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SUMMARY 
We evaluate the common practice of utilizing elastic models of outer-rise flexure to 
constrain lithospheric parameters, such as mechanical thickness and ambient in-plane 
force. We numerically compute ‘synthetic’ flexural profiles consistent with empirically 
determined constraints on lithospheric rheology and representative trench-type bound- 
ary conditions, and misfit minimization is utilized to determine the analytical solution 
to elastic-plate flexure that most closely resembles each synthetic profile. We then 
determine if it is possible to use the best-fitting elastic solutions to recover the 
lithospheric mechanical thickness and level of in-plane force that were assumed during 
the numerical computation of the synthetic profiles. This methodology is analogous to 
the common practice of estimating lithospheric parameters by modelling bathymetric 
profiles with analytical descriptions of elastic-plate flexure. Our results unequivocally 
indicate that in-plane force cannot be reliably constrained in this manner. Such an 
approach does not even allow the qualitative nature of in-plane force to be distinguished 
(i.e. compressional versus tensional). Although, in principle, elastic-plate models may 
provide reliable constraints on the mechanical thickness of oceanic lithosphere, in 
practice uncertainties associated with bathymetric noise and the level of in-plane force 
may, in some instances, render such constraints unreliable. 

Key words: flexural analysis, lithospheric flexure, lithospheric structure, regional 
stress fields. 

1 INTRODUCTION 

A characteristic feature of virtually all convergent plate margins 
is the outer-rise complex, which is a broad gentle topographic 
high that is generally interpreted to represent a flexural 
response to the downward deflection of the subducting plate. 
For at least several decades, geophysicists have realized that 
observations of lithospheric deformation seawards of sub- 
duction zones may embody constraints on the rheology and 
thermal structure of oceanic lithosphere, as well as ambient 
levels of regional stress (i.e. in-plane force) potentially associ- 
ated with the subduction process. Flexurally induced variations 
in seafloor. topography, whether a consequence of imminent 
subduction or seamount loading, offer a basis from which a 
variety of lithospheric parameters can be deduced. The goals 
of lithospheric flexural modelling have been numerous; they 
include the following. 

(1) Estimates of the limiting depth and/or temperature at 
which oceanic lithosphere possesses long-term strength 
(Caldwell & Turcotte 1979; McNutt & Menard 1982; McAdoo, 
Martin & Poulouse 1985). 

(2) An evaluation of the validity of extrapolating laboratory 
measurements of rock deformation to geologically relevant 
strain rates (McAdoo, Caldwell & Turcotte 1978; Goetze & 
Evans 1979; McNutt & Menard 1982). 

(3) Determination of correlations between the loading age 
and flexural response of oceanic lithosphere, which can provide 
constraints on thermal evolution. These can be used, for 
example, to assess whether the semi-infinite half-space thermal 
model or the cooling-plate thermal model represents the most 
accurate description of lithospheric evolution (Watts 1978; 
Caldwell & Turcotte 1979; Watts, Bodine & Steckler 1980). 

(4) Detection of lithospheric thermal anomalies associated 
with intraplate volcanism (McNutt 1984). 

(5) Quantification of the level of in-plane force (i.e. regional 
stress) associated with the process of subduction (Hanks 1971; 
Watts & Talwani 1974; Caldwell et af. 1976; McAdoo et aJ. 
1978; Bodine & Watts 1979; Bodine, Steckler & Watts 1981; 
McAdoo & Martin 1984). Such constraints provide insight 
into both the nature of forces responsible for plate motions 
and the state of stress associated with trench-related seismicity. 
It has been proposed that trench congestion may result in 
levels of compressional in-plane force sufficient for the 
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nucleation of a new subduction zone within the subducting 
plate (Mueller & Philips 1991). 

(6) Constraints on thermal gradients within the Venusian 
lithosphere based on observations of postulated plate flexure 
(Janle, Jannsen & Basilevsky 1988; Solomon & Head 1990; 
Sandwell & Schubert 1992; Johnson & Sandwell 1994). 

The results of geophysical flexural analyses are often strik- 
ingly inconsistent. For example: ( 1) McNutt & Menard (1982) 
concluded that laboratory parametrizations of thermally acti- 
vated plastic creep in olivine cannot be reliably extrapolated 
to geologically relevant strain rates, and that mature oceanic 
lithosphere has no significant long-term strength below 40 km 
depth. In contrast, Goetze & Evans (1979) concluded that 
oceanic plates obeying the relevant constitutive laboratory 
extrapolations support the bending moments inferred from 
bathymetric profiles seawards of subduction zones, and 
McAdoo et al. ( 1985), examining many of the same trenches 
as McNutt & Menard, concluded that mature oceanic litho- 
sphere possesses significant strength to depths in excess of 
60 km. (2) Flexurally based estimates of the ambient level of 
in-plane force seawards of the Kuril Trench have ranged from 
2 x 1013 N m-l  compression (Hanks 1971; McAdoo et al. 
1978), through zero (Caldwell et al. 1976), to 1 x 1013 N m-l 
tension (McNutt & Menard 1982). (For purposes of compari- 
son, a typical ridge-push force is approximately 3 x 10l2 N m-l 
compression.) (3) Sandwell & Schubert ( 1992) concluded that, 
although flexural analyses of Venusian altimetry profiles across 
Freyja Montes and Eithinoha Corona are consistent with 
thermal gradients as high as 26 and 24 K km-’, respectively, 
flexural methods predict that the thermal gradient in other 
regions may be as low as 3.2 K km-’. If correct, these results 
indicate significant regional and/or temporal variations in heat 
loss from the Venusian surface. The possibility that flexural 
analysis simply does not produce reliable constraints on 
lithospheric structure, however, cannot presently be ruled out. 

Parsons & Molnar ( 1976) demonstrated that elastic-plate 
solutions exhibit a trade-off between end moment and in-plane 
force, which may account for discrepancies involving the latter, 
and Wessel (1992) suggested that simple visual fits are in- 
herently unreliable. Discrepancies may also result from uncer- 
tainties associated with bathymetric or altimetric noise (i.e. 
topographic features not related to plate flexure; see McQueen 
& Lambeck 1989). We examine the additional possibility that 
simplifications frequently incorporated into geophysical flex- 
ural modelling are a significant factor. Specifically, many 
analyses of lithospheric deformation utilize elastic models of 
plate flexure because solutions may be conveniently determined 
using simple analytical methods. We perform a straightforward 
test of this approach to lithospheric flexural analysis. Flexural 
profiles consistent with both inelastic lithospheric rheology 
and representative trench-type boundary conditions are numer- 
ically generated and subsequently treated as ‘data’. We then 
determine the analytical solutions to elastic models of plate 
flexure that exhibit the best fit to a given numerically generated 
‘synthetic’ profile. On the basis of the best-fitting analytical 
solutions, we determine if it is possible to retrieve the litho- 
spheric mechanical thickness and/or level of in-plane force 
assumed during the numerical computation of the synthetic 
profiles. 

This paper is organized in the following manner. Following 
a brief review of geophysical flexural modelling, the differential 

equation governing plate flexure is introduced, and a discussion 
of the inelastic properties of lithosphere, emphasizing the non- 
linear aspects of the moment-curvature relationship, is pre- 
sented. Subsequent to a description of the manner in which 
the inelastic synthetic profiles are computed, the method of 
determining the best-fitting elastic-plate solutions is presented. 
Finally, efforts to recover the original ‘lithospheric’ parameters 
from the best-fitting elastic solutions are discussed. 

2 METHODS OF GEOPHYSICAL 
FLEXURAL ANALYSIS 

The simplest quantitative descriptions of sea-floor deformation 
are analytical models that represent the flexure of thin elastic 
plates (e.g. Turcotte & Schubert 1982). The lithosphere, 
however, does not behave in a strictly elastic manner. The 
uppermost lithosphere is susceptible to brittle failure, and the 
lowermost lithosphere is susceptible to thermally activated 
intracrystalline plastic creep. In these regions, yielding occurs, 
and the plate is unable to maintain the stress levels predicted 
by elastic models of plate flexure. This behaviour introduces 
two complications that cannot be accommodated using elastic- 
plate models: (1) a non-linearity in the relationship between 
bending moment and plate curvature; and (2) the relation- 
ship between stress and strain becomes dependent upon the 
deformation history of the plate. 

Although modern numerical techniques permit the incorpor- 
ation of inelastic rheologies into lithospheric flexural modelling, 
the necessary procedures are tedious. Many investigators there- 
fore continue to utilize the simpler analytical models of elastic- 
plate flexure, which offer the advantage that the comparison 
of theoretical flexural profiles with observed bathymetry is 
greatly facilitated. The relationship between the elastic-model 
input parameters and the thermomechanical structure of the 
lithosphere, however, is not straightforward. For example, 
values of elastic-plate thicknesses derived from elastic models 
of lithospheric flexure are significantly less than the seismically 
defined thickness of the oceanic lithosphere (i.e. depth to the 
asthenosphere: Watts et al. 1980 Kirby 1983). Moreover, a 
direct relationship does not exist between any simple definition 
of oceanic lithosphere and elastic-plate thicknesses obtained 
in this manner. Relatively elaborate methodologies are neces- 
sary to characterize the relationship between the inferred 
elastic-plate thickness and the mechanical structure of the 
lithosphere (e.g. McNutt & Menard 1982; McNutt 1984). In 
contrast, inelastic flexural models, which incorporate realistic 
lithospheric rheologies, possess the advantage that model input 
parameters associated with the thermomechanical structure of 
the lithosphere directly correspond to lithospheric parameters. 

