estimhte of 40 km may be too shallow if pore-fluid pressure is 
significantly above hydrostatic. 

Several points are worth noting in Figs 6 and 9. To begin with, the data show the clear 
saturation of moment at high curvature, as predicted by models with finite yield strength. 
Secondly, the brittle/elastic/ductile model is more successful in explaining variations in 
observed moment at subduction zones because it is sensitive to axial loading forces. The 
purely elastic model, shown by the dashed line in Fig. 6, predicts that the moment/ 
curvature relation is independent of N.  Regional tension is more effective than regional 
compression in explaining variations in moment. This result is a consequence of the smaller 
du/dz slope of the brittle failure envelope for relative tension. Finally, within the limitations 
of this sort of analysis, the flexure of the seafloor surrounding seamounts provides virtually 
no information on yield strength, because the moment/cu.rvature estimate falls in a region 
where the purely elastic plate is indistinguishable from the model with brittle and ductile 
failure. 

Discussion 

From the results in Figs 6 and 9 we conclude that Q/RT = 60 occurs at approximately 40 km 
depth for 100 Myr old lithosphere and at 18 km for 20 Myr old lithosphere. The activation 
energy Q is then related to temperature parameters To and 01 by 

Q = 0.1 19(T0 + 4a) 

for Q in kcal mol-', To in K and a in K(km.\/Myr)-'. It is customary to let To = 273 K so 
that a linear geotherm intersects the plate surface at 0°C. Other values for To would account 
for a non-linear geotherm in the uppermost lithosphere without changing the rest of the 
analysis. In Fig. 12 we plot Q versus a for two common choices for To. The horizontal scale 
is 01/10 so that the numbers correspond to the thermal gradient for 100Myr old lithosphere. 
Also shown are estimates of the geotherm for old oceanic crust from thermal plate models of 
Sclater & Francheteau (1970) and Parsons & Sclater (1977). The pyroxene geotherm of 

12/10 OK/km 

Figure 12. Trade-off curves between activation energy Q and temperature gradient for 100 Myr old litho- 
sphere al l0  for two choices of the temperature intercept To.  Star indicates the values for Q and &/lo used 
to generate the yield envelope in Fig. 3 .  Brackets show estimates of the temperature gradient in oid 
oceanic lithosphere from several studies. 
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Mercier & Carter (1975), shown for comparison, represents an upper bound on the normal 
thermal gradient because the samples consist of lherzolite xenoliths from Kauai, formed by 
the Hawaiian hot spot. The thermal-gradient estimates contain enough variability to 
accommodate most of the range in laboratory-derived Q values as summarized by Kirby 
(1980) but are definitely biased towards the hydrated olivine end. The most recent geotherm 
from Parsons & Sclater (1977) results from careful inversion of elevation, heat flow and age 
data from the North Atlantic and North Pacific. The major uncertainties in their model are 
the appropriate values for the specific heat and thermal conductivity. Assuming that their 
model is correct, the activation energy for ductile flow in the oceanic lithosphere cannot be 
greater than 100kcal mol-'. From laboratory analogies this result would imply a hydrolytic- 
ally weakened lithosphere at 40 km depth, but some petrologists would argue that oceanic 
basalts, high in FeO and low in A1203, result from shallow fractionation in a dry system 
(Kay, Hubbard & Gast 1970). 

The low Q values found here need not necessarily imply a conflict with the petro- 
chemistry of basalt genesis. We have assumed that the activation energy (QL or QH) in the 
flow equations (9) and (10) is the only uncertain parameter, but the pre-exponential B 
values and the stress exponent n are also empirically determined constants. Although we 
chose to examine the effect on the yield criteria of Q alone because the exponential depen- 
dence makes the equations more sensitive to small changes in Q, published estimates of B1 
vary by orders of magnitude and n generally ranges between 3 and 3.7 (see Kirby 1980, 
table 2) .  A careful examination of the reported parameters, however, shows that B,,  Q and 
n do not vary independently. Large B ,  values correspond to low n values, and the observed 
link between B ,  and Q can be quantified by a compensation law (Lasaga 1981 ; Tsukahara 
1976) derived from the theoretical and empirical connection between dislocation climb and 
creep (Weertman 1970). 

