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Flexural Uplift of Riff Flanks Due to Mechanical Unloading 
of the Lithosphere During Extension 

JEFFREY K. WEISSEL AND GARRY D. KARNER 

Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 

We suggest that the uplift of rift flanks results from mechanical unloading of the lithosphere during 
extension and consequent isostatic rebound. This mechanism is presented as an alternative to 
explanations for rift flank uplift involving thermal or dynamic processes, and magmatic thickening of 
the crust. Our hypothesis is based on two critical concepts. First, the lithosphere retains finite 
mechanical strength or flexural rigidity during extension. Second, isostatic rebound (uplift) of the 
lithosphere follows when the kinematics of extension produces a surface topographic depression that 
is deeper than the level to which the surface of the extended lithosphere would subside assuming local 
isostatic compensation. We develop and analyze two kinematic models for instantaneous extension of 
the lithosphere to show that flexural rebound is a viable explanation for the uplift of rift flanks. We first 
investigate the isostatic consequences of finite simple slip on an initially planar, dipping normal fault 
cutting the entire lithosphere. When the lithosphere retains flexural rigidity during extension, the 
topography resulting from this model resembles a half graben, and the footwall rift flank is flexurally 
uplifted. This simple normal faulting model explains free-air gravity anomalies and topography 
observed at rift flanks in oceanic lithosphere (such as Broken Ridge in the eastern Indian Ocean, the 
Caroline ridges-Sorol Trough in the western equatorial Pacific, and the Coriolis Trough behind the 
New Hebrides island arc). We then investigate a general kinematic model for lithospheric extension 
where simple slip on a surface of arbitrary shape is accompanied by pure shear extension in the upper 
and lower plates. When the simple slip component is not zero or the distribution of pure shear in the 
upper and lower plates is not identical, the surface of slip can be regarded as a detachment. By 
simplification, our general model accounts for pure shear extension of the lithosphere that is uniform 
with depth. In this case, detachments have no meaning in the geologic sense. However, the kinematics 
of depth-independent pure shear may nevertheless be described in terms of a surface, which we term 
a kinematic reference surface, at some depth in the lithosphere. We speculate that the depth of this 
surface may be rheologically controlled. The magnitude of rift flank uplift by flexure depends critically 
on the depth of this reference surface. In contrast, if local isostasy is assumed when the lithosphere 
undergoes a given amount of depth-independent pure shear, the resulting topography will be the same 
regardless of how the kinematics of that extension are formulated. The basin and rift flank topography 
and free-air gravity anomaly over young continental rifts, such as the Rhine graben, can be satisfied 
using our general extensional model with a small amount (<5 km) of extension along a listric-shaped 
detachment soling into the crust-mantle boundary. Because the flexural rebound mechanism explains 
the observed topography and gravity anomaly over both oceanic and continental extensional domains, 
we suggest that rheological differences between the two lithospheric types may not be important in 
their overall response to extension. 

INTRODUCTION 

The prevailing view on the cause for uplifted flanks or 
shoulders of rifts is that such uplifts are due to thermal 
processes or other sources of buoyancy in the Earth's 
subsurface. These processes are thought to result, directly 
or indirectly, from extension of the lithosphere. Some of the 
proposed mechanisms for rift flank uplift are (1) lateral 
conduction of heat from the region of extended lithosphere 
to the unextended flanks [Cochran, 1983; Alvafez et al., 
1984; Buck et al., 1988], (2) heat transferred from beneath 
the rift to the flanks by small-scale mantle convection which 
is induced by lateral temperature gradients set up by exten- 
sion [Keen, 1985; Buck, 1986], (3) greater thinning of the 
mantle lithosphere beneath rift flank areas compared to 
crustal thinning [Royden and Keen, 1980; Hellinger and 
Sclater, 1983; Morgan et al., 1985; Watts and Thorne, 1984; 
Steckler, 1985; Wernicke, 1985; Lister et al., 1986; Villerain 
et al., 1986; White and McKenzie, 1988], (4) magmatic 
thickening (or underplating) of the rift flank crust in response 
to partial melting in the underlying mantle [Cox, 1980; Ewart 
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et al., 1980; McKenzie, 1984; White et al., 1987; Mutter et 
al., 1988], and (5) dynamic support of rift flank topography 
during extension [Zuber and Parmentier, 1986; Parmentier, 
1987]. 

Apart from magmatic underplating, thermal or dynamic 
processes do not necessarily lead to permanent uplift of rift 
flanks. Uplift ceases when extension ends in the case of 
dynamically supported rift flanks, and whether the topogra- 
phy can be maintained after extension is debatable. In the 
case of thermally supported rift flanks, uplift diminishes over 
time at a rate commensurate with thermal equilibrium of the 
extended lithosphere. Elevated topography observed along 
many passive margins of the Gondwana continents (Figure 
1) suggests, however, that uplifted rift flanks are maintained 
permanently. In the case of southeast Brazilian and southern 
African passive margins, for example, any thermal support 
for rift flank uplift should have dissipated long ago, because 
extension ended at those margins in Late Jurassic/Early 
Cretaceous time. In addition, subaerial erosion of rift flanks 
uplifted by transient thermal processes probably ensures 
that such rift flanks will eventually subside below sea level 
[Sleep, 1971; Turcotte, 1977], contrary to observations at 
many passive margins (Figure 1). 

In this study, we propose that permanent uplift of rift 
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Fig. 1. Elevation profiles across selected passive margins of the 
Gondwana continents. These profiles were constructed from global 
5 arc minx 5 arc min average elevations [National Geophysical 
Data Center, 1985]. Note that uplifted flanks lie adjacent to ocean 
basins of widely differing ages (youngest is at the top). S.L., sea 
level. 

see also Heiskanen and Vening Meinesz, 1958, chapter 10, 
part D]. 

Normal slip along deeply penetrating detachments has 
been used to explain the gross structural asymmetry of 
conjugate passive continental margins [e.g., Lister et al., 
1986] and major features in the surface geology and subsur- 
face seismic reflection characteristics of the Basin and Range 
of the western United States [Wernicke and Burchfiel, 1982; 
Wernicke, 1985; Allmendinger et al., 1983]. Some workers 
believe that detachments represent rheological boundaries, 
such as the brittle-ductile transition in the crust [e.g., Kusz- 
nir et al., 1987]. Others suggest that detachments represent 
preexisting weak zones which are later reactivated under 
normal motion. For example, Chadwick [1985] and Lake and 
Karner [1987] attribute the development of several basins in 
southern Britain and the adjacent offshore area to normal 
reactivation during Permian to Cretaceous time of Cale- 
donide- and Variscan-age thrusts. Similarly, Ratcliffe and 
Burton [1985] and Swanson [1986] attribute the Triassic 
Newark series basins of eastern North America to normal 

reactivation of thrusts in the Appalachian orogen. Although 
the question of the origin of detachments does not directly 
concern us in this study, they are important in describing the 
kinematics of extension. 

The aim of this paper is to show that mechanical unloading 
of the lithosphere during extension leads to isostatic uplift of 
the flanks when the lithosphere retains nonzero flexural 
rigidity. To accomplish this, we develop simple kinematic 
and isostatic models for instantaneous, two-dimensional 
extension of the lithosphere incorporating detachment sur- 
faces. Kinematic models describe how the lithosphere might 
extend if we could ignore the effects of the Earth's gravity 
field. Since we cannot ignore gravity, we must then deter- 
mine the isostatic consequences of the kinematic model to 
obtain the total or resulting deformation of the lithosphere. 
We first consider the isostatic consequences of instanta- 
neous simple slip on an initially planar, dipping normal fault 
which cuts the entire lithosphere. We then present a general 
model in which the lithosphere above and below a detach- 
ment undergoes different amounts of pure shear extension in 
addition to simple shear along the detachment surface. The 
calculations are mainly analytical, allowing an appreciation 
of how each model parameter affects the results. We com- 
pare our predictions of rift flank uplift by flexure against 
gravity and topography data from extended regions of both 
oceanic and continental lithosphere. 

flanks is due to flexural isostatic rebound in response to 
mechanical unloading of the lithosphere during extension. 
Underlying this idea are the concepts that (1) the lithosphere 
maintains finite strength (or flexural rigidity) during exten- 
sion, and (2) the kinematics of extension can be described 
relative to a surface within the lithosphere (which we term a 
reference surface) that is either rheologically controlled or 
serves to decouple the upper and lower parts of the extend- 
ing lithosphere. In some respects, the latter is similar to the 
role played by detachments in governing lithospheric exten- 
sion [e.g., Wernicke, 1985; Lister et al., 1986]. The founda- 
tion of the flexural rebound explanation for rift flank uplift 
can be found in early studies of gravity data across the rift 
valleys of East Africa [Bullard, 1936; Vening Meinesz, 1950; 

LITHOSPHERIC EXTENSION BY SIMPLE SLIP 

ON A NORMAL FAULT 

Background 

Soon after the rift valleys of east Africa were first de- 
scribed by geologists [e.g., Suess, 1891; Gregory, 1896], 
conflicting explanations were proposed for their origin. More 
than 50 years ago, Bullard [1936] obtained pendulum gravity 
measurements across the rifts in an attempt to distinguish 
between an extensional and a compressional explanation for 
the rift valleys and their elevated flanking topography. 

Bullard found that large negative gravity anomalies oc- 
curred over the rift valleys when a reduction scheme based 
on the assumption of local or pointwise isostasy was used. 
Thus more low-density material apparently occurs under the 
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Fig. 2. Mechanical models for the formation of the East African 
rifts: (a) after Bullard [1936], (b) after Vening Meinesz [1950]. Both 
models assume that the crust (thickness to) fails along an inclined 
fault (reverse faulting in Figure 2a, normal faulting in Figure 2b) 
under the applied tectonic load N (compression in Figure 2a, tension 
in Figure 2b). The footwall and hanging wall blocks respond 
isostatically as independent elastic cantilevers subject to vertical 
loads at their ends. 

rift valleys than would be expected if the topography of the 
east African rifts were locally compensated (whether by a 
Pratt or Airy scheme is largely irrelevant). The implication is 
that the surface morphology across the African rifts and their 
flanks constitutes a flexural (regional) rather than a local 
isostatic response to lithospheric deformational processes. 
We surmise that once the regional nature of isostatic com- 
pensation for the African rift topography was established 
from the gravity observations, Bullard favored a compres- 
sional origin for the features because of the belief (prevalent 
then as it is now) that extension leaves the lithosphere with 
little or no strength [e.g., Barton and Wood, 1984; Watts, 
1988; Fowler and McKenzie, 1989]. 

Bullard suggested that the rift valleys and their flanks 
represent underthrust and overthrust crustal blocks sepa- 
rated by a high-angle reverse fault (Figure 2a). The weight of 
the overthrust flank causes downward bending to form a rift 
valley half graben, while the buoyancy of the underthrust 
block causes uplift of the rift flank. Bullard treated these two 
crustal blocks as independent cantilever beams supported by 
a fluid mantle and subject to vertical loads at their free ends. 
The elastic thickness T e of the cantilevers was assumed to be 
equal to the crustal thickness. Normal faults mapped along 
the boundary between rift valleys and flanks were explained 
by Bullard as the collapse under gravity of the tip of the 
overthrust block (Figure 2a). 

Vening Meinesz [1950] also noted the regional nature of 
isostatic compensation for the rifts of East Africa but sug- 
gested that the morphology and Bullard's gravity data over 
the rifts are better explained as the response of the litho- 
sphere to tensile forces (Figure 2b). He proposed that 
tension in the crust would lead to the formation of an 

inclined normal fault allowing slip to occur between the 
hanging wall and footwall blocks. Venus Meinesz also 
allowed the two crustal blocks to behave as independent 

elastic cantilevers. In this case, however, uplift of the rift 
flank footwall is an isostatic rebound effect due to unloading 
of the fault surface by removal of the hanging wall. Subsid- 
ence of the hanging wall half graben is due to the replace- 
ment of the footwall crust with rock of mantle density. 