Essentially, there are two approaches to geophysical flexural 
analysis. The first alternative (hereafter referred to as Method I) 
utilizes analytical descriptions of elastic-plate flexure to model 
observations. In this case, the modelling stage is greatly 
simplified, but the relationship between the modelling results 
and lithospheric parameters may be unclear. The second 
alternative (hereafter referred to as Method 11) utilizes inelastic 
models of plate flexure, requiring numerically elaborate efforts 
but offering a straightforward interpretation of results. 
Representative examples of Method I flexural analysis include 
Caldwell et al. ( 1976), Caldwell & Turcotte (1979), McNutt & 
Menard (19821, McNutt (1984), Judge & McNutt (1988), 
Solomon & Head (1990), and Sandwell & Schubert (1992). 

0 1995 RAS, GJI 123, 887-902 



Elastic-plate models of outer-rise flexure 889 

Representative examples of Method 11 flexural analysis include 
McAdoo et al. (1978, 1985), Turcotte, McAdoo & Caldwell 
(1978), Bodine & Watts (19791, and Bodine et af. (1981). 

Method I flexural analyses embody the implicit assumption 
that, for a specified lithospheric thermomechanical structure, 
a hypothetical elastic plate exists that will closely mimic the 
flexural response of the inelastic lithosphere. A number of early 
studies pursued the possibility that the thickness of this elastic 
plate, T,, corresponded to the depth of a particular mantle 
isotherm (e.g. Watts 1978; Caldwell & Turcotte 1979). McNutt 
& Menard (1982) have presented a convincing argument, 
however, that any correspondence between T,  and lithospheric 
mechanical structure cannot be independent of plate curvature. 
Larger values of plate curvature induce greater degrees of 
bending-induced failure, which decrease6 the portion of the 
lithosphere that behaves elastically, and T, is reduced accord- 
ingly. For thk reason, T,, the ‘effective elastic thickness’ of the 
lithosphere, is likely to be dependent upon plate curvature and 
must always be less than T,, the ‘effective mechanical thickness’ 
of the lithosphere (the latter is defined as the greatest depth at 
which the lithosphere possesses any significant long-term 
strength) (McNutt & Menard 1982). McNutt & Menard (1982) 
proposed a relationship between T. and T, that is based on 
the requirement that the purely elastic plate and the litho- 
spheric plate support identical bending moments at a specified 
curvature. 

There are two methods commonly employed to estimate T, 
from bathymetric profiles seawards of subduction zones. The 
simplest (e.g. Caldwell et al. 1976; Caldwell & Turcotte 1979; 
McNutt & Menard 1982) invokes a relationship between T,  
and the distance between the outer-rise crest and the ‘first 
zero-crossing’ (the latter is defined as the point between the 
trench axis and the outer-rise crest where the subducting sea- 
floor crosses the depth of the abyssal plain seawards of the 
outer rise). Using the parameters in Table 1, this relation- 
ship is (e.g. Caldwell & Turcotte 1979) T, + (0.01369 m-1/3) 
( x b  - x , , )~ ’~ ,  where x b  indicates the location of the outer-rise 
crest and x,, indicates the location of the first zero-crossing. 
Estimates of obtained in this manner are representative 
only of oceanic lithosphere located seawards of the first zero- 
crossing. Although the region seawards of x,, is typically 
characterized by small plate curvatures and minimal amounts 
of flexurally induced yielding (which, in theory, permits a closer 
correspondence between T,  and T,), it is also a region of gentle 

Table 1. Parameter values referred to in the text. When different, 
Venusian values are indicated parenthetically. 

ParafXter Value 
Gravitational acceleration g 

Density contrast across plate Ap 

Young’s modulus E 65 GPa 

Poisson’s ratio Y 0.25 
Asthenospheric temperature 1650 K 

9.8 (8.87) mJsec2 

23W (3300) kgh’ 

Surface temperature 
Thermal place thickness 
Thermal difiusivity 

Universal gas constant R 

bor 

EQh 

UP 

81 
Qh 

” 

270 (740) K 
125 km 

1.2 x mlisec 
8.314 Jhol-K 

7.0 10.14 s e ~ ~ l  

5.7 x 10” Sec” 

8.5 x 1@ Pa 

5.23 x 16 Jhol 

5.49 x 16 Jhol 

3 

variations in flexurally induced topography, where bathymetric 
noise can seriously frustrate efforts to constrain both xb and 
x,, (e.g. Caldwell et al. 1976; McAdoo et al. 1978). 

Estimates of T,  are also derived by varying the input 
parameters of analytical models of elastic-plate flexure until 
minimal misfit with respect to the observed bathymetry is 
obtained. This is typically accomplished with simple visual 
comparisons, although least-squares methods are occasionally 
employed (e.g. Solomon & Head 1990; Sandwell & Schubert 
1992; Johnson & Sandwell 1994). This approach requires a 
greater effort than the previous alternative, yet possesses the 
advantage that estimates of T, are influenced by the entire 
bathymetric profile, and the results are therefore relatively 
insensitive to the exact location of any particular point. For 
example, critically located volcanic constructs may preclude 
estimates of T, based on the locations of x b  and x,, whereas 
misfit minimization might still produce useful results in these 
circumstances. 

3 VON K A R M A N  EQUATION FOR PLATE 
FLEXURE 

Elastic-plastic flexural profiles [i.e. synthetic bathymetry 
(Earth) and altimetry (Venus)] are computed using the von 
Karman equation of plate deflection (Fung 1965). We define 
the vertical dimension, z, as depth (i.e. positive downwards). 
The top and bottom plate boundaries are located at z = 0 and 
z = + T,, respectively. Because the von Karman equation 
represents a force-torque balance, it is not necessary at this 
stage to specify rheology. We adopt a sign convention in which 
tensional normal stresses are positive, and positive plate 
curvature is concave downwards. Defining x as the horizontal 
dimension, the complete von Karman equation is (Fung 1965) 

aZM(X) aN(x) aw(x) #w(x) 
- N ( x )  - 

axz ax ax ax2 
-- - 

- o,,(x, TI) + ~ ~ ~ ( x ,  0 )  - 

where w(x) is vertical displacement; Z(x) and X(x) are body 
forces in the 2- and x-directions, respectively; ozz(x, 0) and 
ozz(x, T,) are vertical normal stresses externally applied to the 
top and bottom of the plate, respectively; and uzx(x,O) and 
OJX, T,) are shear tractions externally applied to the top and 
bottom of the plate, respectively. N ( x )  represents the in-plane 
force (units of N m-’), often referred to as the ‘regional stress’: 

N ( x )  = OXX(X,  z )  dz ,  (2) lm 
and M ( x )  represents the bending moment (units of N): 

(3 )  

in which oxx(x, z )  is the horizontal normal stress. Because the 
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bending moment is defined about the mid-point of the plate 
in the derivation of the von Karman equation (Fung 1965), 
mathematical consistency requires that it also be defined about 
the mid-point of the plate in eq. (3). 

Several terms included in the von Karman equation are not 
relevant to subducting oceanic lithosphere. Because we are 
modelling regions seawards of the trench axis, there is no shear 
force applied to the top of the plate, and CT,,(X, 0) is zero. On 
Earth, the low-viscosity asthenosphere effectively decouples 
stress associated with mantle convection from stress that exists 
within the oceanic lithosphere (e.g. Forsyth & Uyeda 1975; 
Chapple & Tullis 1977; Melosh 1977; Wiens & Stein 1985; 
Craig & McKenzie 1986), and this precludes any significant 
level of shear traction from being exerted on the lower plate 
surface. Accordingly, C T J X ,  T,) is also assumed to be zero. 
[Note, however, that this may not be the case for Venus (e.g. 
Phillips 1990).] We further assume that local gravitational 
body forces in the z-direction are negligible in contrast to 
vertical loading [i.e. a,,(x, 0), a,,(x, Tm), and boundary con- 
ditions at the trench]. The vertical normal stress applied to 
the bottom of the plate, azz(x,  Tm), represents the restoring 
force (sometimes referred to as the Winkler force) induced in 
response to displacement of the underlying material. Thus 

(4) 
where Ap is the density difference between material that exists 
below and above the plate (Table l), and g is the relevant 
gravitational acceleration. The minus sign indicates that this 
stress always opposes displacement. Vertical .normal stress 
applied to the upper plate surface, C T ~ ~ ( X ,  0), is associated with 
sediment accumulation, seamount loading, etc. These assump- 
tions, combined with the additional assumption of constant 
in-plane force (justified below), eliminate several of the terms 
included in eq. (l), leaving 

(5) 

The rheology-dependent relationship between bending 
moment, M(x), and plate curvature, d2w(x)/dx2, must be 
established before solutions to eq. (5) can be determined. 
Elastic plates possess a linear moment-curvature relationship, 
and analytical solutions to eq. (5) often exist. Inelastic (i.e. 
elastic-plastic) plates possess a non-linear moment-curvature 
relationship, and solutions to eq. (5) must be determined 
numerically (non-uniqueness may also be a problem). The 
manner in which the moment-curvature relationship is deter- 
mined for various lithospheric rheologies is described in the 
following section. 