The net effect of these trade-offs is that within the narrow range of experimental condi- 
tions (1 100°C < T <  1600"C, 6 - lo-' s-I), essentially similar data sets can be fit by only 
slightly different curves which nevertheless correspond to very different B , ,  Q and n values. 
Very often in these studies Q was more or less assigned a value near 125 kcal mol-' as an 
article of faith based upon a predicted equivalence between the activation energies for creep 
and preliminary data for diffusion from Goetze & Kohlstedt (1973). Beyond the range of 
experimental conditions, in the lower T ,  lower 6 region of interest here, these empirical 
curves can rapidly diverge, but the laboratory data will not determine which is correct 
because obviously no experimentalist will be around long enough to observe creep in 
olivine at 500°C. There is no guarantee that equations with the functional form of (9) and 
(10) will even be adequate to fit observations over a larger temperature range. 

Our approach of allowing Q to vary does seem to be justified in retrospect. The low value 
we find for low T,  low E' ductile flow in the oceanic lithosphere is supported by recent 
laboratory experiments. For a wider range of temperatures, the relationship between stress 
and strain rate cannot be expressed by a single Q values, but rather with a Q decreasing with 
decreasing T (Durham 1975; Kirby 1980). Impurities occurring under natural conditions also 
tend to lower Q. 

M. K .  McNutt and H. W. Menard 

Conclusions 

The most important parameter influencing the mechanical thickness of the oceanic litho- 
sphere is its age, but estimates of mechanical thickness as a function of age will be under- 
estimated if plate curvature and finite yield strength are not taken into account. For trench 
profiles, the consideration of curvature is especially crucial. A 40 km thick plate with curva- 
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ture 8 x lO-'m-' and yield strength shown in Fig. 7 would appear to be only 29 km thick in 
the context of an elastic rheology. 

In comparing observed estimates of moment and curvature to the predictions from theo- 
retical yield envelopes, it appears that the lithospheric is weaker than laboratory extra- 
polations taken at face value. Of the possible weakening mechanisms, elevated pore-fluid 
pressure on faults in the zone of brittle failure is not likely to be the primary agent unless 
we invoke some age-dependence in the extent of pore-fluid effects. We conclude that 
either the oceanic geotherm is steeper than commonly assumed, or the activation energy 
for ductile deformation is significantly lower than the value for dry dunite at high 
temperature. 

Some final comments are in order regarding the limitations of this sort of analysis. For 
bathymetric profiles surrounding seamounts, it is hardly necessary to go beyond the simple 
elastic plate formulation. As seen in Fig. 9, the plate curvature is low enough that the effects 
of finite yield strength are unimportant. Immediately beneath the loads the more extreme 
curvature in the plate which could be observed in the deflection of the Moho or other 
density discontinuity might require a more sophisticated analysis. For trench profiles, even 
seaward of the steep outer trench wall curvatures are large enough to warrant the use of 
strength-limiting rheologies in order to avoid the erroneous conclusion that sharply-bent 
plates are physically thinner. The moment/curvature formulation as outlined here is useful 
only to the extent that variations in moment arising from differences in curvature, 
temperature, and strain rate can be approximated by changes in the elastic thickness; i.e. we 
have restricted ourselves to profiles of the form in equation (13). However, because the 
method requires that we choose plate parameters to satisfy flexure data from many different 
examples simultaneously, it reduces some of the non-uniqueness inherent in studies which 
attempt to model the entire length of a single profile numerically with a non-linear rheology. 
Nowhere have we shown that the yield envelope in Fig. 7 actually explains the deformation 
along an entire trench profile, but hopefully it can be used as a starting point for such 
detailed investigations. 
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Appendix A 

The expressions for w, wb, x b ,  M and K given in the main text correspond to the solutions 
for bending a thin elastic plate under aline load with infinitesimal thickness in the x-direction. 
Here we derive the corresponding solutions for other loading cases and demonstrate the 
similarity in the resulting equations for kf and K when expressed in terms of wb and x b .  