These early studies of the east African rifts introduced two 
important concepts we will use to explain the uplift of rift 
flanks: 

1. The lithosphere retains lateral strength or flexural 
rigidity during extension (although the amount of extension 
across the East African rifts is thought to be small [Rosen- 
dahl, 1987]), even though the upper part of the lithosphere 
may appear pervasively faulted. 

2. The lithosphere is mechanically unloaded when nor- 
mal slip occurs on a deeply penetrating fault, and isostatic 
rebound will occur. 

Theory for the Isostasy of Normal Faulting 
Through the Lithosphere 

Kinematic model. We investigate the isostatic conse- 
quences of instantaneous simple slip on an initially plane, 
dipping normal fault that cuts the entire lithosphere (Figure 
3). The model is described in terms of e0, the amount of 
extension (or heave on the fault), and % the dip of the fault. 
The overall extension factor B of the lithosphere can be 
defined as 

I e0 tan •/ 
B =-= 1 q-• (1) 

10 a 

where l 0 and I denote the width of the zone of extension 
before and after extension, respectively. In (1), a is the 
thickness of the lithosphere before extension, taken as the 
depth where temperature reaches T m, the temperature of the 
isothermal asthenosphere beneath the lithosphere. These 
and other modeling parameters used throughout this study 
are listed in Table 1. 

An important feature of the kinematic model for normal 
faulting (Figure 3) is that displacement on the fault intro- 
duces surface topography which has profound isostatic 
effects. This kinematically produced topography Zo(X) is 
given by 

z0(x) = x tan •/ 0 • x -• e0 

Zo(X) - e0 tan y x • e0 

Isostatic response to normal faulting through the litho- 
sphere. The kinematic model for normal faulting (Figure 3) 
transforms an originally undeformed lithosphere in isostatic 
equilibrium to a configuration which is not in isostatic 
equilibrium. Thus isostatic restoring stresses will immedi- 
ately act to regain isostatic equilibrium. The magnitude and 
lateral distribution of these restoring stresses are found by 
requiring the mass/unit area in columns above a depth of 
isostatic compensation to be the same before and after 
extension. As usual in isostatic calculations, we define the 
depth of compensation as the level below which there are no 
lateral density variations. Inspection of Figure 3 shows that 
this surface lies at a depth of a + e 0 tan % 

In determining the distribution of isostatic restoring 
stresses, we account for the temperature dependence of 
density in the crust and lithospheric mantle through relations 
of the form 
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Fig. 3. Kinematic description of instantaneous slip along a plane, dipping normal fault cutting the entire 
lithosphere. The model is parameterized by y the fault dip, e0 the heave on the fault (equal to the amount of extension 
I - /0), the initial crustal thickness tc, and the initial thickness of the lithosphere a (defined as the depth where 
temperature reaches T m, the asthenosphere temperature). 

pc(X, z, t)= p•[1 - aT(x, z, t)] 
(3) 

pm(X, z, t)= p•[1 - aT(x, z, t)] 

where a is the volumetric coefficient of thermal expansion, 
T(x, z, t) is the temperature structure of the lithosphere at 
time t, and P'c and P•n are the densities of crustal and mantle 
rocks respectively at 0øC. In particular, 

P a = t9•(1 -- Ot Tin) (4) 

gives the density of the asthenosphere. 
If the lithosphere has zero flexural rigidity, so that isos- 

tatic equilibrium is reestablished in a local or pointwise 
manner, the surface of the deformed lithosphere will imme- 
diately (i.e., at time t = 0) be displaced vertically by an 
amount s i(x, 0) which is linearly proportional to the isostatic 
restoring stress at position x. Using the approach described 
above, we find that the locally compensated vertical dis- 
placements si(x, 0)required to balance the isostatic restoring 
stresses engendered by whole lithospheric normal faulting 
are given by 

si(x, O) = 0 x -< 0 (5a) 

xtany I a Tm ] - • x tan y (5b) si(x, 0)= -• (p•-pw) P; 2a Pa- Pw 

O<x•eo 

si(x, O) • • • (2x- eo)eo tan 2 y 
Pa- Pw 2a 

Si(X , O)--• 

P•- Pw 
e0 tan •, eo < x -< tc/tan •, (5c) 

I ] P'• - P• (tc - x tan •/) 1 (x tan •/+ tc) 
Pa- Pw 2a 

e0tan•, p• 1- (2x-e0) tan•, -pw (5d) 
Pa- Pw 2a 

tc/tan •, < x -< eo + tc/tan •, 

- pw Tm 
Si(X, 0) = -- • e0 tan •, + • 

Pa- Pw Pm- Pw 2a 
(2 x - eo) 

ß e0 tan 2 •/ eo + tc/tan •, < x -< a/tan •, (5e) 

P•n- P w P•n- P a 
si(x, 0) = - e0 tan •, + • (x tan •, - a) 

Pa- Pw Pa- Pw 

atto 

Pa -- Pw 2a 
• [(x- e0) 2 tan 2 y - a 2] (5f) 

a/tan •, < x --< e0 + a/tan 

Si(X , 0) -- -- e0 tan •/ x > e0 + a/tan •/ (5g) 

Allowing a flexural isostatic response to extension. If the 
lithosphere retains flexural rigidity during extension, the 
isostatic restoring stresses (or, equivalently, the locally 
compensated vertical displacement given by (5a)-(5g)) will 
be balanced by the deflection wi(x, 0) of a thin elastic plate 
whose thickness Te will generally vary with position x across 
the extended region. The deflection w i(x, 0) is found from 
the differential equation governing flexure of a thin elastic 
plate overlying a fluid substratum: 

O x 2 D( x, O) O x 2 + • N( x, O) • Ox Ox 

+ Apgwi(x, O)= Apgsi(x, 0) (6) 

In (6), Ap = (Pa - Pw), where Pw is the density of material 
overlying the lithosphere, g is the acceleration due to grav- 
ity, N(x, 0) is the applied horizontal force/unit length (which 
we take to be zero in this study), and D(x, 0) is flexural 
rigidity which is related to the effective elastic thickness 
Te(x, 0) of the lithosphere through 

D(x, O)= ETe3(X, 0)/12(1- •2) (7) 

In (7), E is Young's modulus, and v is Poisson's ratio. The 
characteristic wavelength of flexure, A•, depends on D and 
•pg through the relation 
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Parameter 

X, Z 

t 

x6 
x0 

td 
tc 
a 

h 

e0 

B(x6) 
•(x0) 

Pw 

q,(z) 
•o 

Ps 

Pa 

T(x, z, t) 
rm 

D(x, t) 
E 

re(x, t) 
g 

k 

4,(x) 

TABLE 1. Model Parameters 

Definition 

general horizontal and vertical coordinates 
time 

unstretched horizontal coordinate below the detachment 

unstretched horizontal coordinate above the detachment 

depth to detachment (generalized shape) 
crustal thickness (31.2 km) 
lithospheric thickness at the time of extension (125 km) 
steady state lithospheric thickness (125 km) 

horizontal offset of upper plate (heave) 
dip of planar detachment 
pure shear extension of the lower plate (footwall block) 
pure shear extension of the upper plate (hanging wall block) 
total thinning of the lithosphere 

density of material overlying the lithosphere (either air or 
water) 

porosity as a function of depth 
surface (or initial) porosity (60%) 
rate of decay of porosity with depth (2.5 km -1) 
density of sediment grains comprising the basin fill (2650 kg/m 3) 
density of the crust at 0øC (2800 kg/m 3) 
density of the mantle at 0øC (3330 kg/m 3) 
density of the asthenosphere (3179 kg/m 3) 

lithospheric temperature structure 
temperature at the base of the lithosphere (1333øC) 
coefficient of thermal expansion (3.4 x 10 -5 øC -1) 
thermal diffusivity (8.0 x 10 -7 m2/s) 

flexural rigidity of the lithosphere 
Young' s modulus (1011 N/m 2) 
Poisson's ratio (0.25) 
effective elastic thickness of the lithosphere 
gravitational acceleration (9.8 m/s 2) 

wave number 

flexural response function; space domain 
flexural response function; Fourier domain 

4 4D/Apg 

In the general case of laterally varying flexural rigidity, we 
assume that the temperature structure of the lithosphere T(x, 
z, t) at time t determines the effective elastic thickness Te(x, 
t). Studies of seamount loads and bending of the lithosphere 
seaward of oceanic trenches have provided empirical evi- 
dence that T e for the oceanic lithosphere varies as the depth 
to an isotherm in the range 300ø-600øC [Watts et al., 1980; 
Bodine et al., 1981; McNutt, 1984]. For simplicity, we will 
assume that Te(x, t) is given by the depth to the 450øC 
isotherm, which, for t = 0, is found by interpolation from the 
initial conditions on temperature given in Appendix A. Thus 
we ignore any effects on T e of compositional or rheological 
layering in the lithosphere, even though weak layers in the 
continental crust are likely to influence the flexural rigidity of 
continental lithosphere [Kusznir and Karner, 1985; Kusznir 
and Park, 1987]. When flexural rigidity depends on position 
x, i.e., D = D(x, t), we utilize the numerical finite difference 
approach of Bodine [1981] in solving (6). When flexural 
rigidity is constant or a function of time t only, (6) may be 
solved algebraically in the Fourier or wave number domain. 
As expected, (6) shows that wi(x, O) = si(x, O) when flexural 
rigidity is zero everywhere. 

Resulting surface topography at time t - 0. The topog- 
raphy zi(x, 0) which results from instantaneous simple slip 
on a normal fault cutting the entire lithosphere is the sum of 
two components: (1) the topography wi(x, 0) which balances 
the isostatic restoring stresses, and (2) the topography zo(x) 
introduced in the kinematic model (Figure 3). Thus 

Zi(X, O) = Wi(X, O) n t- Zo(X) (8) 

where zo(x) is given by (2) and Wi(X , 0) is found from 
(5a)-(5g) and (6). 

Additional subsidence or uplift of the lithospheric surface 
that occurs for times t > 0 as temperature perturbations 
decay can be found using the methods discussed in Appen- 
dix A. 

Modeling Results 

Figure 4 illustrates the topography developed at time t = 0 
when simple slip occurs on a normal fault cutting through the 
lithosphere. The four topography profiles shown correspond 
to different values of effective elastic plate thickness T e 
given in the box lower left (Figure 4). The most important 
and obvious result is that no uplift of the unextended 
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Fig. 4. Resulting topography at time t = 0 due to normal faulting of the lithosphere. The kinematic model from 
Figure 3 is shown in the inset upper right. A dip 7 = 20ø and a horizontal offset e0 - 10 km (exaggerated in the inset 
for clarity) were used. We assumed that the material overlying the plate is air. The topographic profiles were determined 
using the values for effective elastic thickness T e given in the key at lower left. For the profile with variable rigidity, 
we assume that the effective elastic thickness Te(x ) varies with the depth to the 450øC isotherm, which is found from 
the initial conditions on temperature (see Appendix A). 

footwall flank (x < 0) occurs if the flexural rigidity of the 
lithosphere is uniformly zero. The reason is that the isostatic 
restoring stresses are zero for x < 0, as given in (5a-5g) and 
depicted graphically in Figure 5a. The topographic profile for 
Te = 0 is similar to results obtained by other workers for 
models of" simple shear" of the entire lithosphere assuming 
local isostatic compensation [Mudford, 1988; Voorhoeve and 
Houseman, 1988; Issler et al., 1989]. When a flexural re- 
sponse during rifting is considered the resulting topographic 
profiles resemble half graben (Figure 4). For flexure during 
rifting, the amplitude and wavelength of the footwall flank 
uplift both decrease as flexural rigidity decreases. Notice, 
however, that the horizontal integral of each of the four 
topographic profiles in Figure 4 is a constant value linearly 
proportional to the amount of extension e0( = I - 10). 