With the substitutions Y , ( x )  = dM(x)/dx,  &(x)  = M ( x ) ,  
& ( x )  = w(x) ,  and Y4(x) = dw(x)/dx, eq. (5) can be reduced to a 
system of four first-order differential equations (e.g. Phillips 
1990): 

-- d u x )  - f - ' { Y 2 ( X ) } ,  
ax 

(7) 

(9) 

where M ( x )  = Y2(x) =f{ d2w(x)/dx2}  represents the non-linear 
moment-curvature relationship. d2w(x)/dx2 (= dY4(x)/dx) is 
obtained by inverting the functional relationship between 
bending moment and plate curvature, or, in other words, 
d2w(x)/dx2 = f {&(x)} .  Bending moments are determined for 
a regular distribution of plate curvatures, and an interpolative 
splining routine is utilized to provide a continuous moment- 
curvature relationship. A variety of numerical techniques can 
be used to solve eqs (6)-(9), which constitute a two-point 
boundary-value problem. 

4 EFFECTS OF LITHOSPHERIC 
INELASTICITY 

4.1 Yield envelopes and the moment-curvature 
relationship 

For an elastic plate, the bending moment ( M )  is proportional 
to curvature (dw2(x)/dx2),  and analytical solutions to eq. (5) 
generally exist. Analytical models of elastic-plate flexure are 
adequate provided that the lithosphere is subjected to relatively 
small degrees of failure. Numerical models of inelastic-plate 
flexure are necessary, however, when bending and/or in-plane 
force induce non-negligible amounts of failure. In this case, the 
moment-curvature relationship is non-linear, and solutions to 
eq. (5) must be determined numerically. 

Depth-dependent lithospheric yield strength is governed by 
brittle failure (i.e. faulting) in the upper, cold lithosphere, and 
plastic failure in the lower, hot lithosphere. We assume that 
brittle yield strength is governed by slip along pre-existing 
faults, rather than the rupture strength of intact rock (e.g. 
Goetze & Evans 1979; Brace & Kohlstedt 1980; Bodine et al. 
1981; McNutt & Menard 1982). Byerlee (1978) determined 
that the frictional resistance to fault slip is essentially indepen- 
dent of temperature, strain rate, and (with a few exceptions 
that are not relevant to our analysis) rock composition. Using 
relationships derived in Jaeger & Cook (1976; based on the 
results of Byerlee), which optimize the likelihood of brittle 
failure by permitting slip to occur along the theoretically 
least-resistive fault orientation, the following expressions are 
obtained for brittle lithospheric strength (Aa)  in tension: 

(0.786)8, 

56.7 MPa + (0.679)8, 

8, I 529.9 MPa , 
8,2 529.9 MPa, 

A a =  { (10) 

and compression: 

-( 3.68)8, 8" 2 113.2 MPa, 

-176.6 MPa-(2.12)8, 8,s 113.2MPa. 
(11) 

8, is the effective vertical stress (i.e. lithostatic overburden 
minus ambient water pore pressure). The derivations of eqs 
(10) and ( 11) are included in the Appendix. We assume that 
hydrostatic pore pressures exist within the igneous portion of 
the oceanic lithosphere. Sea-floor drill holes that fully penetrate 
the sedimentary veneer rarely induce a vertical flow of water, 
which would be expected if non-hydrostatic pore pressures 
were encountered (e.g. Hyndman, Langseth & von Herzen 
1987). Pore pressures are assumed to be zero for calculations 
relevant to Venusian lithosphere. 

In the lower lithosphere, yield strength is limited by ther- 
mally activated intracrystalline plastic creep, a process that we 
quantify using the following relationship between temperature 
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(T) ,  strain rate (i), and yield strength 
& Evans 1979): 

(Aa) in olivine (Goetze 

the subscripts 1 and h stand for low and high, respectively. 
The constants in this expression are defined in Table 1 [note 
that, whereas Q, is adopted directly from Goetze & Evans 
(1979), Qh is calculated to enforce continuity at 200 MPa]. 
Because plastic failure is a non-dilatational process, litho- 
spheric strength within the plastic regime is the same in 
compression and tension. Our models consistently predict that 
the yield strength of the oceanic lithosphere is governed by 
brittle failure to a depth of at least ten kilometres, and it is 
therefore unnecessary to include a separate plastic flow law 
for the basaltic crust (although this is not necessarily the case 
for Venus). 

A strain rate of 10-l6s-’ is assumed to represent plastic 
failure (i.e. geophysically significant creep), consistent with 
McNutt & Menard (1982), McNutt (1984), McAdoo et al. 
(1985), Solomon & Head (1990) and Sandwell & Schubert 
(1992). Temperature, as a function of depth and plate age, is 
modelled using the cooling-plate model (Parsons & Sclater 
1977), using the parameter values in Table 1. Because the 
primary heat-loss mechanism of Venus has not been unequivo- 
cally identified (e.g. Kaula & Phillips 1981; Solomm & Head 
1982; Morgan & Phillips 1983; Phillips & Malin 1983), we 
simply assume a range of linear thermal gradients and a surface 
temperature of 740 K. If the ‘bottom’ of the plate is defined as 
the depth, T,, at which the plastic shear resistance equals 
50MPa (e.g. McNutt & Menard 1982; McNutt 1984), eqs 
(lo)-( 12) describe a lithospheric ‘yield envelope’. Represen- 
tative examples of oceanic and Venusian lithospheric yield 
envelopes are illustrated in Fig. 1. Because the stress level at a 
particular depth cannot exceed the associated yield strength, 
lithospheric stress profiles remain bounded by the relevant 
yield envelope. Attempts to increase the applied stress beyond 
the yield-strength value result in further deformation and do 
not induce a compensating increase of stress within the litho- 
sphere. If the applied stress equals the yield strength, essentially 
limitless deformation is possible, provided that the applied 
stress is maintained at this level. 

As a segment of oceanic lithosphere (subjected to zero 
in-plane force) migrates into a subduction zone, it begins to 
experience shallow, brittle, extensional failure, and deep, plastic, 
compressional failure, both in response to plate bending within 
the outer-rise complex. Because brittle failure is potentially 
seismogenic, the shallow extensional failure is generally 
regarded as the source of shallow, normal-faulting, outer-rise 
earthquakes. (The deeper, complementary compressional fail- 
ure is presumably aseismic because it is accommodated by 
plastic deformation.) When the degree of plate bending is 
moderate, these two regions of failure are separated by an 
elastic ‘core’, in which bending stresses do not exceed local 
yield-strength values. 

The tectonic stress profile (defined as total stress minus 
lithostatic stress) associated with zero in-plane force, a plate 
age of 100 Ma, and lithospheric bending to a plate curvature, 
C, of + 3  x lo-’ m-l (positive plate curvature is representative 
of outer-rise flexure) is shown in Fig. 2(a). Stresses within the 
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-2000 -1000 0 1000 - 
4 0  
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Figure 1. Representative lithospheric yield envelopes. Yield strength 
is governed by brittle failure within the upper cold lithosphere and 
intracrystalline plastic creep within the lower hot lithosphere. Tensional 
normal stress is positive and a strain rate of 1 x s-’  is assumed 
to represent plastic failure. The net tensional lithospheric strength is 
determined by integrating the Au > 0 portion of the yield envelope, 
and the net compressional strength by an integration of the ACT < 0 
portion. (a) Oceanic lithosphere. Hydrostatic pore pressure and a 
cooling-plate thermal model are assumed. (b) Venusian lithosphere. 
Zero pore pressure and constant thermal gradients are assumed. 

elastic core are related to the plate curvature, d2w(x)/dx2, by 

- E(z - z O )  d2W(X) 
Aa(z) = 

(1  -v’) dX2 ’ 

where E is Young’s modulus and v is Poisson’s ratio (Table 1) .  
The term z,, which represents the depth at which the stress 
within the elastic core equals zero, is specified by the condition 
that the stress profile should integrate to the assumed value of 
in-plane force. The bending moment associated with this stress 
distribution is determined by eq. (3). As the plate curvature 
approaches extreme values (e.g. the broken line in Fig. 2a), the 
elastic core thickness approaches zero, and the bending 
moment begins to ‘saturate’. At this point, an additional 
increase in the plate curvature does not induce a significant 
increase in the bending moment that is supported within the 
plate, and a ‘plastic hinge’ develops. Conversely, if the applied 
bending moment reaches the saturation value, the plate curva- 
ture may be increased indefinitely with no additional increase 
in the applied moment (thus the analogy to a hinge). Oceanic 
lithosphere possesses two characteristic saturation bending 
moments: one associated with positive plate curvature, and 
one associated with negative plate curvature. Because of 
the asymmetry of the lithospheric yield envelope, the two 
saturation moments are generally unequal. 