R E C T A N G U L A R  L O A D  

Consider a two-dimensional load with rectangular cross-section and half-width L ,  height h,  
density po, resting on an elastic plate with flexural parameter 

a=+- 

in which D is the flexural rigidity and A p  is the density contrast between fluids above and 
beneath the plate. The equations describing the plate deflection are 

D d4w/dx4 + A p g w  = 0 for x > L .  
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We seek inner and outer solutions wi and w, to (Al) and (A2), respectively, subject to the 
following boundary conditions: 

M. K .  McNutt and H. W.  Menard 

WQ(9 = 0 ,  

wf(0) = 0 ,  

wi(L ) = ~o (L),  
w f ( L )  = W&L), 

wf;(L)  = w:(L). 

The solutions are: 

1 L x  x L x  x 
sinh-- 1 , 

h P o  

-hPo L L X  L 

w .  =-- e 
' AP ff f f f f  ff 

f f f f  ff 
w, =- 

AP 
Let 

H = -hpo/Ap, 

F, = cos L fa sinh LJcY, 

F, = sin L fa cosh Lla, 

then 

w, = H exp(-xfcy) ( F ,  cos x /a  t Fz sin x/a), 

The zeros of (A3) occur at 

x / a  = tan-' (- F,/F,). 

The maximum in the arch occurs at 

F, - cos xla  - sin x f a  

F, ccs xfa + sin x / a  
- - _  

for which the solution is 

x / a  = tan-' (- F,/F,) t n/4. (-45) 

We see from (A4) and (A5) that the spacing between consecutive zeros is ncr and the arch 
peaks at a distance na/4 from the first node, just as in the point load solution. Furthermore, 
these conclusions hold for any other loading geometry, although the expressions for F1 and 
F2 will be different. 

We can shift the origin of the coordinate system so that it lies at the first zero crossing: 

u/a = x / a  - tan-' (- F1/F2). 

Now (A3) becomes 

wo(u) = - H  exp {- tan-'(-Fl/F2)} exp(-u/cu) sin ufa. 

The arch occurs at U b  = na/4 and has amplitude 

wb = - H exp {- tan-' (- F1 /F,)J exp (- n/4) sin n/4. 
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G47) 

In terms of wb, (A6) becomes 

w&) = wb .\/Zexp(n/4) exp(- u/a) sin u/a 

which is identical to equation (13) when the constant A is replaced by the expression for 
wb. Therefore, the equations for the moment (14) and curvature (15) also apply for 
the line load case with arbitrary loading geometry landward of the first zero crossing. 
The effect of distributing the load is to reduce the amplitude of the arch by the factor 
exp [- tan-' ( - F 1 / F 2 ) ] ,  thereby reducing the moment also. This damping factor become 
appreciable for L > a. It is trivial to show that (14) and (15) also apply for the case in which 
the plate is fractured underneath the load. 

POINT L O A D  

The deflection of a thin elastic plate beneath a point load is 

w(r) = - ( P  12/2nD) kei r/l 

in which P is the weight of the load, 1 = g-, and kei is a modified Bessel function. The 
moment at the position r is 

M = - D (d2  w/dr + v/r dwldr), 

=P/2n [kerrll-  (1- u)/(r/l)  kei'rll] 

in which ker is another modified Bessel function and kei' is the first derivative of kei. The 
first zero crossing xo occurs at r / l=  3.91467 (Abramowitz & Stegun 1965) and the move- 
ment there is 

M ( x 0 )  = - 0.00704 P. (A91 

At the peak in the arch, 

r / l =  4.93181 

Wb = 0.01 122 P12/(2nD). 