The results shown in Figure 4 also have an intuitive 
explanation. In the kinematic model for normal faulting, the 
footwall or lower plate is fixed, and the hanging wall or upper 
plate is rigidly displaced along the fault (Figures 3 and 5a). 
This displacement produces a topographic "hole" (z0(x), 
given by (2)) that is filled with material overlying the litho- 
sphere, such as air or water, which are less dense than the 
replaced crustal rocks. It is the buoyancy of the infilled 
topography relative to the original crustal material that 
predominates in the isostatic restoring stresses, causing the 
lithosphere to rebound. Uplift of the unextended footwall 
flank is permanent unless destroyed by subaerial erosion. Its 
amplitude, however, will be reduced if sediments, rather 
than air or water, fill the basinal region of the topography in 
Figure 4. We discuss the effects of infill by compacting 
sediments in Appendix B. 

Discussion 

Comparison with Vening Meinesz' model for the isostatic 
effects of normal faulting. A major reason for investigating 
the isostatic consequences of normal faulting through the 
lithosphere is to provide some improvement over the earlier 

treatment of this problem by Vening Meinesz [1950] in his 
study of the origin of the east African rifts (Figure 2b). A 
comparison between the two approaches is warranted be- 
cause Vening Meinesz' model has been used in several 
studies to explain the topography developed across extended 
regions [Bott, 1976; Zandt and Owens, 1980; Hellinger and 
Sclater, 1983; Jackson and McKenzie, 1983; Owens, 1983]. 

Although we consider normal faulting through the entire 
lithosphere (Figures 3 and 5a) whereas Vening Meinesz 
considered faulting only through the crust (Figures 2b and 
5b), this is not the major difference between the two ap- 
proaches. Two major differences are apparent in the way the 
isostatic response to instantaneous normal slip on the fault is 
determined. First, we allow the hanging wall and footwall to 
respond as integral parts of a continuous elastic plate, 
whereas Vening Meinesz allowed the footwall and hanging 
wall to respond as two independent elastic cantilevers. Our 
approach tacitly assumes that the fault is "locked" after slip 
but before isostatic restoring stresses act. In contrast, the 
half plate approach of Vening Meinesz does not allow 
mechanical interaction between the hanging wall and foot- 
wall as each is deflected in opposite directions by the 
isostatic restoring stresses. 

The second, and most important, difference between the 
two approaches concerns the material that fills the space 
vacated by the hanging wall or upper plate and the conse- 
quences for isostatic rebound. As explained above, we allow 
the material overlying the lithosphere to fill that kinemati- 
cally produced topography. Because Vening Meinesz 
treated the footwall and hanging wall blocks separately, he 
introduced a critical assumption into his analysis, namely, 
that fluid mantle of density Pm upwells to a height H above 
the base of the crust. Thus, in the case of the footwall block 
(Figure 5b), a wedge of mantle material will partly overlie the 
fault plane in the space vacated by the hanging wall. Vening 
Meinesz' assumption significantly limits the magnitude of 
the resulting isostatic rebound because mantle is denser than 
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Fig. 5. Comparison between the magnitude and distribution of isostatic restoring stress (vertically hatched areas) 
from (a) our model (Figures 3 and 4, equations (5a)-(5c)) and (b) that of Vening Meinesz [1950] for the isostatic effects 
of simple slip on a normal fault which dips y = 30 ø. In Figure 5a the top portion of our kinematic model for normal 
faulting (crust is stippled) for a heave e0 = 20 km is shown under the isostatic restoring stress distribution. Figure 5b 
shows the configuration of the footwall block in Vening Meinesz' model from which the uplift-producing isostatic 
restoring stresses are determined. Also in Figure 5b the horizontal dashed line denotes the level H to which mantle 
(constant density Pm) may freely rise above the base of the crust (constant density Pc). 

the replaced crustal material. The distribution of isostatic 
restoring stress acting on the footwall cantilever in Vening 
Meinesz model (Figure 5b) can be determined using the 
reasoning employed in deriving (Sa)-(Sg). The vertical dis- 
placements si(x) which balance the restoring stresses by 
pointwise or local isostatic compensation are given by 

(Pc- Pw) 
$i(X) -- -- X tan 3, 

(Prn- P w) 
0 < x -< (tc - H)/tan 3' 

(Pm- Pc) 
$i(X) = (X tan 3, - tc)(tc - H)/tan (9) 

(Pm -- Pw) 

y < x --< tc/tan 

In (9), the crustal density Pc is assumed constant, and H is 
given under the condition that local isostatic compensation 
occurs at the base of the crust: 

(Pc- Pw) 
H = tc (10) 

(Pm -- Pw) 

The vertically hatched areas in Figures 5a and 5b depict 
the magnitude and distribution of the isostatic restoring 
stress induced by instantaneous normal slip according to our 
formulation (5a)-(5g), and Vening Meinesz' formulation (9), 
respectively. 

Finally, in order to calculate the deflection of the footwall 
and hanging wall cantilevers, Vening Meinesz determined 
the vertical force/unit length P acting on the free end of the 

cantilevers. For the footwall block (Figure 5b), this quantity 
is simply the horizontal integral of the isostatic restoring 
stresses (Pm -- Pw)gSi(x) given by (9): 

2 
(Pc- P w) t c 

P = -(Pm- Pc) g • (11) 
(p•-p•) 2tan3, 

Below, we use expression (11) to model the uplifted rift flank 
topography of Broken Ridge and find that the observed 
magnitude of uplift is too large to be explained using Vening 
Meinesz' approach. 

Comparison with models for dip-slip faulting during earth- 
quakes. Recent models for the topography that develops in 
response to repeated dip-slip earthquakes [e.g., Rundle, 
1982; Savage and Gu, 1985; King et al., 1988; Stein et al., 
1988] yield results strikingly similar to those that we have 
obtained above for finite simple slip on a normal fault cutting 
the lithosphere (Figures 3 and 4). In the seismologic models 
the lithosphere is regarded as an elastic plate overlying a 
Maxwell viscoelastic half-space. As in the present study, the 
surface topography that develops in response to repeated 
earthquakes is obtained in three steps. First, the immediate 
or coseismic topographic response to seismogenic slip is 
found using theory governing an edge dislocation embedded 
in an elastic half-space. This step is equivalent to the 
kinematic model for normal faulting in our modeling proce- 
dure (Figure 3 and equation (2)). Second, the topography 
that develops following a seismic event (the postseismic 
deformation) is determined over time as the Maxwell half- 
space flows in response to the "load" represented by the 
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Fig. 6. Kinematic description of instantaneous extension of the lithosphere involving simple slip with heave e0 
along a detachment combined with pure shear &(x0) in the upper plate or hanging wall, and pure shear/3(xb) in the lower 
plate or footwall. The deformed configuration of the kinematic model is found by using the extension parameters $ and 
/3 shown above the model as mapping functions. The initial shape of the detachment is denoted by the dotted curve, 
while its shape in the deformed configuration is the solid curve. 

coseismic deformation [Rundle, 1982]. At large times com- 
pared to the Maxwell time constant, the underlying half- 
space will behave as a perfect fluid. Thus, at large times the 
problem is equivalent to finding the response of a thin elastic 
plate on a fluid substratum to isostatic restoring stresses 
engendered by the coseismic load [Savage and Gu, 1985]. 
This is the same approach we use in (5a)-(5g) to find the 
topography that balances the isostatic restoring stresses 
induced by the kinematic model for normal faulting. Third, 
the resulting surface topography is the sum of the coseismic 
and postseismic surface deformations, and this is identical to 
the way we sum the surface topography due to the kinemat- 
ics of extension and the topography which balances the 
induced isostatic restoring stresses. 

LITHOSPHERIC EXTENSION INVOLVING PURE SHEAR 

ABOVE AND BELOW A DETACHMENT 

Introduction 

In the preceding model for normal faulting through the 
lithosphere (Figures 3 and 4), we found that slip on the fault 
engenders uplift of the footwall rift shoulder when the 
lithosphere has finite strength or flexural rigidity. In the 
kinematic formulation of the normal faulting model the 
footwall and hanging wall blocks remain internally unde- 
formed (Figure 3), and the material deformation observed at 
time t = 0 is entirely bending strain resulting from isostasy. 
We now determine the implications for rift flank uplift in the 
more general case where actual material deformation of the 
lithosphere occurs during extension. 

Theory for Lithospheric Extension Involving Pure Shear 
and Simple Slip Components 

Kinematic model. As before, we consider a region of 
lithosphere originally l0 wide that is extended to a new width l, 
so that the overall amount of extension is given by the 
difference I - l0 (Figure 6). In this model, however, the 
kinematics of extension are described by (1) e0, the horizontal 
displacement of the upper plate relative to the unextended 
lithosphere, (2) &(x0) which denotes vertically homogeneous 

pure shear extension of the upper plate, (3) /3(x•) which 
denotes vertically homogeneous pure shear extension of the 
lower plate, and (4) the geometry of the detachment surface. 
Because our approach is strictly forward modeling, we define 
the pure shear extension distributions •x0) and &(x•) in terms 
of the undeformed or preextension coordinate system, where 
x0 (primed for material below the detachment and unprimed for 
material above the detachment) denotes the horizontal coordi- 
nate of an element of lithosphere before extension. 

In order to determine the isostatic restoring stresses 
engendered by extension, we first map the lithosphere into 
its deformed configuration (Figure 6) using the deformation 
parameters defined above. We observe that •(x0) denotes 
the extension factor for a horizontal element dxo at position 
x0 in the upper plate before extension. Similarly,/3(x•)) is the 
extension factor for an element dxb at x• in the lower plate 
before extension. Thus 

dx/dxo = &(x0) (12a) 

for 0 < x0 -< l0 in the upper plate, and 

x/x6 (]20) 

for 0 < x• -< l0 in the lower plate provide the basis for mapping 
the undeformed lithosphere into its deformed configuration. 
The location x after extension of a column of upper plate 
matehal originally at x0 is found by integrating (12a): 

•0 Xø x- e0 = &(se) dse (13a) 

Similarly, the location after extension of lower plate material 
located at x•) before extension is found from (12b): 

x = ,8(•) ds c (13b) 

Thus (13a) and (13b) show that a column of material at 
position x after extension is actually composed of a column 
of upper plate material originally at x0 and a column of lower 
plate material originally at x•. In particular, material lying in 
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the vertical plane x0 = l0 (or x• = 10) before extension in both 
the upper and lower plates maps to x = I after extension. 
Substitution of these values into the integration limits in 
(13a) and (13b) leads to the following relation: 

•0 lø [•(S c) -- /3(SC)] ds c -- e0 (14) 

which provides for conservation of mass in the extended 
lithosphere. By requiring e0,/3(x0), and/3(xb) to satisfy (14), 
we avoid the criticism made by Kligfield et al. [1984] that 
previous models for lithospheric extension by pure shear in 
two layers produce areas of strain incompatibility (i.e., 
"room" or "space" problems). 

In contrast to the rigid block kinematic description of 
normal faulting (Figure 3), the detachment surface in the 
general model (Figure 6) is allowed to change shape as the 
lower plate is mapped into its deformed configuration by 
(13b). Note, however, that a horizontal detachment remains 
horizontal and lies at the same depth as before extension. 

Figure 6 illustrates that in our general kinematic model for 
extension, the upper plate (or hanging wall) collapses on to 
the detachment, thereby creating a topographic "hole." This 
kinematically produced topography Zo(X) is given by 

zo(x) = ta(x6) 0 < x -< eo 

Zo(X) = ta(x(•)- ta(Xo)//3(Xo) x>e o 

(15) 

In (15), ta(Xo) and ta(xb) denote the original depth to the 
detachment for the upper plate and lower plate components 
respectively, of a column of lithosphere at position x after 
extension. We allow the material (air or seawater) overlying the 
lithosphere to infill the kinematically produced depression 
given by (15). Because the density of the infill is less than that 
of the replaced crustal material, the lithosphere rebounds 
isostatically when extended as described above and shown in 
Figure 6. This effect is important for the uplift of the flanking 
areas when the lithosphere retains flexural rigidity. 