The moment-curvature relationship for 100 Ma oceanic 
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Curvature, rn-l 
Figure 2. Representative flexurally induced tectonic stress profiles 
and moment-curvature relationship for 100 Ma oceanic lithosphere 
subjected to zero in-plane force. (a) Stress profiles for plate curvature 
of + 3  x lO-'m-' (solid line) and + 1  x m-l (broken line). 
(b) Moment-curvature relationship. At excessive curvatures, moment 
saturation occurs and additional increases in curvature are possible 
without an increase in the applied bending moment. 

lithosphere subjected to zero in-plane force is shown in 
Fig. 2( b). Small plate curvatures, which result in minimal 
yielding, are associated with a moment-curvature relation- 
ship that is essentially elastic (i.e. linear). The rate of change 
of bending moment with respect to small degrees of plate 
curvature is 

dM - E T L  
dC - 12( 1 - v 2 ) '  
_ _  

where T, is the lithospheric mechanical thickness. In this case, 
dM/dC is simply the flexural rigidity defined in elastic-plate 
theory. Extreme values of bending moment (or, equivalently, 
plate curvature) are associated with a non-unique moment- 
curvature relationship, and solutions to eqs (6)-( 9 )  are also 
non-unique. . 

4.2 Stress history and the moment-curvature 
relationship 

Stress reduction within a region of active failure induces 'elastic 
unloading'. (In the present context, stress 'reduction' refers 
merely to a decrease in the absolute value of the applied stress.) 
Regardless of the amount of deformation sustained during 
failure, if the stress level drops below the critical yield-strength 

value, the material will respond elastically. Elastic unloading 
occurs along a different stress-strain path from the original 
loading process. The relationship between stress and strain is 
initially linear because the applied stress is less than the yield 
value. If the applied stress achieves, and is maintained at, the 
yield value, unlimited strain becomes possible. When the 
applied stress drops below this value the material responds 
elastically and a linear relationship, once again, exists between 
stress and strain. Although the stress returns to zero, the 
strain retains a 'memory' of failure in the form of permanent 
deformation (i.e. strain hysteresis). 

An example is represented by the 'unbending' of oceanic 
lithosphere. The maximum plate curvature within the outer- 
rise complex typically occurs midway between the trench axis 
and the first zero-crossing, provided that a significant bending 
moment does not exist at the trench axis (e.g. McAdoo et al. 
1978; Turcotte et al. 1978; Bodine & Watts 1979; Bodine et al. 
1981). Much of the outer trench wall is therefore a region of 
decreasing plate curvature. A decrease in the plate curvature 
promotes elastic unloading in previously failed portions of the 
plate, and a 'memory' of failure, which influences the sub- 
sequent flexural response, is introduced into the stress profile. 
The tectonic stress profile associated with zero in-plane 
force, 100 Ma sea-floor, and an initial plate curvature of 
+ 3 x m-' is represented by the broken line in Fig. 3(a). 
If the curvature is increased, neither unbending nor elastic 
unloading occurs. If the curvature is decreased, however, 
previously failed regions at the top and bottom of the plate 
will respond elastically to the resulting decrease in the ambient 
stress level. In this case, plate unbending induces a pattern of 
failure opposite to the original pattern: compressional failure 
in the upper, brittle portion of the lithosphere, and extensional 
failure in the lower, plastic portion. Note that this occurs 
despite the fact that the plate curvature remains positive. 

The solid line in Fig. 3(a) represents the stress profile associ- 
ated with the unbending of a lithospheric plate to a final 
curvature of + 2  x m-' from an initial (i.e. maximum) 
curvature of + 3  x lO-'m-'. The final stress distribution is 
derived from the initial stress distribution (broken line, Fig. 3a) 
by the subtraction of an elastic (i.e. linear) stress distribution 
(eq. 13). The gradient of the subtracted elastic stress distri- 
bution, d(Ao) /dz ,  is determined by eq. (13) with the unbending 
plate curvature (in this case, + 2  x m-') equal to 
d2w(x) /dx2 ,  and the intercept, zo, iteratively determined by the 
requirement that the final stress distribution integrate to the 
assumed level of in-plane force. Where subtraction of the 
elastic stress distribution violates the yield envelope, the yield- 
strength value limits the local tectonic stress. Although the 
final stress distribution in Fig. 3(a) may seem contrary to 
intuition (i.e. 'zig-zags' within the elastic core), stress reversal 
during elastic unloading is a well-documented engineering 
phenomenon (e.g. Drucker 1967; Johnson & Mellor 1973). 

The manner in which this behaviour affects the moment- 
curvature relationship is illustrated in Fig. 3( b). The broken 
line represents the original moment-curvature relationship, 
and the solid line represents the moment-curvature relation- 
ship associated with unbending from a plate curvature of 
+ 3  x m-'. The permanent deformation of the plate 
accumulated during the initial episode of prograde bending is 
reflected in the failure of the unbending curve to pass through 
the origin. The behaviour represented in Fig. 3( b) is quite 
intuitive. If an initially straight elastic-plastic (e.g. metal) bar 
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Figure 3. Representative tectonic stress profile and moment- 
curvature relationship associated with the unbending of 100 Ma 
oceanic lithosphere subjected to zero in-plane force. (a) Stress profile 
associated with a reduction in plate curvature from an initial value of 
-3 x m-' (solid 
line). A reduction of the plate curvature introduces a 'memory' of 
failure into the stress distribution. (b) Momentxurvature relationship. 
The broken line is identical to the curve in Fig. 2(b). The solid line 
represents the moment-curvature relationship that governs plate 
unbending from a maximum curvature + 3  x lo-' m-'. The perma- 
nent deformation accumulated during prograde bending is reflected in 
the failure of the unbending moment-curvature relationship to pass 
through the origin. 

m-l  (broken line) to a final value of + 2  x 

is flexed and released, it will not resume its original shape. 
Instead, it will rebound to a non-zero curvature that is less 
than the curvature maintained at the time of release. At this 
point, the bar possesses zero bending moment (because it has 
been released) and non-zero curvature. A bending moment 
opposite to that initially exerted must be applied if the bar is 
to be returned to a straight configuration (i.e. zero curvature). 
The magnitude of this bending moment depends upon the 
material properties of the bar. 

Although several elastic-plastic flexural modelling studies 
have recognized the significance of elastic unloading during 
plate unbending (e.g. McAdoo et al. 1978; Turcotte et al. 1978; 
Bodine & Watts 1979; Bodine ef al. 1981), the effects associated 
with in-plane force have not been addressed. If, in the absence 
of plate bending, 100 Ma oceanic lithosphere is subjected to a 
compressional in-plane force of -3 x 1013 N m-', the resulting 
stress profile is illustrated by the broken line in Fig. 4(a). [The 
value of in-plane force incorporated slightly exceeds one-half 
of the compressional strength of oceanic lithosphere of this 
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Figure 4. Tectonic stress profiles associated with a combination of 
plate bending and in-plane compression ( 100 Ma oceanic lithosphere). 
Broken lines represent initial stress distributions and solid lines 
represent final stress distributions. (a) The broken line represents the 
stress profile associated with zero plate curvature and a compressional 
in-plane force of -3 x 1013 N m-'. The solid line indicates the stress 
profile that results from the subsequent prograde bending of the plate 
to a curvature of + 3  x lo-' rn-'. (b) The broken line represents the 
stress profile associated with zero in-plane force and prograde plate 
bending to a curvature of + 3 x m-'. The solid line indicates 
the stress profile that results from the subsequent application of 
- 3 x 1013 N m of compressional in-plane force. 

age, and is potentially representative of regional stress levels 
associated with trench congestion (e.g. McAdoo & Sandwell 
1985; Cloetingh & Wortel 1986; Zuber 1987; Mueller & Phillips 
1991)l. Compressional failure occurs within the upper and 
lower plate extremities, a uniform value of tectonic stress exists 
within the elastic core (reflecting zero plate curvature), and the 
integral of the tectonic stress distribution equals the applied 
in-plane force. Now assume that a segment of oceanic litho- 
sphere represented by such a stress distribution migrates into 
an outer-rise complex. The associated plate bending enhances 
the amount of compression at the bottom of the plate, and 
compressional failure therefore extends further upward into 
the lower portion of the lithosphere. In contrast, plate bending 
promotes stress reduction within the failed portion of the 
upper lithosphere, resulting in the elastic unloading of the zone 
of brittle failure. The resulting distribution of tectonic stress is 
illustrated by the solid line in Fig. 4(a) for a plate curvature of 
+ 3 x lo-' m-'. The solid line is derived from the broken line 
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using the procedure described above for plate unbending. In 
the upper extremities of the plate, elastic unloading perturbs 
the pre-existing stress distribution sufficiently to induce brittle 
extensional failure. Also, the tectonic stress profile within the 
elastic core exhibits a kink, which separates lithosphere pos- 
sessing a ‘memory’ of failure (upper portion of the elastic core) 
from lithosphere that has behaved elastically throughout (lower 
portion of the elastic core). The slope [d(Aa)/dz] within this 
latter region is defined by eq. (13), with d2w(x) /dx2  equated 
with the final plate curvature. 

Now consider a reversal of the above plate-loading scenario. 
The broken line in Fig. 4( b) represents the tectonic stress 
profile associated with 100 Ma oceanic lithosphere, zero 
in-plane force, and a plate curvature of +3  x m-’. The 
subsequent application of - 3  x 1013 N m-’ of compressional 
in-plane force induces an upward migration of the zone of 
compressional failure within the lower lithosphere. In contrast, 
elastic unloading occurs throughout the region previously 
subjected to bending-induced extensional brittle failure. The 
resulting stress profile (solid line, Fig. 4b) is derived by adding 
a constant stress level (in this case negative) to the initial stress 
profile. Once again, where violation of the yield envelope is 
indicated, local yield-strength limits tectonic stress. The magni- 
tude of the added stress level is iteratively determined by the 
requirement that the final stress distribution integrate to the 
assumed value of the in-plane force. Once again, a kink within 
the elastic core separates lithosphere possessing a memory of 
failure from that which does not. 