Since xb = 1.01714, we can express (A8) in terms of wb and xb : 

M = A p g  (-0.04421/0.01122) W b  X $  

from which we obtain equations (17) and (19). 
Similarly for the curvature, 

K = d w/dr2 + 1 / r  dwldr 

= (P/2nD) (ker r/l t I/r kei' rfl) 

and at the first zero crossing, 

K ( x , )  = (P/2nD) (- 0.0289). 

In terms of xb and wb, 

K ( X 0 )  (-0.0289/0.0112) wb/xz 

from which we obtain (18) and (20). 
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C Y L I N D R I C A L  L O A D  

Now suppose we consider a cylindrical load of height h and radius R. Again we must solve 
for inner and outer solutions, matching the two at the edge of the load. The outer solutionis 
(Brotchie 8c Silvester 1969) 

wo(r) = H(F,  ker r/l - F4 kei r/1) 

H =  PohlAP, 

(A1 1) 

in which 

F ,  = R/1 ber ' R/l, 

F4 = R/1 bei' R/1, 

which is similar in form to (A3). Nevertheless, it is not possible to cast (A1 1) exactly into 
the form of (A8) and show that identical expressions hold for M and K in terms of xb and 
wb, as we did for the rectangular load case. Modified Bessel functions such as ker and kei are 
not as well behaved as sines and cosines in the sense that it is not possible to replace ker x by 
kei (x + w )  where w is some phase angle. The zeros of (A1 1) will not have constant spacing, 
independent of F ,  and F4. Fortunately in the region of the rise, the values for r/l are large 
enough (>4) so that asymptotic expressions for ker and kei in terms of trigonometric 
functions are accurate to within a few per cent: 

kerx=Ncos$ ,  

ke ix=Nsin@,  

4 = - x / G  - n/8. 

We will demonstrate that these trigonometric approximations to (A8) and (A1 1) provide a 
sufficiently accurate alternative to the Bessel function solution at distances beyond the first 
nodal point and produce almost identical expressions for M and K in terms of xb and wb for 
both point and cylindrical loading geometries. 

The trigonometric approximation to (AS) is 

w(r)= ___ 
n A p g a 2  

exp(-r/a) sin(r/a t r/8) 

where fi 1 = a.  We shift the origin to the first node by setting 

x]a = r/cy - 7nI8 

and obtain 

exp(- 7x18) exp(-x/a) sinxla. 

The maximum in the arch occurs at 

which can be solved numerically to yield 

xb =0.7183a= 1.0161. 



Lithosphere yield strength 3 89 

This value is within about 0.1 per cent of the xb determined from (A8), xb = 1.017 1. 
At the peak in the arch, 

- 0.01 16 P - P 
Wb =-0.1816 exp(-7n/8) ~ - 

71 A p p 2  R Apga' 

In terms of w b ,  

exp (- x / a )  sin ./a. 

Expressions (A8) and (A13) are indistinguishable within the accuracy of any observations 
beyond the first node. 

The asymptotic expression for the plate flexure caused by a cylindrical load (A1 1) is 

W ( Y )  = H 6 exp(- r/a) [F3cos(r/a t n/8) + F4sin(r/a t n/8)]. 

Again we shift the origin to the first node: 

x/a = r/a - 7m/8 - tan-' (- F3/F4) 

71 
w(x)  = - H  exp [- tan-' (- F3/F4)J 

J 2 f i  ( x / a  t 7n/8 tan-' (- F3/F4)} 

x exp (- 7n/8) exp (- x / a )  sin x / a .  

The maximum in the arch occurs at 

1 
tanxb/a = 1 t ( 2Xb/a t 7n/8 t 2 tan-'(- F3/F4) 

which is not identical to (A12) due to the additional factor 2 tan-' (- F3/F4). Fortunately, 
the solution for xb is fairly insensitive to this parameter since R/l is small, of the order of 
2 or less. For R/I = 2,  xb = 1.0221 which is within 1 per cent of the point load value, and 

wb = -0.1755Hexp[-tan-'(-F3/F4)] exp(-7n/8). 