A final note on the general kinematic model for lithospheric 
extension concerns our decision to parameterize extension in 
the upper plate by vertically homogeneous pure shear 
Evidence suggests that the collapsing hanging wall deforms in 
a brittle fashion involving simple slip between tilted fault blocks 
which are, in turn, undefiain by the detachment surface [e.g., 
de Charpal et al., 1978; Wernicke and Burchfiel, 1982; Gibbs, 
1984; Williams and Vann, 1987; White et al., 1986]. We use the 
pure shear description in the interest of mathematical simplic- 
ity. Errors in the resulting isostatic subsidence/uplift and lith- 
ospheric temperature structure are probably not large when the 
detachment surface lies at shallow depths within the litho- 
sphere, that is, within the crust. 

Isostatic response to extension where simple slip on a 
detachment is combined with depth-dependent pure 
shear. No lateral density variations occur below the depth 
a in the kinematic model shown in Figure 6. That depth is 
therefore taken as the depth of compensation for the calcu- 
lation of isostatic restoring stresses induced by the kinemat- 
ics of extension. Recall that /3(x0) and /3(x;)) denote the 
distribution of pure shear in the upper plate and lower plate, 
respectively, in the undeformed coordinate system 0 < x0, 
xb -< 10). With this understood, we drop the dependent 

variable in the expressions involving/3 and/3 that follow. The 
isostatic restoring stresses engendered by the general kine- 
matic model for extension vary according to whether the 
detachment crosses the crust-mantle boundary. There are 
three possible expressions for the restoring stress at x, 
according to whether ta(Xo) and ta(x•) denote crustal or 
mantle depths. These expressions are linearly proportional 
to vertical displacement si(x, 0) under the assumption of 
local or pointwise isostasy. Thus 

1. For ta(Xo) < tc and ta(x •) -< tc, 

(P a -- P w) S i( X, O) = -- (p a -- Pw) ZO( X) 

+ (p•- p•)tc 1 tc 1- 
2a 

td(XO) 1 td(XO) - (P'• - P•) /3 2a 

ta(x6) 1 - • ta( x6) + (P/n- P3) 13 2a 
.rm ta(Xo) 

- P;• 2a /3 [ta(xo)- ta(x6)] 
arm td(xO) 

- P;n --•-- t•(x6)- • 

ølTm { •• -p• • [a-ta(•)] 1- 
2. For ta(Xo) • tc and ta(xb) > tc, 

(P a -- P w)S i( X, O) = -- (p a -- P w) Zo( X) 

+ (p•- p•) • -• t c 
2a 

• aT m ta(xo) 1 - (P• - P3) • 2 a 

atto [ta(Xo) 

-• ta(Xo)] 

- p,•--• a 1- O <x_< l 
3. For ta(Xo) > tc and ta(xb) > tc, 

(P a -- P w) S i( X, O) -- -- (p a -- P w) ZO( X) 

0 < x -< l (16a) 

(16b) 

(16c) 
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In the above expressions for Si(X , 0), 1/fiL represents the 
fractional thinning of the entire lithosphere [cf. Hellinger 
and Sclater, 1983]. This may be written as 

a td(xo) a- td(x4) 
= • (17) 

Equation (16a) is the expression required f extension of the 
lithosphere is accommodated on an intracrustal detachment. 
In the general case where the simple slip component of 
extension e0 • 0, the correct expression for Si(X , 0) for 0 < 
x -< e0 is found by setting td(xo) = 0 and taking 8 to be finite 
(1, say) in the appropriate form of equation (16). 

Resulting topography at t - 0 after including the effects of 
flexure. When the isostatic restoring stresses given by (16) 
are balanced flexurally instead of locally, we again use (6) to 
determine w i(x, 0), the deflection of a thin elastic plate 
loaded by the restoring stresses. The surface topography 
zi(x, 0) is found by adding the deflection wi(x, 0) and Zo(X), 
the kinematically produced surface topography. For the 
general model for extension by simple slip on the detach- 
ment combined with depth-dependent pure shear, w i(x, 0) is 
found from (16) and (6), and Zo(X) is given by (15). 

As for the isostatic model for normal faulting through the 
lithosphere, the additional subsidence or uplift for times t > 
0 resulting from thermal reequilibration can be determined 
using the methods discussed in Appendix A. 

Results 

By implementing the forward modeling procedure de- 
scribed above, we investigate the implications for rift flank 
uplift when lithospheric extension involves pure shear. In 
particular, we describe how such uplift depends on (1) the 
geometry of the detachment surface, (2) the lateral separa- 
tion of maximum pure shear in the upper plate relative to 
maximum pure shear in the lower plate, and (3) the size of 
the distance separating these pure shear maxima compared 
to the characteristic wavelength of flexure of the lithosphere. 
To simplify matters, we set the amount of simple slip e0 - 0, 
because the implications for footwall uplift due to simple slip 
on the fault have been adequately covered by the results 
presented above for the normal faulting model (Figure 4). 

In Figures 7, 8, and 9 we compare the magnitude of rift 
flank uplift produced under two contrasting assumptions 
about the mode of isostatic compensation: Flexure (T e is 
determined by the depth to the 450øC isotherm) and local 
(r e = 0 for all x). 

Figures 7 and 8 illustrate the implications for uplifted rift 
flank morphology when the pure shear distribution 8(x0) 
above the detachment does not coincide spatially with the 
distribution fi(x[) below the detachment. In Figure 7, the 
offset between these stretching functions is smaller than the 
flexural wavelength of the lithosphere. In Figure 8, however, 
the offset between the stretching functions is similar to the 
flexural wavelength of the lithosphere. Two detachment 
geometries, uniformly dipping (in the undeformed litho- 
sphere) and horizontal (midcrustal), are investigated for 
times t - 0 and t = 100 m.y. It is readily apparent in Figures 
7a and 8a that uplift of the rift flanks occurs when litho- 
spheric flexural rigidity remains finite during extension (t - 
0 m.y.). Moreover, when the lithosphere has strength, large 
uplift of both the footwall and hanging wall flanks occurs in 

the example with small offset between the maxima in the 
upper plate and lower plate stretching distributions (Figure 
7). This occurs regardless of the shape of the detachment 
because the distance between the maxima of the stretching 
functions is smaller than the flexural wavelength of the 
lithosphere. Thus, in relatively narrow rift zones, it may be 
difficult to distinguish which side is the hanging wall and 
which is the footwall or to determine the dip of the detach- 
ment with confidence solely from the topography. 

For the case of a horizontal detachment at time t - 0, both 
local and flexural isostatic models are insensitive to the 

distance between the maxima of the upper plate and lower 
plate stretching functions (Figures 7a and 8a). The reason is 
that the major source of isostatic rebound is the buoyancy of 
the kinematically produced topography Zo(X) (Figure 6). 
Equation (15) shows that the shape of this depression 
depends only on 8(x0) when the detachment is horizontal. 
However, the effect of the different offsets between the 
upper and lower plate stretching distributions becomes ap- 
parent with time after the extensional event. At t = 100 m.y., 
a clear separation between a "rift" basin and a "thermal" or 
"sag" basin is observed for the example with large offset 
between stretching maxima (Figure 8b). 

For the dipping detachment example, however, the pat- 
terns of flexural uplift of the rift flanks at t = 0 differ 
according to the separation between the maxima of the upper 
and lower plate stretching distributions (left-hand panels, 
Figures 7a and 8a). When the separation distance is large 
(Figure 8), the rift basin is deeper adjacent to the footwall at 
t = 0, but the sense of basin asymmetry is reversed in the 
thermal phase, as expected from the location of greatest 
mantle thinning which is governed by fi(x•). For local 
isostasy, short-wavelength uplifts are predicted at t = 0 near 
the hanging wall for the dipping detachment model (Figures 
7a and 8a). These features are thermally supported and will 
"disappear" during the postrift (i.e., cooling) stage if local 
isostasy is assumed. However, these uplifts are "frozen in" 
if flexure is assumed during the postrift phase. 

Figure 9 shows the effect of detachment shape when the 
pure shear distribution functions 8(x0) and •(x[) are iden- 
tical and symmetric. The most important result is that when 
local isostasy is assumed, the resulting surface topography at 
time t = 0 is the same for both dipping and horizontal 
detachment geometries and no rft flank uplift occurs. When 
flexure during rifting is considered, the resulting pattern of 
rift flank uplift does depend on the geometry of the detach- 
ment surface (left and right panels, Figure 9). Notice that the 
thermal phase subsidence after 100 m.y. is the same in both 
cases. 

At first glance, the geological significance of detachments 
becomes unclear if lithospheric extension is uniform with 
depth because no relative displacement occurs between the 
upper and lower plates along the detachment surface. De- 
tachments, however, are assumed to play a key role in the 
kinematics of extension in the modeling thus far. In the 
mathematical development, we treat the detachment as a 
surface which undergoes minimal vertical displacement as 
the lithosphere extends. Consequently, surface topography 
Zo(X) (given by (2) and (15)) develops purely as a result of the 
kinematics of extension. As we have shown, the flexural 
rebound mechanism for the uplift of rift flanks depends 
primarily on the buoyancy of the infilled, kinematically 
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Fig. 7. Resulting topography when pure shear extension of the lithosphere occurs above and below a detachment, 
but where the stretching functions 8(x0) and 13(x8) (top center) are dissimilar. Note that the width of the zone of 
extension in this example is small compared to the flexural wavelength of the lithosphere. We use an initially plane, 
dipping detachment for profiles on the left and a horizontal detachment for those on the right. We assume that the 
lithosphere is overlain by seawater. (a) The results of the time t = 0 m.y., and (b) the results for time t = 100 m.y. The 
labels "flexure" and "local" above each column of profiles indicate the assumption about isostatic compensation, the 
first label indicates the assumption made for time t = 0 m.y. (i.e., during extension), the second for time t > 0 m.y. (i.e., 
during the postrift phase). Postrift phase subsidence was determined using the methods set out in Appendix A. 
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Fig. 8. Resulting topography when pure shear extension of the lithosphere occurs above and below a detachment, 
but where the stretching functions 5(x0) and/3(x•) (top center) are dissimilar. Note that in contrast to Figure 7, the 
width of the zone of extension is comparable to the flexural wavelength of the lithosphere. We assume that the 
lithosphere is overlain by seawater. Again, we use an initially plane, dipping detachment on the left, and a horizontal 
detachment on the right. (a) The results for time t = 0 m.y., and the results for time t = 100 m.y. The labels "flexure" 
and "local" indicate the assumption about the mode of isostatic compensation as explained in the caption of Figure 7. 
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Fig. 9. Resulting topography when the lithosphere is extended by pure shear that is uniform with depth. The 
stretching functions $(x 0) and/3(xb) shown at the top, center are identical and symmetric. W½•assume that the material 
overlying the plate is seawater. The two topography profiles in the left-hand column relate to the dipping "detach- 
ment," and the two in the right-hand column relate to the initially horizontal, midcrustal "detachment." The top line 
of profiles was determined for time t = 0 m.y., while the lower line of profiles was determined for t = 100 m.y. The labels 
"flexure" and "local" indicate the assumption about the mode of isostatic compensation as explained in the caption of 
Figure 7. Note that the center profiles where local isostasy is assumed during extension (t = 0) relate to both 
"detachment" geometries, because the results are identical for pure shear that is uniform with depth. 

produced topography relative to the crustal material orig- 
inally occupying the "hole." 

As shown by the simple example in Figure 9, two (or any 
number of) different detachment geometries lead to the same 
resulting topography for a given depth-independent stretch- 
ing distribution if local isostasy is assumed. Because this 
assumption has often been employed by other workers in 
forward models for extensional sedimentary basins and 
continental margins, we examine its implications in more 
detail below. 

Discussion 

Previous modeling of pure shear extension with local 
compensation. It is important, first, to see how previous 
formulations for uniform and two-layer pure shear extension 
of the lithosphere [McKenzie, 1978; Royden and Keen, 1980; 
Hellinger and Sclater, 1983] are related to the general 
kinematic and isostatic model that we have developed for 
lithospheric extension involving simple slip along a detach- 
ment combined with components of pure shear extension in 
the upper and lower plates (Figures 6-9, equations (8), (15) 
and (16a)-(16c)). 