Differences between the final stress profiles in Fig. 4 illustrate 
that a reversal of plate-loading order (i.e. bending versus in- 
plane force) may have important consequences and represent 
a significant source of non-uniqueness in flexural solutions (i.e. 
the final plate configuration depends upon the loading history). 
For example, the bending moment associated with the final 
stress distribution in Fig.4(b) is only 15 per cent of that 
associated with the final stress distribution in Fig. 4(a). The 
seismic implications of this behaviour are significant. For 
example, patterns of brittle failure represented in the final 
stress distributions of Fig. 4 illustrate that either normal- 
faulting or thrust-faulting outer-rise seismicity may be associ- 
ated with significant levels of compressional in-plane force. 
The extensional brittle failure indicated by the final stress 
distribution in Fig. 4(a) illustrates that the occurrence of 
normal-faulting earthquakes seawards of the trench axis is 
not inconsistent with the existence of significant levels of 
compressional in-plane force. 

If migrating oceanic lithosphere encounters significant levels 
of in-plane force seawards of the outer-rise complex, the most 
appropriate representation of the loading history is that 
depicted in Fig. 4(a). Alternatively, if oceanic lithosphere sub- 
ducting in the absence of any significant level of in-plane force 
is subjected to the geologically sudden application of such a 
force, perhaps in response to the onset of trench congestion, 
the most appropriate representation of plate-loading history is 
that illustrated in Fig. 4( b). In reality, the level of in-plane 
force is likely to vary with distance from the trench axis, and 
the examples presented merely represent end-member simpli- 
fications that illustrate the relationship between outer-rise 
dynamics and plate-loading history. 

5 SYNTHETIC FLEXURAL PROFILES 

After determining lithospheric moment-curvature relation- 
ships that are consistent with eqs (lo)-( 12), we numerically 

determine solutions to the von Karman equation assuming 
trench-type boundary conditions. The resulting flexural profiles 
represent synthetic bathymetry (Earth) and altimetry (Venus). 
Boundary conditions at the trench axis (x = 0) are zero bending 
moment and a downward displacement equal to w,,. Although 
there is no rigorous justification for the assumption of zero 
bending moment as a boundary condition, Hanks (1971) has 
argued that, in general, the point of zero moment should be 
somewhere in the vicinity of the trench axis. Moreover, the 
assumption of zero end moment is implicit in all ‘broken-plate’ 
models of trench-related lithospheric flexure (e.g. Watts & 
Talwani 1974; Turcotte & Schubert 1982; Solomon & Head 
1990). Because our goal is simply the generation of synthetic 
data, rather than a quantitative analysis of specific bathymetric 
profiles, the bending moment specified at the trench axis is not 
a critical factor, regardless. The seaward boundary conditions 
are represented by the requirement that displacement and plate 
curvature decay to zero, and we assume that vertical loading 
occurs only at the trench axis (i.e. at the end of the plate), so 
that azz(x+, 0) = 0. 

We generate four sets of synthetic inelastic flexural profiles, 
three of them represent oceanic subduction zones, and the 
fourth represents proposed lithospheric underthrusting on 
Venus (e.g. Solomon & Head 1990). Within each set, a single 
input parameter (either thermal structure or trench depth) is 
systematically varied to facilitate the recognition of trends in 
the reliability of Method I flexural analysis. Both thermal 
structure and trench depth directly influence the degree of 
lithospheric yielding, and it is anticipated that errors associated 
with Method-I-type analyses will be greater for higher degrees 
of lithospheric failure. We also generate several profiles that 
incorporate significant levels of in-plane force, which will be 
discussed separately below. 

Trench depths are specified with respect to the abyssal plain 
(not sea-level), or, equivalently, the sea-floor depth at the first 
zero-crossing. For oceanic flexural profiles, we consider trench 
depths up to 5 km, which includes the deepest trenches on 
Earth (e.g. Jarrard 1986), and lithospheric ages of 50 to 150 Ma, 
which includes most of the commonly analysed trench profiles 
of the western Pacific. We do not consider variation in sea- 
floor age along profiles. Because the assumption of uniform 
sea-floor age implies a constant mechanical plate thickness, it 
presumably increases the probability that this thickness will 
be succesfully recovered by our analysis. All flexural profiles 
relevant to Venus are assigned a 1 km ‘trench’ depth (e.g. 
Solomon & Head 1990). Because the primary heat-loss mech- 
anism of Venus remains controversial, we simply assume a 
range of linear thermal gradients, from 10 to 25 K km-’, 
inclusive, and a surface temperature of 740K. A 30Kkm-’ 
thermal gradient was attempted, but the development of a 
plastic hinge prevented a unique solution. 

For a constant trench depth of 5 km, oceanic flexural profiles 
are generated for sea-floor ages of 50 to 150 Ma (in 10 Ma 
intervals), and referred to as Series I (Fig. 5a). Series I1 and 
111 consist of variable trench depths (1 to 5 km) for constant 
sea-floor ages of 100 and 50 Ma, respectively (Figs 5b and 
5c). Series IV is representative of the flexure of Venusian 
lithosphere (Fig. 5d). 

We also consider oceanic lithosphere that is subjected to 
significant levels of in-plane force. Although the ridge-push 
force induced by the elevation of oceanic spreading centres 
represents a compressional in-plane force, its effects on the 
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Figure 5. Selected examples of synthetic flexural profiles generated for this study. (a) Series I profiles assume a constant trench depth of 5 km and 
sea-floor age is incrementally varied from 50 to 150 Ma. Profiles depicted represent sea-floor ages of 50, 70, 100, 120 and 150 Ma (older lithosphere 
is identifiable by progressively higher outer-rise crests and greater distances to the first zero-crossing). (b) Series I1 profiles assume a constant sea- 
floor age of 100 Ma and trench depth is varied incrementally. (c) Series I11 profiles assume a constant sea-floor age of 50 Ma and trench depth is 
varied incrementally. (d) Series IV profiles, which represent the flexure of Venusian lithosphere, assume a constant 'trench' depth of 1 km and 
thermal gradients are varied from 10 to 25 K km-' (lower thermal gradients are identifiable by progressively higher 'outer-rise' crests and greater 
distances to the first zero-crossing). 

flexure of oceanic lithosphere are negligible. This is evident in 
Fig. 6, which illustrates the moment-curvature relationship 
for 100Ma sea-floor subjected to a ridge-push force of 
-3.5 x 10l2 N m-' applied prior to outer-rise plate bending. 
[This is the maximum ridge-push force predicted on the basis 
of the cooling-plate model of lithospheric thermal evolution 
(Parsons & Richter 1980).] For comparison, the moment- 
curvature relationship for the case of zero in-plane force is 
also included. The minimal differences between the two mo- 
ment-curvature relationships indicates that the ridge-push 
force is unlikely to significantly influence the flexural response 
of oceanic lithosphere. (Note that this is not necessarily the 
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Figure 6. The effects of a nominal ridge-push force on the moment- 
curvature relationship for 100 Ma oceanic lithosphere (solid line). The 
assumed value of the compressional in-plane force is - 3 x 10" N m-', 
which is the maximum predicted with the cooling-plate model of sea- 
floor thermal evolution. The broken line represents the moment- 
curvature relationship for identical lithosphere that is subjected to 
zero in-plane force; note the relatively small difference between the 
two curves. 

case for Venusian lithosphere, which may be weaker than 
oceanic lithosphere.) 

We incoporate much greater levels of in-plane force that are 
potentially associated with the dynamics of mature subduction 
zones. Compressional in-plane force an order of magnitude 
greater than the ridge-push force may result from trench 
congestion (e.g. Cloetingh & Wortel 1986; McAdoo & Sandwell 
1985; Zuber 1987; Mueller & Phillips 1991). Significant levels 
of tensional in-plane force may also exist if some fraction of 
the slab-pull force is transmitted into unsubducted portions of 
the plate (e.g. Spence 1987). The level of in-plane force incorpor- 
ated into each synthetic profile is constant, which presumably 
optimizes the likelihood that this value may be accurately 
recovered. Also, because the assumption of constant in-plane 
force is routinely adopted in Method-I-type analyses, this 
assumption strictly simulates the conditions under which such 
analyses are commonly performed (e.g. Hanks 1971; Watts & 
Talwani 1974; McAdoo et al. 1978; Bodine et al. 1981). 

We generate flexural profiles consistent with 100 Ma oceanic 
lithosphere, a 5 km trench depth, and the following levels of 
in-plane force: (1) a -3  x lOI3 N m-l compressional in- 
plane force applied prior to plate bending (e.g. Fig. 4a), (2) 
a - 3 x 1013 N m-l compressional in-plane force applied 
subsequent to plate bending (e.g. Fig. 4b); and ( 3 )  a 
+ 1.5 x 1013 N m-l tensional in-plane force applied prior to 
plate bending. These values of in-plane force are chosen 
because they slightly exceed one-half the net lithospheric 
strength of 100 Ma sea-floor. 