In terms of wb, (A14) becomes 

71 
exp (- x / a )  sin x / a .  (A19 -\/z[x/a t 7n/8 t tan-' (- F3/F4)] 

1 71 

4 2 f i  [./a t 7n/8 t tan-' (F3/F4)] CC(X) = 0.1755 
where Cp and C, are the factors which differ in the point load (A13) and cylindrical load 
(A15) asymptotic solutions, respectively. Since C, is within 2 per cent of C, for x > 0, for 
our purposes (A13) and (A15) can be considered equivalent, and therefore estimates of M 
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and K in terms of xb and wb based on the point load approximation also apply to &htfi- 
buted loading geometries. 
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Appendix B 

TO estimate the volume of material comprising the island of Hawaii, its root and the moat 
infill we deform a thick elastic plate with a circularly symmetric Gaussian load. The plate 
thickness, load amplitude and load radius are adjusted until the resulting deformation agrees 
with the observed bathymetry and depth to the Moho in the vicinity of the island. The thick 
plate solution for bending an elastic plate beneath a surface load with circularly symmetric 
geometry parallels the development given by Cathles (1975) for a line load. Only an outline 
of the derivation is given here. 

To approximate the case for seampunt loading on the oceanic lithosphere, we adopt a 
cylindrical coordinate system with no 0 dependence: 

u = u(r ,  z ) ,  

w = w(r, z) ,  

where u and w are displacements in the radial and vertical directions, respectively. To be 
consistent with Cathles (1975), we choose 2 positive upward. In this coordinate system, the 
equations of equilibrium are: 

where rij are the components of the stress tensor. The constitutive relations for a homo- 
geneous elastic medium become: 

rrr = h(aufar + u/r + aw/az) t 2p au/ar, 

in which X is Lame’s constant and p is the modulus of shear. 
We define Hankel transforms So and as 
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After transforming the above equilibrium and stress/strain equations and eliminating rrr, we 
obtain 

in whch 

c =  x; [ u ]  ?zz = PO [ T z z ]  

i i;= 2?0 [w] a = h t 2 p  

Trz = 2 1  [Trz I . 
In deriving the above equations we make use of the following identities which can be 

established by integration by parts: 

XO [ f ' ( r ) l  = k .@I [ f l  - 20 [ f / r I ,  

Except for the definition of the transformed variables 5, G, T,, and ?,,, equations 
(A16)-(A19) are identical to those derived by Cathles (1975) for a line load. For the case 
of incompressible elasticity (A+ m)7 the system of equations becomes 

The above set of equations is in the form 

a3 laz  = Auv" 
so that at least schematically we can write the solution as 

g (z )=exp  tAuI T~(Z,) 
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in which Tf (zo) contains the initial values of displacement and stress at the boundary of the 
elastic layer. The matrix 

H=exp{A+zz) 

is the propagator matrix which relates displacement and stress at any depth z in a homo. 
geneous elastic layer to the values at the surface. For a layered medium in which the elastic 
parameters vary in the vertical direction only, the solution at z b ,  the base of the layers, is 
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+ 
V ( Z b )  = P n  Pfi  - 1  F n - 2  .. . ft, f;, iJ(zo). 

Each Fi propagates the solution at the top of the layer to the bottom of the lyer .  

1960). For a homogeneous, imcompressible elastic layer, 
The form of the matrix ft is completely determined by the eigenvalues of A (Gantmacher 

SP = sinh kz t kz cosh kz, 

CP = cosh kz t kz sinh kz,  

SM = sinh kz - kz cosh kz,  

CM = cosh kz - kz sinh kz, 

S = kz sinh kz,  

C = kz cosh kz. 