To obtain the expression derived by Hellinger and Sclater 
[1983, equation (2)] for initial surface topography for two- 
layer (crustal and subcrustal) pure shear extension of the 
lithosphere, we assume in our general model that the amount 
of simple slip e0 - 0 and the detachment is planar and lies at 
the base of the crust. The required result follows by substi- 

tuting td(xO) = td(X•)) = tc in equations (8), (15), and (16a) 
under the assumption of local isostasy. 

If we now assume that the detachment lies at the Earth's 

surface, i.e., td(xO) = td(x•)) -- 0, again assume local isostasy 
and use (8), (15), and (16a), we arrive at an expression for the 
resulting topography zi at time t = 0 for homogeneous pure 
shear extension of the lithosphere by a factor/3: 

Zi = (Pa- Pw) (P[n- P•)tc 1 2a /] 

- P• 2 1 - (18) 

Equation (18) is recognized as the expression for locally 
compensated initial subsidence derived by McKenzie [1978] 
for lithospheric extension by uniform pure shear. Note that 
the ratio to/a in (18) governs whether zi denotes surface 
subsidence (>0) or uplift (<0) [McKenzie, 1978]. For the 
parameter values listed in Table 1, subsidence occurs if to > 
0.15a. 

In placing the detachment at the Earth's surface, we 
implicitly refer the kinematics of extension to that surface in 
order to emulate McKenzie' s kinematic model for pure shear 
extension. Material originally lying on the surface z = 0 does 
not change vertical position as the lithosphere extends in 
McKenzie's model, and the remainder of the lithosphere is 
thinned relative to z - 0. Therefore the kinematically pro- 
duced topography zo(x) in (15) is zero. 



13,932 WEISSEL AND KARNER: FLEXURAL UPLIFT OF RIFT FLANKS 

A, 2- 2 

Temperature, T 

Tm 
o 

go 
ao 

60 

km 

0 
0 

x--o x•Lo x•t i 
Z o 

Zo+a 

o T,• 

Fig. 10. Kinematic models for extension of a finite width 10 of lithosphere by depth-independent pure shear. (a) The 
kinematics of extension are referred to the surface of the unextended lithosphere z = t,• = 0 (analogous to McKenzie 
[1978]). (b) The kinematics of extension are referred to a surface z = t,• • 0 at a midcrustal level (16 km). The 
distribution of extension • above, and/3 below the reference surface are identical, as shown at the top. On the right, 
temperature-depth profiles through the lithosphere at position x = 50 km are shown for both models. Notice that they 
are the same. The solid lines denote the temperature-depth profile immediately after extension, the long-dashed line 
denotes the temperature profile immediately before extension, and the short-dashed line denotes the steady state 
geotherm. 

Indeterminacy in forward models for lithospheric exten- 
sion when local isostatic compensation during rifting is 
assumed. The assumption of local isostatic compensation 
was correct in McKenzie's original analysis of lithospheric 
extension. The reason is that he considered instantaneous, 

uniform stretching of an infinite viscous lithosphere overly- 
ing a fluid substratum. In this situation, the isostatic restor- 
ing stresses have an infinite wavelength and would appear 
locally compensated regardless of the actual strength or 
flexural rigidity of the lithosphere. A problem arises if 
extended regions (rifts, basins, or continental margins) of 
finite width are modeled assuming local isostasy. The as- 
sumption is then generally invalid because the flexural 
wavelength of the lithosphere may not be small compared to 
the wavelength of the isostatic restoring stresses engendered 
by extension, unless the flexural rigidity of the lithosphere is 
uniformly very low. 

We determine the isostatic consequences of the two 
kinematic formulations in Figure 10 for pure shear extension 
by a factor/3(x) to provide quantitative arguments for the 
importance of lithospheric flexure during extension. The first 
kinematic model (Figure 10a) essentially follows McKen- 
zie's formulation where material originally at z = 0 does not 
change in vertical position as extension occurs and the 

remainder of the lithosphere is thinned relative to z - 0. In 
the kinematic model in Figure 10b, however, we assume that 
material along a midcrustal surface z = t a does not move 
vertically as extension occurs. In this case, the kinematically 
produced topography from (15) is given by z0 = re(1 - 1//3) 
(as before, we drop the independent variable x in the 
remainder of this discussion). 

Because the term detachment has no geological signifi- 
cance when extension is uniform with depth, the surfaces 
z( = t•) = 0 and z = t• in Figures 10a and 10b, respectively, 
should be regarded instead as surfaces to which the kine- 
matics of extension are referred. The models in Figure 10 
therefore represent two alternative ways of describing 
depth-uniform pure shear extension of the lithosphere by/3 if 
isostasy could be ignored. Note in Figure 10 that the thermal 
perturbation due to extension is the same in both formula- 
tions. Although we are primarily interested in comparing the 
isostatic consequences of these two kinematic formulations 
and their implications for the uplift of rift flanks, we provide 
at the end of this section some qualitative rheological argu- 
ments for preferring a reference surface within the litho- 
sphere over one at the Earth's surface. 

The resulting topography at two times, t = 0 and t = 100 
m.y. is shown for the kinematic model in which extension is 
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Fig. 11. Resulting topography at time ! = 0 and ! = 100 m.y. following extension oœ the lithosphere by 
depth-independent pure shear. (a) Flexural and locally compensated topography resulting from the model in Figure 10a, 
where the kinematics oœ extension are referred to the Earth's surface z = tg = 0 (i.e., the McKenzie [1978] model). (b) 
Flexural and locally compensated topography resulting from the model in Figure 10b, where the kinematics oœ extension 
are referred to a midcrustal surface z = t d • 0. We assume that air rather than seawater overlies the lithosphere. Notice 
that locally compensated topography for both models is identical. Flexural •igidity is determined as a simple function 
of the lithospheric temperature structure (see text). The resulting topography 100 m.y. after extension is found using the 
methods described in Appendix A. 

referred to the Earth's surface (ta = 0), and to a midcrustal 
surface (ta -• 0), in Figures 1 la and 1 lb, respectively. Notice 
that for each time there are two topography profiles accord- 
ing to whether the isostatic restoring stresses are balanced 
flexurally or locally. 

As we found for the models presented in Figure 9, the 
resulting topography under the assumption of local compen- 
sation is independent of the location and shape of the 
kinematic reference surface when the lithosphere extends by 
depth-independent pure shear. For time t = 0, (18) gives the 
resulting topography zi for both cases in Figure 11. For the 
model with the reference surface at the surface (Figures 10a 
and 11a), there is no kinematically produced topography, 

and hence the resulting topography Zi(tct=O) at position x is 
linearly proportional to the isostatic restoring stress at that 
location. Thus, from (8), (15), and (16a), 

Zi(ta= O) = Si(ta= 0) (19) 

Because the resulting topography is the same for the two 
alternative kinematic models when local isostasy is as- 
sumed, we can find from (19), (8), (15), and (16a) a simple 
relation between the isostatic restoring stresses (linearly 

proportional to $i(ta•o)) for the model featuring the midcrustal 
reference surface (Figures 10b and l lb) and the isostatic 

stresses (linearly proportional to s i(t,=o)) resulting from the 
model where the kinematics are referred to the Earth's 

surface (Figures 10a and 11 a)' 

Si(tct • O) -- --ZO(tct • O) q- Si(tct = 0) (20) 

This relation provides fundamental insight into the isostatic 
response of the lithosphere to the mechanical unloading that 
occurs when the kinematics of extension is described in 

terms of a reference surface t a -3 0 that lies within the 
lithosphere. Equation (20) says, in effect, that isostatic uplift 

(Si(tct•O) < 0) will occur whenever z0 > Si(zo=O). In other 
words, isostatic rebound of the lithosphere occurs when the 
depth of the kinematically-produced topography z0 (given by 
(15)) is greater than the surface topography that results when 
extension is referred to the Earth's surface and local isos- 

tatic compensation is assumed. 
In contrast to the results obtained assuming local isostasy, 

the resulting topography clearly depends on the location of 
the kinematic reference surface when the lithosphere re- 
sponds fiexurally during extension (profiles for t = 0, Figures 
11 a and 11 b). Notice that large rift flank uplift occurs for the 
model featuring the midcrustal reference surface (ta 5 • 0), 
whereas small flexural bulges occur for the model in which 
the kinematics of extension are referred to the Earth's 

surface (ta = 0). 
These dramatically different results are due to the way the 

isostatic restoring stresses given by (16a) are assumed to be 
compensated. When the lithosphere has nonzero flexural 
rigidity, the isostatic restoring stresses act as vertical loads 
on a thin elastic plate overlying a fluid substratum. The 
deflection w i(x, 0) of the plate is found by solving the 
differential equation (6) governing plate flexure. We assume 
for simplicity that D(x, 0) is a nonzero constant D so that (6) 
can be solved algebraically in the Fourier transform domain. 
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As we deal only with finite widths of extension in this paper, 
the Fourier transforms of the various spatial functions in (8), 
(15), and (16a) will exist. Taking Fourier transforms of both 
sides of (6), we obtain the following expression for Wi(k), the 
Fourier transform of the deflection wi(x, 0): 

wi(, o)= 0) (21) 
where S i(k , 0) is the Fourier transform of the isostatic 
restoring stresses Apgsi(x, 0) found from (16a), and k is wave 
number which is related to wavelength A by A = 2rdk. 

For the model (Figure 10a) where the kinematics of 
extension are referred to the Earth's surface (ta = 0), we 
have from (21) 

Wi(ta = 0)(k, O) = dP(k)Si(ta = 0)(k, O) (22) 

where cI)(k), the flexural response function of the lithosphere 
in the wave number domain, is the expression in brackets in 
(2•). 

On the other hand, for the kinematic model where exten- 
sion is referred to a midcrustal surface (ta -• 0), the deflec- 
tion which balances the isostatic restoring stresses is found 
from (20) and (21) to be 

Wi(ta- • 0)(k, 0) = (I)(k)Si(ta • 0)(k, 0) 

= dP(k)[Si(t a = 0)(k, 0) - Z0(k)] (23) 

where Zo(k) is the Fourier transform of the kinematically 
produced topography Zo(X) given by (15). 

The resulting flexural topography Zi(td=o)(k, 0) for the 
model where the kinematics are referred to the Earth's 

surface (Figure 1 la) is the sum of the kinematically produced 
topography (which is zero by (15)) and the deflection 

Wi(t,•=o)(k, 0), given by (22), which balances the isostatic 
restoring stresses' 

Zi(ta = o)(k, O) = Wi(ta = o) -- (I)(k)Si(ta = 0)(k, 0) (24) 

For the model where the kinematics are described in terms 

of a midcrustal reference surface (Figure 1 lb), the resulting 

flexural topography Zi(ta9o)(k , O) is found from (23) and (8) to 
be 

Zi(ta _• 0)(k, 0) -- (I)(k)[Xi(ta= 0)(k, 0) - Z0(k)] q- Zo(k ) (25) 

Comparing (24) and (25), if the lithosphere retains finite 
strength or flexural rigidity during rifting, the resulting 
topography depends clearly on the location of the kinematic 
reference surface through the isostatic effect of the kinemat- 
ically produced topography Zo(X). However, if cI>(k) = 1 (i.e., 
when either D = 0 or A --> o•), then local or pointwise isostasy 
prevails, and the resulting topography from (24) and (25) is 
identical and is independent of the location of this surface 
(Figure 11). Notice that the horizontal integrals of the 
resulting topography for time t = 0 are independent of the 
location of the reference surface and the assumption about 
isostatic compensation. The topographic profiles integrate to 
a value linearly proportional to the overall amount of exten- 
sion. 