As discussed above, in-plane force applied prior to plate 
bending represents a situation in which this force is initially 
encountered seawards of the outer-rise complex. In contrast, 
in-plane force applied subsequent to plate bending implies an 
initial flexural stress profile (with zero in-plane force) that is 
abruptly subjected to in-plane compression or tension. For 
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in-plane compression, this might be the case shortly after a 
trench becomes congested. Continued, unimpeded convergence 
along adjacent portions of the trench effectively compresses 
the oceanic lithosphere seawards of the zone of congestion 
(Christensen & Ruff 1988; Mueller & Phillips 1991). 

The three synthetic flexural profiles that incoporate in-plane 
force are illustrated in Fig. 7, along with a similar (100 Ma, 
5 km trench, etc.) profile with zero in-plane force (broken line). 
A comparison of the two profiles that incorporate in-plane 
compression illustrates the influence of loading order on the 
shape of the outer-rise complex. 

6 ELASTIC SOLUTIONS A N D  FITTING 
PROCEDURE 

Duribg the 'recovery phase' of our analysis, it is assumed that 
only the shape of the synthetic profile is known. The synthetic 
profiles are treated as if they were bathymetric (or, in the case 
of Venusian profiles, altimetric) data. Our objective is to 
determine if modelling these 'observations' using analytical 
descriptions of elastic-plate flexure allows the recovery of 
lithospheric mechanical thickness and/or the level of in-plane 
force assumed during the generation of the synthetic profiles. 
This requires a determination of the analytical solution to 
elastic-plate flexure that most closely resembles each synthetic 
profile. Elastic-model parameters that are varied during the 
fitting procedure are the elastic-plate thickness, T,, the in-plane 
force, N,, and the displacement at the trench, wo. T,  and N, 
are varied in increments of lOOm and 2.5 x 10" Nm-I ,  
respectively, and for each combination, wo is varied until a 
minimum misfit is obtained. The latter is varied in increments 
of 100 m when fitting synthetic flexural profiles that represent 
oceanic lithosphere, and 10m when fitting profiles that rep- 
resent Venusian lithosphere (i.e. Series IV). The best-fitting 
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Figure 7. Synthetic profiles that represent the flexure of 100 Ma 
oceanic lithosphere subjected to significant levels of in-plane force. 
The highest outer-rise crest corresponds to the synthetic profile 
that incorporates - 3  x loL3 N m-' of in-plane compression applied 
subsequent to plate bending and the second highest outer-rise 
crest corresponds to the synthetic profile that incorporates 
- 3  x lOI3 N m-l of in-plane compression applied prior to plate 
bending. The different outer-rise shapes represented in these two 
profiles illustrates the significance of loading order on lithospheric 
flexural response. The lowest outer-rise crest corresponds to the 
synthetic profile that incorporates + 1.5 x 1013 N m-' of in-plane 
tension applied prior to plate bending. The broken line illustrates the 
synthetic flexure profile that corresponds to identical sea-floor age and 
trench boundary conditions, but zero in-plane force. 

elastic profile does not necessarily exhibit precisely the same 
trench displacement as the modelled synthetic profile. Unless 
the elastic solutions indicate plate buckling, however, both 
displacements are approximately equal. 

A trench displacemew ;'boundary condition alone is 
insufficient to specify an elastic solution. We also require that 
the first zero-crossing of the elastic profile coincide with that 
of the synthetic profile (this requirement replaces the bending- 
moment boundary condition at the trench axis). Such a 
condition not only defines a complete analytical elastic solution 
(when combined with the requirement that the solution decay 
to zero seawards of the outer-rise complex), but also reduces 
the number of candidate elastic profiles to be examined. 
Preliminary investigations, which incorporated a variety of 
boundary conditions at the trench axis, confirmed that this 
constraint does not preclude the best-fitting elastic-plate 
solutions. 

With the trench axis located at x = 0 and a plate displace- 
ment of wo, the analytical expression, describing the flexure of 
an elastic plate subjected to a constant level of in-plane force 
(Ne) ,  with a first zero-crossing located at x,, is (on the interval 
x>O) 

w ( x )  = A exp[-p(x - x,,)] sin[or(x - x,)], (15) 

where 

(16) 

The flexural rigidity, D, is defined by the right-hand side of 
eq. (14), with T, replaced by T,. 

Misfit is represented by rms residuals of the elastic flexural 
profiles with respect to the synthetic profiles. Individual 
residuals are 'sampled' at 1 km intervals out to a distance of 
500 km from the trench axis, typically where the seaward end 
of the outer-rise complex begins to merge with the abyssal 
plain. Because the specification of the location of the first- 
crossing implies a bending moment of the trench axis, buckling 
instabilities are sometimes evident in elastic solutions that 
assume small values of T,. This primarily occurs when thin 
elastic plates are fit to synthetic flexural profiles that exhibit 
large values of xzc. 

7 RESULTS 

7.1 Recovery of in-plane force 

Fig. 8 illustrates misfit contours, as a function of T, and Ne,  
which quantify the degree of dissimilarity between synthetic 
flexural profiles that incorporate in-plane force and the associ- 
ated best-fitting elastic solutions. The flat 'central valley' in 
Fig. 8(a) indicates that, in the case of in-plane compression 
applied subsequent to plate bending, Method I flexural analysis 
is insensitive to the assumed value of N,. In the case of in-plane 
compression applied prior to plate bending (Fig. 8b), elastic 
solution misfits exhibit a similar pattern, except that a slight 
preference is indicated for tensional values of N,. The important 
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Figure 8. Misfit contours (m), as a function of T. and Ne.  for 100 Ma oceanic lithosphere subjected to significant levels of in-plane force. (a) In-plane 
compression (- 3 x l O I 3  N rn-’) applied subsequent to plate bending. (b)  In-plane compression (- 3 x loL3 N rn-’) applied prior to plate bending. 
(c) In-plane tension (+ 1.5 x lot3 N m-’) applied prior to plate bending. Misfit contours indicate that values of in-plane force, Ne,  are heavily 
biased towards excessively tensional values. The extreme levels of misfit in the lower left-hand corner of the diagram are a consequence of the 
development of buckling instabilities in the elastic-plate solutions. (d) In the case of zero in-plane force, misfit minimization indicates values of 
in-plane force that are also heavily biased toward excessive tension. 

point is that neither Fig. 8(a) nor 8(b) provides a clear 
indication that the most appropriate value of N, is 
-3 x 1013 N m-l. For the remaining synthetic profiles, which 
incorporate a large tensional in-plane force (Fig. 8c) and zero 
in-plane force (Fig. 8d), the best-fitting elastic solutions imply 
values of N, that exceed the tensional strength of the litho- 
sphere. This bias exists because: (1) the height-width ratio of 
the outer-rise complex is generally smaller for synthetic profiles 
than for elastic profiles subjected to the same boundary 
conditions (including in-plane force), and (2) an increase in N, 
decreases the outer-rise amplitude (eq. 16) and increases the 
outer-rise width (eq. 17) of elastic-plate models. For these 
reasons, Method I flexural analysis is unlikely to provide 
reliable estimates of lithospheric in-plane force. 

7.2 Recovery of lithospheric mechanical thickness 

Elastic-plate thicknesses associated with the best-fitting elastic 
profiles for Series I-IV synthetic profiles are presented in 
Tables 2-5; also included are the values of lithospheric mechan- 
ical thickness assumed during the generation of each synthetic 
profile. As expected (e.g. McNutt & Menard 1982; McNutt 
1984), T, is always less than T,. Also, the results for Series I1 
and 111 profiles unequivocally indicate that T,  should not be 
assumed to correspond to any mantle isotherm-a result that 
is consistent with theoretical arguments presented by McNutt 
& Menard (1982). These profiles possess variation in trench 
depth only (i.e. the lithospheric mechanical thickness is 
constant), yet variation in estimates of T,  exceeds 35 per cent. 

We now attempt to recover the lithospheric mechanical 
thickness assumed during the generation of the synthetic 

profiles using a method proposed by McNutt & Menard 
( 1982). This method establishes a correspondence between T, 
and T, that is based upon the requirement that, for a specified 
curvature, the lithospheric plate and the representative elastic 
plate support identical bending moments (Fig. 9). The most 
appropriate plate curvature upon which to base such a corre- 
spondence principle is not immediately obvious. Although 
McNutt (1984) has proposed, on the basis of theoretical 
considerations, that the most reliable conversions should be 
based on the maximum curvature of the subducting lithosphere 
(as indicated by the bathymetric profile), in practice the first 
zero-crossing curvature of the best-fitting elastic profiles has 
been substituted as a more practical alternative (e.g. McNutt 
& Menard 1982; McNutt 1984; Solomon & Head 1990 
Sandwell & Schubert 1992). Although it is reasonable to 
assume that there exists some value of plate curvature at which 
the conversion procedure will result in the exact recovery of 
the T,, whether such a curvature coincides with either of the 
above alternatives, or, in fact, even remains invariant with 
respect to different flexural profiles, has not been determined. 