Closed-form solutions for displacement and stress can be derived for simple layered 
models such as an elastic or linear viscoelastic plate over an inviscid or viscous fluid with load 
either held constant in time or steadily increasing or decreasing in time. Here we only report 
the result for an elastic plate with thickness T,  overlying an inviscid fluid. For a seamount 
load, the boundary conditions are: 

?,~(O)=?,~(-Te)=O, 

? z z ( - T e ) =  Apgc(-Te) 

in which Ap is the density contrast between fluids overlying and underlying the plate. 
Physically these boundary conditions state that a fluid responds with buoyancy pressures 
and sustains no shear stress. Substituting these boundary conditions into the propagator 
matrix equations (A20), after six pages of algebra we obtain 

k '2  - ApgT/2p - 
U(O)= , 4- T,), sinh k' + k'cosh k' 

sinh k'cosh k ' t  k ' t  (Apg12pk) sinh'k' 
sinh k' t k' cosh k' %(O)= - %(-Te), 
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Apg(sinh k' cosh k'  + k ' )  t 2pk(sinh2 k'-k'') 
sinh k' + k' cosh k' 

ti)(- Te), T Z Z ( 0 )  = 

i i (0)  = ?,Z(O) 

sinh k' cosh k' t k' t (Apg/2pk) sinh2 k' 

2pk(sinh2 k ' - k r 2 )  + Apg(sinh k'cosh k ' t  k ' )  

in which k '=  kT,. Again, except for the definitions of the transforms, these solutions agree 
with those of Cathles (1975) to within the accuracy of typographical errors. 

We can confirm that in the limit of small k' (thin plate relative to the wavelength of 
deformation) these solutions reduce to the thin plate equations. To order k ' j ,  

Assuming reasonable values for A p ,  g, T,, and p, 

Therefore, we recover the thin plate equations: 

U(0) < W ( -  T,) .  

Equation (A21) can be used to  determine the elastic deformation at the surface of a plate 
caused by a circularly symmetric stress distribution T,,. To simulate a volcanic island, we 
chose r,, of the form 

72, = - PogH exP(- r2/p2) 

and used a digital Hankel transform (Anderson 1979) to calculate T,, and Jf;' [El. We 
allowed H, 0 and T, to vary until the final profile of the plate deflection and load roughly 
displayed the following features: 

(1) average height of the island above sea-level = 3.5 km; 
(2) height of island from moat to sea-level = 5.4 km; 
(3) distance from load to arch = 300km; 
(4) radius of island at sea-level = 5 5  km; 
(5) radius of island at base = 120 km; 
(6 )  depth from sea-level to Moho = 15 km (or 8 km to top of plate). 

Sources for these values are Hamilton (1957), Furumoto el al. (1968) and Walcott (1970). 
The values for po, Ap and p were set at 1800kg mT3, 2300kg m-3 and 2.7 x 10"N m-2, 
respectively. 
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Figure A1 . Cross-section through a circularly symmetric load resting on an elastic plate. The upper solid 
curve shows the bathymetry while the lower solid curve shows the deflection of the upper surface of the 
deformed plate. The dashed curve is the configuration of the original Gaussian stress distribution which 
has been corrected downward to the bathymetric outline to account for a greater effective density of 
subaerial basalt. 

The preferred solution, shown in Fig. A l ,  is in reasonable agreement with these obser- 
vations. The most serious discrepancy is in the model’s overestimation of the height 
difference between the moat and arch (800m instead of 600m). However, a few hundred 
metres of low-density sediment could be added to the moat without changing the plate 
flexure significantly. Alternatively, the superposition of a long-wavelength swell peaking near 
the load would tend to reduce the observed moat-arch height difference. The parameters in 
the preferred solution are: 

H = 13.5 km, 

p = 70 km, 

T, = 30km. 

To obtain a volume estimate for Hawaii, we note that 

V = 2nH [ exp(- r2//.?’) rdr 

=np2H 

= 2.08 x lo5 km3. 