This result has important implications for permanent uplift 
of the rift flanks. We noted from (20) that the isostatic 
restoring stresses engendered by extension cause isostatic 

uplift when the kinematically produced topography z0 is 
larger (i.e., deeper) than the topography that results when 
local compensation is assumed. Uplift of the unextended rift 
shoulders will then occur if the lithosphere retains finite 
flexural rigidity during extension simply because the uplift- 
producing isostatic restoring stresses are compensated re- 
gionally (i.e., by flexure). In fact, if we can demonstrate that 
rift flank uplift is a permanent effect of extension and not due 
to transient thermal processes, we might reasonably infer 
that a detachment(s) or an intralithospheric reference sur- 
face was important in governing how the lithosphere ex- 
tended. 

A possible rheological control for kinematic reference 
surfaces. How do we choose between the two alternative 
kinematic descriptions for depth-independent pure shear by 
a factor/3 (Figure 10).9 In other words, are there physical 
reasons for referring extension to a level z = td within the 
lithosphere instead of its surface z = 07 

The kinematic models for extension used in this study 
(Figures 3, 6, and 10) attempt to describe how the litho- 
sphere might extend in the absence of gravity and hence 
when isostasy is ignored. The necking of a metal bar could 
perhaps serve as a useful analogue to the kinematics of 
lithospheric extension. Beaumont et al. [1982], for example, 
considered plastic necking of the lithosphere under horizon- 
tal tension as a conceptual kinematic model for extension. 
For a rheologically homogeneous lithosphere, necking 
would occur symmetrically about the center plane of the 
lithosphere. Thus the center plane would constitute the 
kinematic reference surface because it undergoes zero ver- 
tical displacement during extension. 

However, if the lithosphere contains a mechanically 
strong layer embedded in weaker layers, necking would 
likely occur about the strong layer [Beaumont et al., 1982; 
Braun and Beaumont, 1989]. Because the strong layer would 
have no vertical component of displacement, it would there- 
fore serve as the reference surface for describing the kine- 
matics of extension. We suggest it is unlikely that the strong 
layer would occur at the lithospheric surface as required in 
the kinematic formulation for lithospheric extension intro- 
duced by McKenzie [1978] (Figure 10a). It is well known that 
the continental lithosphere is compositionally layered and 
that rheological differences occur between the quartz-rich 
crust and olivine-rich mantle. Further research is needed to 

establish whether the concept of a reference surface within 
the lithosphere used in our kinematic models for depth- 
independent pure shear lithospheric extension (Figure 10b) 
can be explained by rheological layering. We show later, 
however, that similar patterns of uplifted rift flanks are found 
for both oceanic and continental lithosphere, suggesting that 
rheological differences between the two lithospheric types 
are not a dominant factor in their response to extension. 

APPLICATIONS 

Topography, seismic reflection, and gravity data across 
selected regions of extended oceanic and continental litho- 
sphere are presented in order to show that observed uplifted 
rift flanks can be explained as a flexural isostatic rebound 
effect of lithospheric extension as we have suggested theo- 
retically in the first part of this study. The oceanic examples 
(Broken Ridge in the eastern Indian Ocean, the Caroline 
ridges-Sorol Trough in the western equatorial Pacific, and 
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Fig. 12. Bathymetry map of the western part of Broken Ridge [Driscoll et al., 1989]. Contour interval is 100 m 
except along the southern escarpment of Broken Ridge where some contours are omitted for clarity. The solid line 
marked EL48 is the ship track from which gravity and bathymetry data are shown in Figure 13. DSDP site 255 is located 
by the small dot. 

the Coriolis Trough behind the New Hebrides island arc) all 
involve extension in lithosphere with a crust thicker than 
normal oceanic crust. In the continents, we consider the 
Rhine graben, a relatively young rift, where we assume that 
erosion of the uplifted flanks can be neglected. Erosion of rift 
flanks and sediment infill of rift basins in the continents 
generally mean that the modeling of continental examples is 
more complicated than for the oceanic examples. For this 
reason we will apply our simple model for normal faulting 
through the entire lithosphere (Figure 3 and 4) to explain the 
topography and gravity observed over oceanic rift flanks. To 
model topography and gravity for the Rhine graben, how- 
ever, we will employ the general model for extension (Figure 
6) involving both simple slip along a detachment combined 
with pure shear extension in the upper and lower plates. 

Oceanic Rifts 

Broken Ridge. An oceanic plateau located in the eastern 
Indian Ocean, Broken Ridge (Figure 12) was originally 
contiguous with the northern part of the Kerguelen-Heard 
plateau. Lithospheric extension (rifting) followed by seafloor 
spreading which began at about anomaly 18-time (•42 Ma 
[McKenzie and $clater, 1971; Mutter and Cande, 1983]) are 
together responsible for the present separation of the two 
platforms across the southeast Indian Ocean. Drilling at 
Deep Sea Drilling Project (DSDP) site 255 (Figure 12) 
bottomed in shallow water limestones of Santonian age 
[Davies et al., 1974], establishing that the age of the under- 
lying basement is greater than •80-85 Ma. Basaltic rocks 

dredged from the prominent southern escarpment of Broken 
Ridge suggest that basement on Broken Ridge and the 
corresponding portion of the Kerguelen Plateau originated 
from intraplate volcanism in the Early or mid-Cretaceous 
[see, e.g., Morgan, 1981]. Seismic refraction data indicate 
that the crust beneath Broken Ridge is 18-20 km thick 
[MacKenzie, 1984]. 

The effects of the rifting episode at Broken Ridge are 
evident in the present-day topography (Figure 12 and 13). 
Broken Ridge is uplifted along its southern margin, which is 
delineated by major southward dipping normal faults with a 
cumulative throw of •5 km and an overall dip of 20 ø. Depths 
shoal to about 1000 m adjacent to the south facing escarp- 
ment, and the topography deepens northward to a morpho- 
logic saddle at about 2500 m depth over a distance between 
80 and 150 km from the escarpment (Figures 12 and 13). The 
minimum amplitude of uplift at Broken Ridge is thus about 
1500 m, because the drilling results [Davies et al., 1974] and 
the seismic stratigraphy observed over Broken Ridge 
[Driscoll et al., 1989] indicate that the crest of the uplifted 
topography was removed by either subaerial or wave base 
erosion. 

Figure 13 shows that the ratio of free-air gravity anomaly 
to topography over the crest of Broken Ridge is large (•90 
mGal/km). This large gravity/topography admittance can be 
explained if the Moho and the surface topography are 
uplifted by similar magnitudes. 

Three isostatic models are presented in Figure 13 to 
explain the gravity and topography (topography only in 
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Figure 13a) observed along the ship track across Broken 
Ridge shown in Figure 12. In Figure 13a, we assume that 
Broken Ridge responds during extension as would the foot- 
wall block in Vening Meinesz' [1950] model for the isostatic 
consequences of normal faulting (Figure 5b). The predicted 
uplift of Broken Ridge is found from applying the upward 
directed force/unit length P given by (11) to an elastic 
cantilever whose thickness equals the observed crustal 
thickness. It is clear that the amplitude of uplift obtained 
using the elastic cantilever approach (dotted curve, Figure 
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13a) is much smaller than the uplift actually observed at 
Broken Ridge. 

In Figure 13b, we test the explanation that the topography 
observed at Broken Ridge is supported by a thickening of the 
crust, analogous to an Airy scheme of local isostatic com- 
pensation. Such crustal thickening can potentially be attrib- 
uted to magmatic underplating of the crust by extension- 
induced partial melting of the mantle [White et al., 1987; 
Mutter et al., 1988; McKenzie and Bickle, 1988]. To model 
the free-air gravity anomaly over Broken Ridge, we must 
first determine the shape of the compensating Moho topog- 
raphy. The thickness of the crust t(x) across Broken Ridge 
and the adjacent ocean crust can be calculated using the 
following expression [e.g., Driscoll et al., 1989]: 

[dref- d(x)](Pm- Pw) + tref(Pm- Pc) 

t(x) = (Pm- Pc) (26a) 
where d(x), the observed bathymetry at location x, is as- 
sumed to be in local isostatic equilibrium with a standard 
column of crustal thickness tre f and water depth dre f. Note 
that since we use the observed topography to estimate the 
crustal thickness, the gravity, rather than the topography, is 
the object of the modeling in this case (cf. Figure 13c). For 
this example, we assume that the standard column is the 
adjacent ocean crust of the southeast Indian Ridge. Conse- 
quently, tre f is 6.0 km and dre f is 4.5 km. The resulting Moho 
topography r(x) is given by 

r(x) = t(x) + d(x) (26b) 

Figure 13b shows that the gravity anomaly predicted assum- 
ing local isostatic compensation by crustal thickening is 
significantly smaller than that observed. We conclude there- 
fore that the observed topography of Broken Ridge is not 
supported by crustal thickness variations (and hence mag- 
matic thickening) in a local isostatic manner. 

An alternative explanation for the uplifted rift flank topog- 
raphy of Broken Ridge is that it is maintained thermally, i.e., 
by elevated temperatures within the lithosphere, analogous 
to a Pratt scheme of local isostatic compensation [e.g., 
Royden and Keen, 1980; Hellinger and Sclater, 1983; Watts 

Fig. 13. (Opposite) Comparison between observed and mod- 
eled topography and free-air gravity across Broken Ridge. The 
observations were obtained along the shiptrack EL48 shown in 
Figure 12. (a) Predicted topography (dots) assumes that Broken 
Ridge represents the footwall in Vening Meinesz' [ 1950] treatment of 
the isostasy of normal faulting. The dip 3/of the fault is 20 ø. The 
predicted topography represents the deflection of an elastic cantile- 
ver of thickness t c = 20 km by an upward directed force/unit length 
P given by equation (11). (b) Predicted gravity effect (dots) for the 
situation in which the uplifted topography of Broken Ridge is 
supported by crustal thickness variations in a local isostatic manner. 
Note that the model gravity anomaly is much smaller in amplitude 
compared to the observed (solid line). (c) Predicted topography and 
gravity effect (dots) using our model for the isostatic effects of slip 
on a normal fault cutting the entire lithosphere (Figures 3 and 4). 
Broken Ridge represents the flexurally uplifted footwall flank of a 
half graben. The best fitting model profiles are determined at time 
t = 49 m.y. after rifting. Model parameters include a fault dip 3/of 
20 ø, heave e 0 of 18 km, initial lithospheric thickness a of 45 km, and 
a crustal thickness tc of 18 km. The effective elastic thickness Te(x, 
t) in the model is allowed to vary with the depth to the 450øC 
isotherm. We assume that seawater (Pw = 1.03 g/cm 3) overlies the 
lithosphere in these calculations. 
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and Thorne, 1984; Steckler, 1985; Steckler et al., 1988a, b]. 
To test the feasibility of this explanation, we attempted to 
calculate the degree of mantle thinning necessary to support 
the observed topography. The degree of mantle thinning 
(parameterized by /3(x)) is dependent on both the litho- 
spheric thickness a at the time of rifting, and the crustal 
thickness to. We calculated a prerift lithospheric thickness of 
60 km by noting that (1) Broken Ridge was at an average 
water depth of •1500 m at the time of rifting, and (2) the 
lithosphere was approaching thermal equilibrium since the 
time interval between its formation and the rifting event was 
•50 m.y. Given these parameters, it is not possible to 
construct a/3(x) function. Therefore the observed topogra- 
phy at Broken Ridge cannot be attributed to temperature 
variations within the lithosphere. 

In Figure 13c, we employ the theory developed in this 
study for the isostasy of normal faulting through the litho- 
sphere where the footwall and hanging wall blocks behave as 
integral parts of a continuous elastic plate overlying a fluid 
substratum (Figures 3 and 4, equations (2), (5a)-(5g), and 
(8)). We assume that Broken Ridge represents the footwall of 
this extensional system and focus the modeling effort on 
explaining the topography and gravity effect due to flexural 
rebound of the footwall as a result of extension. That is, we 
do not intend to predict gravity or topography for the 42 Ma 
and younger southeast Indian ridge seafloor south of the 
boundary line drawn in Figure 13. The observed topography 
and gravity anomaly across Broken Ridge are explained very 
effectively by the normal faulting model for an elastic 
thickness T e of 15-20 km for Broken Ridge at the time of 
rifting. This value of Te corresponds to a thermal thickness 
a for the lithosphere of 45-60 km at the time of rifting, if we 
assume that Te tracks the 450øC isotherm in the lithosphere. 
The model topography (Figure 13c) suggests, in fact, that the 
original magnitude of flexural uplift at Broken Ridge was 
over 2000 m at the south facing escarpment, when we allow 
for the amount eroded while the "tip" of the uplifted flank 
was subaerially exposed in the middle to late Eocene 
[Scientific Staff Leg 121, 1988; see also Davies et al., 1974]. 