Simple intuitive considerations provide some insight regard- 
ing the choice of an appropriate conversion curvature. For a 
specified plate curvature, the bending moment of an inelastic 
plate decreases with decreasing mechanical thickness and/or 
increasing degrees of failure. Because the extent of failure is 
strongly correlated with plate curvature, a conversion curva- 
ture that is ‘too small’ would imply an unrepresentatively small 
degree of failure. The conversion procedure would compensate 
for this with a reduction in the mechanical thickness of the 
lithospheric plate. In other words, if the adopted conversion 
curvature is ‘too small’, the lithospheric mechanical thickness 
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Table 2. Series I mechanical thickness errors (defined as the difference between the 
assumed and recovered values of T, divided by the assumed value). T, and T, 
represent the assumed lithospheric mechanical thickness and the elastic-plate thick- 
ness associated with the best-fitting elastic profile, respectively. The next four columns 
indicate errors corresponding to the conversion procedure based upon the following 
variations of conversion curvatures: ( 1) the first zero-crossing curvature of the 
synthetic profile (Fig. 10a); (2) the first zero-crossing curvature of the best-fitting 
elastic profile (Fig. lob); (3) the maximum curvature of the synthetic profile (Fig ~ O C ) ,  
and (4) the maximum curvature of the best-fitting elastic profile (Fig. 10d). A 
negative mechanical thickness error indicates that the recovered value is excessive. 
The final column specifies the ratio of the maximum bending moment supported in 
the synthetic profile to the saturation moment that is characteristic of the relevant 
yield envelope (a convenient measure of the degree of bending-induced inelasticity). 
Series1 T,,,(km) T,(km) V1 Error V2Error V3Error V4Error M 

50 Ma 48.08 33.15 4.152 4.105 -0.152 tO.015 0.816 
60 Ma 52.40 37.50 4.131 4.091 -0.128 4.004 0.784 
70 Ma 56.07 40.60 4.130 4.097 -0.093 4.015 0.758 
80 Ma 59.10 43.80 4.116 4.088 -0 .M tO.010 0.736 
90 Ma 61.57 46.40 4.106 4.079 -0.077 -0.003 0.718 
100 Ma 63.53 48.30 4.103 4.079 -0.070 -0.005 0.702 
110 Ma 65.09 49.75 +0.101 4.079 -0.060 4.008 0.690 
120 Ma 66.32 50.95 4.100 4.079 -0.055 -0.009 0.679 
130Ma 67.29 51.90 4.098 4.079 -0.051 4.010 0.671 
140 Ma 68.05 52.60 4.098 4.079 -0.047 4.012 0.665 
150Ma 68.64 53.20 4.097 4.079 -0.046 4.012 0.660 

X Z  

Table 3. Series I1 mechanical thickness errors (see Table 2 caption). 
Series 11 T,(km) T,(km) V1 Emor V2Error V3 Error V4 Error 

1 km 63.53 61.20 4.013 4.012 -0.012 -0.010 0.203 
2 h 63.53 57.80 4.031 4.024 -0.029 -0.019 0.369 
3 km 63.53 53.85 +0.061 4.052 -0.028 -0.003 0.504 
4 h 63.53 50.70 +0.085 +0.070 -0.037 4.005 0.615 
5 km 63.53 48.30 4.103 4.079 -0.070 -0.005 0.702 

Table 4. Series I11 mechanical thickness errors (see Table 2 caption). 
SeriesIII T,(km) T,(km) V1 Error V2Error V3Error V4Error 

l k m  48.08 45.40 4.019 4.017 -0.021 -0.015 0.275 
2km 48.08 40.60 4.075 4.068 -0.015 4.015 0.480 
3km 48.08 37.35 4.108 4.090 -0.036 4.023 0.631 
4km 48.08 35.25 4.125 4.093 -0.091 4.012 0.739 
5km 48.08 33.15 4.152 +0.105 -0.152 4.015 0.816 

Table 5. Series IV mechanical thickness errors (see Table 2 caption). 
Series IV Tm(km) T,(km) V1 Error V2 Error V3 Error V4 Error 

10 Kflvn 31.32 26.90 4.068 4.057 -0.041 -0.003 0.537 
15 K/km 20.88 16.70 4.107 4.078 -0.094 -0.003 0.705 

=%2 

20 wkm 15.66 11.40 4.152 4.101 -0.175 4.006 0.814 
25 Klkm 12.53 8.35 4.185 4.106 -0.316 -0.ooO 0.892 

is likely to be underestimated. Conversely, if the adopted 
conversion curvature is ‘too large’, the lithospheric mechanical 
thickness is likely to be overestimated. In this case, the amount 
of failure implied by the assumed plate curvature will be 
excessive, and a greater mechanical thickness is necessary to 
achieve the specified moment-curvature ratio (i.e. the implied 

excessive failure would tend to reduce this ratio and a greater 
value of T, would be necessary to compensate for this). 

Conversions are performed in the following manner. For a 
specified plate curvature, the corresponding bending moment 
is calculated for a series of yield envelopes (representing various 
values of T,), and in each case the thickness of the elastic 

0 1995 RAS, GJI 123,887-902 



Elastic-plate models of outer-rise flexure 899 

4.5 z 
2 
0 

j 
d 

2.0 

3 -0.5 

-3.0 
i 

Curvature, 10-~ m-' 
Figure 9. The correspondence between elastic-plate thickness and 
lithospheric mechanical thickness is based upon the requirement that 
both plates support identical bending moments at a specified curvature 
(denoted by the circle). 

plate that supports an identical bending moment at the same 
plate curvature is also determined. This establishes a relation- 
ship beween T, and T,, which is based on the assumed 
value of plate curvature (e.g. McNutt 1984). We perform this 
procedure using the following conversion curvatures: ( 1) the 
j r s t  zero-crossing curvature of the synthetic profile; (2) the 
first-zero-crossing curvature of the best-jitting elastic profile, 
(3)  the maximum curvature of the synthetic profile; and (4) the 
maximum curvature of the best-ftting elastic profile. 

Mechanical thickness errors (defined as the difference 
between the original and recovered values of T, divided by 
the original value) are presented in Tables 2-5. Negative errors 
indicate that the lithospheric mechanical thickness has been 
overestimated. In Fig. 10 these errors are displayed as a 
function of the ratio of maximum bending moment represented 
in the synthetic flexural profile and the saturation bending 
moment associated with the assumed lithospheric yield 

envelope. This ratio represents a convenient measure of the 
degree of lithospheric failure (i.e. inelasticity) associated with 
plate bending. Results are presented in this manner because it 
is anticipated that errors associated with Method I flexural 
analysis will correlate with the degree of inelastic behaviour 
represented in the synthetic flexural profile. Such a trend is, in 
fact, clearly evident in Figs 1O(a) and (b). These figures also 
indicate a consistent underestimation of the lithospheric 
mechanical thickness, suggesting that the first zero-crossing 
curvatures of both flexural profiles are too small. 

Fig. 1O(c) indicates that Variation 3 conversions (based on 
maximum synthetic plate curvature) produce significantly 
improved estimates of T,, provided that the maximum bending 
moment in the synthetic profile does not exceed 65 per cent of 
the corresponding moment saturation value. Beyond this point, 
Variation 3 progressively overestimates lithospheric mechan- 
ical thickness. This occurs because, as the amount of bending- 
induced failure increases, the maximum plate curvature 
becomes progressively localized and eventually begins to ex- 
hibit a pronounced difference from neighbouring values. In 
extreme cases, this culminates in the development of a plastic 
hinge, and the maximum plate curvature may become arbi- 
trarily large. It is therefore not surprising that the maximum 
synthetic plate curvature may significantly overestimate the 
amount of failure in neighbouring regions of the plate, and the 
conversion procedure that we have labelled Variation 3 will 
overestimate lithospheric mechanical thickness. 

Fig 10(d) illustrates that Variation 4, the conversion based 
on the maximum curvature of the best-fitting elastic profile, is 
the most reliable variation considered. The difficulties associ- 
ated with Variation 3 are avoided because the localization of 
maximum curvature is a phenomenon uniquely characteristic 
of inelastic-plate bending. The error associated with Variation 4 
rarely exceeds 2 per cent, and lithospheric mechanical thickness 
is neither consistently overestimated nor consistently 

Variation 2 o-2r 

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0 
Maximum Moment/Saturation Moment 

Figure 10. Mechanical thickness error (difference between the original and recovered values of T,, divided by the original value) plotted with 
respect to the ratio of maximum bending moment and the saturation moment (a convenient measure of the degree of inelastic behaviour). 
(a) Conversion using the first zero-crossing curvature of the synthetic profile (Variation 1).  (b) Conversion using the first zero-crossing curvature 
of the best-fitting elastic profile (variation 2). (c) Conversion using the maximum curvature of the synthetic profile (Variation 3). (d) Conversion 
using the maximum curvature of the best-fitting elastic profile (Variation 4). Symbols denote Series I (0), Series I1 (+), Series I11 ( x ) ,  and 
Series IV (*) profiles. 
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underestimated. The relationship between the mechanical 
thickness error and the degree of bending-induced failure 
exhibits no indication of an increasing trend to at least 
90 per cent of the bending-moment saturation value. 

For each of the four variations of the conversion procedure, 
the results for the Venusian profiles share the trends exhibited 
by the oceanic profiles. This suggests that the principles 
governing the relationship between mechanical thickness error 
and the manner in which T,  is converted into T, are robust 
and therefore relevant to a wide range of flexural problems. 

Assuming that accurate estimates of T, are possible, a slight 
modification of the conversion procedure proposed by McNutt 
& Menard (1982) produces surprisingly reliable estimates of 
lithospheric mechanical thickness. In practice, however, there 
may be serious difficulties in determining T, due to compli- 
cations associated with bathymetric (or altimetric) noise. This 
is illustrated in Fig. 11. In Fig. 11 (a), misfit values are displayed, 
as a function of T,, for the synthetic profile representing 
100 Ma oceanic lithosphere subjected to zero in-plane force 
and a 5 km trench displacement [essentially a 'slice' through 
Fig. 8(d) at N, = 01. The corresponding best-fitting elastic 
profile (z = 48.3 km) is shown in Fig. 11 (b) (solid line), along 
with the synthetic profile (broken line). The broad curvature 
exhibited in Fig. 1 l(a), particularly in the neighbourhood of 
the minimum rms misfit, indicates that relatively small differ- 
ences in misfit correspond to large differences in estimates of T,. 

Bathymetric (as well as altimetric) profiles typically reveal 
ubiquitous topographic irregularities that are approximately 
50-100m in amplitude (Caldwell et al. 1976; Turcotte et al. 
1978; Bodine et al. 1981; McQueen & Lambeck 1989; Solomon 
& Head 1990). For the example presented in Fig. l l (a )  a 
50 m standard deviation in data would correspond to 
34.3 km 5 T,  ~ 6 4 . 1  km. In other words, in the presence of 
significant bathymetric noise, T, might be associated with 
errors as large as 15 km. The best-fitting elastic profiles that 
correspond to these bounding values of elastic-plate thickness 
are shown in Figs 11(c) and (d). 

There is an additional difficulty. Fig. 8 illustrates that 
in-plane force can significantly influence estimates of T, and, 
consequently, interpretations of lithospheric mechanical thick- 
ness. This is most evident in the 'valley' that cuts across 
Fig. 8(c) in a strongly diagonal fashion. Although the other 
cases represented in Fig. 8 do not exhibit as pronounced a 
dependence between estimates of T, and assumed values of N,, 
variations in T,  of up to 5 km are indicated within the limits 
of N ,  considered. Fig. 8 (particularly Fig. 8c) represents a 
warning that uncertainties associated with in-plane force may 
undermine the reliability of lithospheric constraints determined 
with Method I flexural analysis, even in the absence of 
topographic noise. 

8 CONCLUSIONS 

We have examined the common practice of constraining 
lithospheric mechanical thickness and in-plane force using 
elastic models of outer-rise flexure. This was accomplished by: 
( 1) numerically generating flexural profiles consistent with 
both empirically derived constraints on lithospheric rheology 
and trench-type boundary conditions; ( 2 )  determining the 
elastic-plate flexural profiles that most closely approximate the 
shape of these 'synthetic' profiles; and (3) attempting to recover 

rms Misfit m 
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Figure 11. (a) Minimum misfit, plotted with respect to T,. between 
an elastic model assuming N ,  = 0 (a 'slice' through Fig. 8d at N ,  = 0) 
and a synthetic profile representing 100 Ma oceanic lithosphere sub- 
jected to zero in-plane force and a 5 km trench displacement. The 
relative flatness of the curve indicates that small differences in misfit, 
such as those that might result from bathymetric noise, may result in 
significant errors in estimates of T,. (b) Best-fitting elastic solution 
corresponding to (a), T,  = 48.3 km. (c) Best-fitting elastic solution 
corresponding to the upper bound on T,  (64.1 km; see text). (d) Best- 
fitting elastic solution corresponding to the lower bound on T, 
(34.3 km; see text). 

lithospheric parameters incoporated into the synthetic profiles 
from the best-fitting elastic solutions. 

It was unequivocally determined that elastic models of plate 
flexure cannot provide reliable constraints on in-plane force 
(i.e. regional stress). It is not even possible to distinguish the 
qualitative nature of in-plane force (i.e. compressional versus 
tensional). 

Attempts to constrain the lithospheric mechanical thickness 
using elastic models of plate flexure require that the best-fitting 
elastic plate thickness, T,, be interpreted in terms of the 
lithospheric mechanical structure. Several early flexural studies 
pursued the possibility that T,  simply corresponded to the 
depth of a particular mantle isotherm (e.g. Watts 1978; Caldwell 
& Turcotte 1979). McNutt & Menard (1982) concluded that 
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such an interpretation of T,  was too simplistic, and that any 
correspondence between T, and lithospheric mechanical struc- 
ture must be influenced by plate curvature. Our results are 
consistent with this conclusion. 
WE. evaluated the reliability of a method proposed by 

McKutt & Menard (1982) to convert values of T, into estimates 
of lithospheric mechanical thickness, T,. The conversion pro- 
cedure utilized is based upon the requirement that both elastic 
and inelastic (i.e. lithospheric) plates maintain identical bending 
moments at a specified value of plate curvature. Previous 
in (estigations have used the first ztro-crossing curvature of 
the best-fitting elastic solution (McNutt & Menard 1982; 
McNutt 1984; Solomon & Head 1990), which our results 
indicate may be associated with errors in T, of up to 
10 per cent. Although such an error is not serious for many 
applications of lithospheric flexural analysis, it can be signifi- 
cant when attempting to identify trends in thermal evolution. 
We have determined that the optimal conversion curvature is 
the maximum curvature of the best-fitting elastic profile 
( < 2  per cent error). This conclusion is inconsistent with 
theoretical arguments (McNutt 1984), suggesting that the 
optimal curvature is the maximum curvature of the lithospheric 
(or synthetic) plate. The reliability of the latter variation of the 
conversion procedure is comparable to that which uses the 
maximum curvature of the best-fitting elastic profile only when 
the maximum bending moment sustained by the subducting 
plate does not exceed 65 per cent of the saturation value. 
Beyond this point, the maximum curvature of the subducting 
plate becomes progressively localized and unrepresentative of 
regional flexure. 

Although, in principle, elastic-plate models of outer-rise 
flexure offer reliable constraints on the mechanical thickness 
of’ the lithosphere, in practice uncertainties associated with 
bathymetric noise and in-plane force may, in some cases, 
preclude rigorous conclusions. Estimates of T, based on elastic- 
plate models of lithospheric flexure are, at best, as reliable as 
the associated estimates of T,. Faulty assumptions regarding 
the level of ambient in-plane force may introduce uncertainties 
in determinations of T,  that range from 5 to 20 km (i.e. N 10 
to 40 per cent), with the greatest uncertainty resulting from 
the inability to recognize the existence of significant levels of 
in-plane tension. Bathymetric noise may also introduce a 
comparable degree of uncertainty. 
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APPENDIX A: 
A N D  ( 1 1 )  

Assuming a frictional relationship of the nature 

z = z,, + p6,, 
where z is shear resistance, 6, is effective normal stress (i.e. 
normal stress minus pore pressure), and z,, and p are empirically 
determined constants, Jaeger & Cook (1976) determined that 

DERIVATION OF EQS (10) 

('41) 

the minimum differential stress required to promote brittle 
failure is 

A 0  = 0 1  - 0 3  = Z(z0 + p 6 3 ) ( f i  + p), (A21 
where o1 and cr3 are the maximum and minimum principal 
stresses, respectively, and a3 equals CJ, minus the ambient pore 
pressure. Eq. (A2) assumes the existence of faults that are 
oriented in such a manner as to minimize the resistance to 
frictional sliding. If such faults are unavailable, brittle litho- 
spheric strength will exceed estimates based on (A2). Eq. (A2) 
may be expressed in the form 

(A31 A 0  = ad, + b ,  

with 

Byerlee ( 1978) determined that the frictional characteristics 
of rock are essentially independent of temperature, slip rate, 
and, in most cases, composition. The empirically determined 
relationship that quantifies the frictional behaviour of rock is 

0,s 200 MPa , 
on> 200 MPa . 

0.850, 
0 . 6 ~ ~  + 50 MPa 

For the low-stress branch of Byerlee's Law, a = 3.68 and 
b=O. For the high-stress branch of Byerlee's Law, a = 2 . 1 2  
and b = 176.6. 

Compressional brittle strength 

In the case of compression, we equate c1 with the horizontal 
tectonic stress ox,, and 0, with the lithospheric overburden 
u z z  : 

Aa = CJ,, - Q,, = a#, + b 

= aszz + b ('47) 
3.686,, @,,I 113.2MPa, 

d,, 2 113.2 MPa. = {2.126,, + 176.6 MPa 

Tensional brittle strength 

In the case of tension, we equate oi with the lithospheric 
overburden oZz, and 0, with the horizontal tectonic stress uXx: 

ACJ = C J ~  - CJ, = uzz - CJ,, = ad, + b = a@,, + b .  

Noting that CJ,, - CJ,, = u,, - ox,, and solving for b,,, we have - -  

d,, - b 
d,, = - 

I + a  ' 

so that 

+ b 
ACJ = a,, - ax, = ~ 

l + a  
0.7866,, cZz I 529.9 MPa, ('w 

= {O.679dz, + 56.7 MPa b,, 2 529.9 MPa. 
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