In summary, the model developed in this study for the 
isostatic consequences of lithospheric extension by simple 
slip on a normal fault (Figures 3 and 4) explains both the 
topography and gravity anomaly observed over Broken 
Ridge (Figure 13c). This example provides good evidence 
that the uplift of rift flanks can be attributed to flexural 
rebound following mechanical unloading of the lithosphere 
during extension. 

Caroline ridges-Sorol Trough. The Sorol Trough (Figure 
14, top) appears to mark the northern boundary between the 
Caroline and Pacific plates in the western equatorial Pacific 
[Weissel and Anderson, 1978]. A transtensional tectonic 
regime has been predicted for the Sorol Trough on the basis 
of present-day plate motion models [Weissel and Anderson, 
1978; Ranken et al., 1984], with the component of extension 
across the Sorol Trough increasing westward toward the 
Yap Trench. Sparse teleseismicity indicates that the feature 
is currently active. 

Weissel and Anderson noted the asymmetric morphology of 
the Sorol Trough with the greatest depths (>4000 m) displaced 
toward the southern side and that the southern margin is 
defined by large-offset normal faults (Figure 14, bottom). The 
blocky morphology within the trough suggests an extensively 
faulted, collapsed hanging wall of a half graben, but it is 

unknown whether seafloor spreading has commenced within 
the Sorol Trough (see Fornari et al. [1979] and Perfit and 
Fornari [1982] for a detailed discussion of the tectonic implica- 
tions of rocks dredged from the Sorol Trough). 

The Sorol Trough is a rift zone which has developed in the 
originally contiguous West Caroline Ridge and the Caroline 
Islands Ridge. These two ridges appear to be oceanic basalt 
platforms of Oligocene age, according to DSDP drilling on 
the Caroline Islands Ridge [Fischer et al., 1971; Ridley et al., 
1974]. Notice, from the seismic reflection and bathymetry 
data shown in Figures 14 and 15, the upturned morphology 
and stratigraphy of the West Caroline Ridge and its normally 
faulted margin along the Sorol Trough. 

We model the morphology and gravity anomalies across the 
Caroline ridges-Sorol Trough extensional domain using the 
model for slip on a normal fault through the lithosphere 
developed earlier in this study and used above for Broken 
Ridge (Figure 13c). Because the West Caroline Ridge appears 
to represent the footwall block of the extensional domain, we 
concentrate in the modeling on matching the observations over 
the West Caroline Ridge and southern margin of the Sorol 
Trough. In Figure 14 (bottom) we compare a model for flexural 
topography with a seismic reflection profile across the Sorol 
Trough and West Caroline Ridge, while in Figure 15 we 
compare modeled topography and gravity anomalies with ob- 
served bathymetry and gravity profiles. 

The flexural isostatic model for a simple normal fault is 
clearly capable of explaining the uplift of the West Caroline 
Ridge observed in the seismic reflection profile (Figure 14, 
bottom). The effective elastic thickness Te in the best fitting 
model is • 10 km, suggesting that the lithosphere beneath the 
Caroline ridges was thermally young at the time of rifting. 
This implication is compatible with the Oligocene age deter- 
mined for the seafloor in the Caroline basins to the south 

[Weissel and Anderson, 1978; Bracey, 1983] and for the 
magmatic episode which formed the Caroline ridges [Ridley 
et al., 1974]. 

There is some variability in the morphology along strike of 
the Sorol Trough extensional domain, such that models with 
Te between 5 and 10 km appear to satisfy the observations 
(Figure 15a). The model gravity anomalies adequately match 
the observations over the West Caroline Ridge and southern 
margin of the Sorol Trough (Figure 15b). However, the 
complex morphology within the Sorol Trough and the asso- 
ciated large, short-wavelength gravity anomalies are not 
matched in the model profiles, because actual material 
deformation of the hanging wall block is not allowed in the 
simple normal faulting model for extension (Figure 3). 

Coriolis Trough. The Coriolis Trough is a series of linked 
half graben located east of the southern islands of the New 
Hebrides island arc (Figure 16). There is a suggestion in the 
bathymetric map of Karig and Mammerickx [1972] that the 
sense of structural asymmetry alternates along strike of the 
300-km-long Coriolis Trough in a manner similar to the East 
African rifts [Ebinger et al., 1987; Rosendahl, 1987; Burgess et 
al., 1989]. A recent Sea Beam survey of the central part of the 
Coriolis Trough revealed a southwest facing half graben with a 
border fault system along the northeast margin [Recy et al., 
1986]. Near the island of Futuna on the uplifted footwall 
(Figure 16), cumulative throw on the bounding normal faults 
exceeds 3.5 km. The Coriolis Trough may be actively extend- 
ing as indicated by shallow earthquake activity detected be- 
neath the feature during ocean bottom seismometer (OBS) 
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Fig. 14. Comparison between a seismic reflection profile across the Caroline ridges-Sorol Trough and topography 
predicted 25 m.y. after extension of the lithosphere on an initially plane, dipping normal fault (Figures 3 and 4). We 
assumed that the lithosphere is overlain by seawater and the model profile is for a crustal thickness tc = 18 km, an initial 
lithospheric thickness a = 30 km, fault dip 7 = 20ø, and heave e0 = 12 km. The effective elastic thickness Te(x, t) in 
the model is allowed to vary with the depth to the 450øC isotherm. The observed profile is denoted by the solid line in 
the bathymetry map at the top (contour interval is 500 m). 

experiments [Coudert et al., 1981]. Because the geology of 
Futuna includes volcanic rocks with island arc affinities, we 

infer that extension is occurring in island arc crust. 
The seismic reflection profile selected for modeling, which 

is located east of the island of Tanna (Figure 16), clearly 
shows the half graben structure of the central part of the 
Coriolis Trough. As with the previous oceanic examples, we 
model the topography across the Coriolis Trough as the 
flexural isostatic effect of extension by normal faulting 
through the entire lithosphere (Figures 3 and 4). With this 
simple model, we are able to reproduce the general morpho- 
logic shape of the half graben, particularly the uplifted 

footwall flank on the east (Figure 16). The modeling results 
suggest that the thermal age of the extending island arc 
lithosphere must be very young, because we require very 
low values of effective elastic thickness Te < 5 km in the 
modeling. 

Continental Rifts 

Continent rifts have additional complications relative to 
their oceanic counterparts in that (1) their rift flank morphol- 
ogy is continually being modified by erosional processes, 
and (2) sediment loading within the rift basin tends to reduce 
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Fig. 15. Comparison between observed and modeled topography and gravity anomalies over the Caroline 
ridges-Sorol Trough in the western equatorial Pacific Ocean. The observed profiles, denoted by the circled numbers, 
are located in the bathymetry map at the top of Figure 14. Two model topography profiles (dotted) are shown at the top 
and bottom on the left, while two model gravity profiles (determined by the techniques discussed by J. K. Weissel et 
al. (unpublished manuscript, 1989)) are shown as the dotted curves top and bottom on the right. The parameters used 
for the modeling are the same as given in the caption to Figure 14, except that two flexural rigidity schemes were used: 
variable T e at the bottom (where Te(x , t) varies as the depth to the 450øC isotherm) and T e = 5 km at the top. 

the adjacent riff flank upliftß We address the first point by 
investigating a relatively young rift (the Rhine graben) where 
we assume that the flanking uplifts are not eroded signifi- 
cantly. The second point is addressed by investigating the 
flexural effects of changing infill load by sediment compac- 
tion (Appendix B). If we can model continental rift flank 
uplift using the same isostatic rebound principle as for 
oceanic rift flanks, then we can infer that although oceanic 
and continental lithosphere might differ rheologically, the 
overall response to the extension process is similar in either 
tectonic setting. 

In the oceanic rift examples, we were interested in ex- 
plaining primarily only the footwall uplift and therefore we 
used the simple normal fault model for lithospheric exten- 
sion (Figure 3). In the continents, we are interested in 
explaining the total morphological shape (both the flanks and 
the rift basin) across the extended zone. Consequently, we 
use our more general model for lithospheric extension in- 
volving slip along a detachment combined with components 
of pure shear extension in the upper and lower plates (Figure 
6). For mathematical convenience, we use a simple listric 
fault that soles into the Moho to describe the detachment. 
The form of this listric fault is described by 

ta(Xo) = tc(1 - e -kaxø) (27) 

The kinematic model therefore is parameterized by the depth 
to the Moho to, the curvature of the listric fault with depth 
kj • , and the heave along the detachment (e0, Figure 6). The 
values of the parameters describing the listric fault geometry 
are chosen so that the border fault is steeply dipping and the 
upper plate "rollover" simulates the width of the observed 

rift basin. The extension in the upper plate is calculated by 
first specifying the kinematically produced hole Zo(X) con- 
sistent with the rollover and then using (15) to obtain iS(x0). 
Extension below the detachment/3(x•) is assumed to occur 
over a broad region relative to k• -• and balances the upper 
plate extension and heave on the detachment according to 
(17). 

Rhine Graben. The Rhine graben is considered the 
"type" example of a symmetric rift [e.g., lilies, 1970, 1974; 
Ziegler, 1982]. It is approximately 300 km long and 35-45 km 
wide, bordered by normal faults, and terminated in the south 
by the Jura mountains (Figure 17). The locations of many 
European rifts, including the Rhine graben, appear to have 
been controlled by preexisting Hercynian structural fabrics 
[lilies, 1970; SengOr and Burke, 1978]. Subsidence in the 
Rhine graben was time transgressive, beginning in the south 
and migrating northward. The southern Rhine graben began 
subsiding in the Eocene, in contrast to the northern Rhine 
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Fig. 17a. Topography map of Rhine graben and vicinity showing position of profile (approximately coincident with 
A-A of Mueller and Rybach [1974]). The shaded areas on the map lie at elevations >650 m. 

graben which began filling in the Plio-Pleistocene [Illies, 
1974]. The fact that the Rhine River flows approximately 
along the Tertiary depocenters implies that the basin is still 
subsiding. Maximum sediment thicknesses range from 2500- 

3000 m in the southern Rhine graben and 1500-2500 m in the 
central regions to 3400-3800 m in the north [Doebl and 
Olbrecht, 1972]. Individual depocenters are contained within 
asymmetric half graben distributed along the rift axis, each 

RHINE GRABEN 
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Fig. 17b. Comparison between observed and predicted free-air gravity and topography profiles over the Rhine 
graben. The observed profiles were constructed by projecting all point gravity and elevation data within the box in 
Figure 17a on to a single profile coincident with the long axis of the box. We used our general model for lithospheric 
extension (Figure 6) to determine the model topography profile. The predicted topography/basement shape, and 
associated gravity effect, calculated using the methods described by J. K. Weissel et al. (unpublished manuscript, 1989), 
are denoted by the bold dashed lines. Observed basement depths (open triangles), determined from base-Tertiary 
sediment isopachs [Doebl and Olbrecht, 1974], are plotted along the profile. Model parameters, including the 
compaction characteristics of the rift basin sediments, are given in the text. 
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separated by transfer faults. Each major depocenter is 
associated with a corresponding footwall uplift, as, for 
example, the Odenwald Mountains on the flanks of the 
northern Rhine graben. In the south, the flanking topography 
consists of exposed Hercynian crystalline crust in the Vos- 
ges and Schwarzwald mountains (Figure 17). These moun- 
tains have typically been interpreted as the symmetric rift 
flank uplifts accompanying full graben formation [e.g., Muel- 
ler, 1970; Illies, 1970; Illies and Greiner, 1978]. Figure 17, 
from the south central Rhine graben, clearly shows the 
asymmetric nature of not only the rift flank topography but 
also the free-air gravity anomaly. The ratio of free-air gravity 
to topography over the flanking southeastern topography is 
large, indicative of lithospheric flexural strength during 
extension. In contrast, the relatively subdued northwestern 
flanking topography is associated with a broad, but low- 
amplitude, gravity anomaly. The Jura Mountains to the 
southeast of the Schwarzwald rift flank are related to Alpine 
compression, and their topography is not related to exten- 
sion in the Rhine graben. Much of the southern Schwarzwald 
signature may actually be part of the Jura Mountains, as can 
be seen by the merging of Jura and Schwarzwald trends in 
the contour map of Figure 17a. The southern Schwarzwald 
topography, therefore, may be unrelated to extension. 

The development of the southern Rhine graben and the 
symmetric distribution of the Vosges/Schwarzwald have been 
attributed by other workers either to the local isostatic re- 
sponse of the lithosphere to two-layer pure shear extension 
(i.e., where the distribution of crustal extension is narrower 
than the distribution of extension in the mantle [e.g., Kahle and 
Werner, 1980; Villemin et al., 1986]) or to small-scale convec- 
tion induced during extension [Buck, 1986]. A fundamental 
problem with the two-layer models, especially when attempt- 
ing to match the observed to predicted rift flank uplift, is the 
need to essentially replace the entire mantle lithosphere by 
asthenosphere (i.e.,/3-• o•, while •-• 1.0). This "infinite/3" 
approach is not restricted to Rhine graben studies but has been 
used by many workers to account for uplifted rift flanks 
adjacent to intracratonic and passive margin basins [e.g., Watts 
and Thorne, 1984; Steckler, 1985; Hellinger and Sclater, 1983; 
$clater and Celerier, 1989]. 

In Figure 17, we show the results of modeling both the 
topography and free-air gravity anomaly across the Rhine 
graben (profile A-A of Mueller and Rybach [1972]). For the 
Rhine graben, the modeling parameters, tc, k• -1, and e0 are 
assumed to be 32, 32, and 3 km, respectively. The heave on 
the boundary fault is similar to that reported by Illies[ 1970], 
indicating only minor extension of the crust. The modeled 
sediment-filled half graben is very similar in shape to the 
sediment-basement interface obtained from the base- 

Tertiary sediment isopachs [from Doebl and Olbrecht, 1972] 
recovered along the profile. The modeling predicts a maxi- 
mum basin depth of 2280 m (as compared to the observed 
2500 m [Doebl and Olbrecht, 1972]), and uplifted rift flank 
topography reaching a maximum height of 545 m above the 
level of the Rhine River on the southeast side (Figure 17b). 
Sediment densities are assumed to vary as a function of 
depth within the basin due to compaction because, as 
demonstrated in Appendix B, the density of the infilling 
sediment can significantly affect the amplitude of the rift 
flank uplift. For the Rhine graben, the compaction charac- 
teristics (Table I and Appendix B), q•0, kff • , and Ps are 
assumed to be 30%, 0.5 km, and 2.65 g/cm 3, respectively. 

This results in sediment densities ranging in value from 2.26 
to 2.64 g/cm3 as a function of depth in the basin. 

To model the free-air gravity anomaly, we follow the 
procedure developed by J. K. Weissel et al. (unpublished 
manuscript, 1989). We can see from Figure 17b that the 
observed free-air anomaly gently varies across the rift basin, 
a feature characteristic of the gravity field along the entire 
graben [e.g., Kahle and Werner, 1980]. That is, the gravity 
anomalies do not reflect details of the basement geometry. 
From our modeling, it would appear that the observed 
gravity over the rift basin primarily reflects the compaction 
characteristics of the sediment infill. We conclude that in 

general, there is excellent agreement between the observed 
and modeled rift flank uplift, basement depth, and free-air 
gravity anomaly for the profile across the Rhine graben 
shown in Figure 17. The best fitting effective elastic thick- 
ness Te is found to be 21-25 km, consistent with the value 
obtained by Karner and Watts [1983] in their gravity study of 
the Molasse basin. 

CONCLUSIONS 

We draw the following conclusions from the two simple 
kinematic and isostatic models for extension presented 
above and their application to both continental and oceanic 
rift zones: 

1. The uplift of rift flanks can be explained as the flexural 
isostatic rebound of the lithosphere following its mechanical 
unloading during extension. 

2. For this explanation to be viable, the lithosphere must 
retain finite mechanical strength or flexural rigidity even 
though it is extended. 

3. Isostatic rebound implies that the kinematics of exten- 
sion is governed by (1) a deeply penetrating detachment 
surface which decouples the upper and lower parts of the 
extending lithosphere, or (2) a rheological strong layer within 
the lithosphere which undergoes zero vertical displacement 
during extension and therefore serves as a reference surface 
when describing the kinematics of extension. Under these 
circumstances, the kinematics of extension produces a sur- 
face depression or "hole" that is filled by the material 
overlying the lithosphere. Although the buoyancy of the 
infilled "hole" is important for determining the isostatic 
response of the lithosphere to extension, whether the litho- 
sphere will be uplifted or subside during extension depends 
on the following condition: If the kinematically produced 
topography is greater (i.e., deeper) than the level to which 
the surface of the extended lithosphere would subside as- 
suming local isostatic compensation, then isostatic rebound 
of the lithosphere will occur. The areas flanking the extended 
lithosphere will then be uplifted if isostatic rebound is 
compensated regionally (i.e., by flexure) rather than locally. 

4. Flexurally uplifted rift flank topography forms at the 
time of rifting and represents a permanent deformation of the 
lithosphere. Modification of this initial topography, however, 
will occur over time due to erosion of the uplifted flanks and 
basin infilling by sediments, particularly in continental settings, 
and by vertical displacements due to decay of the thermal 
perturbation of the lithosphere engendered by extension. 

5. We investigated the isostatic consequences of simple 
slip along an initially planar, dipping normal fault cutting the 
entire lithosphere in order to explain footwall uplift observed 
at half graben. Our model provides some advantages over 
earlier treatment of the same problem by Vening Meinesz 
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[1950]. The methods differ in two basic ways: (1) We allow 
the lithosphere to respond as a continuous elastic plate, 
rather than allowing the footwall and hanging wall blocks to 
behave as independent elastic cantilevers. Our method ac- 
counts in a simple way for the mechanical interaction of the 
footwall and hanging wall as the lithosphere responds isos- 
tatically following slip on the fault. (2) We allow material 
overlying the plate to fill the space vacated by the hanging 
wall, thus avoiding the questionable assumption made by 
Vening Meinesz that fluid mantle rises isostatically and 
partially loads the footwall cantilever. 

6. Our model for flexural uplift of the footwall rift flank 
following slip on a normal fault cutting the entire lithosphere 
provides a good explanation for gravity and topography data 
from rift flanks in oceanic lithosphere. In particular, the 
flexural rebound model provides a much better explanation 
for the large free-air gravity anomaly observed over Broken 
Ridge than does a model which assumes that the uplifted 
topography of Broken Ridge is compensated in a local 
isostatic manner by either crustal thickening (i.e., by an Airy 
scheme of is•0Stasy) or by elevated temperatures within the 
lithosphere (i.e., by a Pratt scheme of isostasy). 

7. We investigated the isostatic consequences of litho- 
spheric extension where simple slip on a surface of arbitrary 
shape within the lithosphere is accompanied by pure shear 
extension in the upper and lower plates. We derived an 
integral expression linking these extension parameters which 
ensures conservation of mass in the extended lithosphere. 
Previous models for pure shear extension of the lithosphere 
in one [McKenzie, 1978] and two layers [Royden and Keen, 
1980; Hellinger and Sclater, 1983] can be derived as special 
cases from our general model. In fact, our model is a general 
formulation for instantaneous lithospheric extension involv- 
ing both pure shear and "simple shear" components. 

8. A problem arises with depth-independent pure shear 
extension of the lithosphere by a factor /3(x) in that any 
kinematic formulation of such extension gives the same result- 
ing topography when local isostatic compensation is assumed. 
If instead the lithosphere is allowed to respond flexurally 
during extension, different kinematic descriptions of depth- 
independent pure shear give resulting topography that is 
unique. In particular, if the surface to which the kinematics of 
pure shear extension is referred is sufficiently deep within the 
lithosphere, the rift flanks will be flexurally uplifted (see con- 
clusion 3, above). We speculate that because detachments may 
have no geological meaning when the lithosphere extends by 
depth-independent pure shear, rheological (or strength) strati- 
fication of the lithosphere may explain why the kinematics of 
lithospheric extension should be governed by a surface within 
the lithosphere rather than at its surface. 

9. The basin and rift flank topography and free-air grav- 
ity anomaly over the Rhine graben can be satisfied using our 
general extensional model with only a small amount (<5 km) 
of extension along a listric-shaped detachment soling at the 
crust-mantle boundary. We found, however, that the pre- 
dicted depth of the basin and associated gravity anomaly are 
both sensitive to the compaction characteristics assumed for 
the sediment infill of continental rift basins. 

10. Because the flexural rebound mechanism explains 
the observed topography and gravity anomaly over both 
oceanic and continental extensional domains, we suggest 
that the rheological differences between the two lithospheric 
types may not be as important in their response to extension 

as some laboratory experiments and theoretical models 
(e.g., yield-stress envelopes) have implied. 

APPENDIX A 

In this appendix we consider the thermal reequilibration 
problem connected with lithospheric extension. Although 
aspects of the development below have been treated previ- 
ously [McKenzie, 1978; Royden and Keen, 1980; and oth- 
ers], several features are probably new. In particular, we (1) 
treat a nonequilibrium but linear temperature gradient at the 
time of extension, (2) show how to account for crustal 
thickness variations caused by extension in the calculation 
of the thermal phase subsidence, and (3) demonstrate that it 
is necessary to calculate thermal subsidence incrementally 
over time if the changing lithospheric temperature structure 
governs flexural rigidity. 

Thermal Reequilibration of the Lithosphere Following 
Extension 

We need to know the lithospheric temperature structure 
with time following extension in order to determine (1) the 
additional vertical displacement that occurs as isostatic 
compensation to changes in the lithospheric temperature 
structure, (2) the spatial and temporal variations in flexural 
rigidity D (or, equivalently, Te) , which will occur if flexural 
rigidity depends on temperature, (3) the heat flow through 
the surface of the lithosphere with time, and (4) gravity and 
geoid anomalies which will also vary with time. 

As previous workers have done [e.g., McKenzie, 1978; 
Royden and Keen, 1980; Hellinger and Sclater, 1983], we 
uncouple the thermal problem associated with lithospheric 
extension from the mechanical or isostatic problem. We 
determine the temperature distribution with time in a slab of 
thickness h and separately calculate the isostatic response of 
the lithosphere to the changes in the lithospheric tempera- 
ture structure through time. This procedure is followed in 
the interest of mathematical expediency, and in most cases it 
does not lead to inaccurate results. 

The temperature distribution T(x, z, t) for times t > 0 
following extension can be written 

Tm 

r(x, z, t) = • z + r'(x, z, t) (A1) 
where T'(x, z, t) is the transient or anomalous temperature 
distribution, and Tmz/h is the steady state geotherm. We 
solve for T'(x, z, t) from the differential equation governing 
heat conduction in two-dimensions: 

= K • + (A2) 
ot O x 2 •-z2 j 

where K is thermal diffusivity. 
The boundary conditions for the top and bottom of the 

slab are 

r'(x, O, t)= r'(x, h, t)= 0 (A3) 

Our treatment of the thermal problem associated with exten- 
sion differs from those previously published in that we 
explicitly consider a lithosphere with a nonequilibrium tem- 
perature gradient at the time of extension. Indeed it would be 
fortuitous if the lithosphere were in a condition of thermal 
equilibrium at the time of rifting. We approximate the 
nonequilibrium temperature gradient by Tm/a, where a, the 
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thermal thickness of the lithosphere at the time of extension, 
is less than h, the steady state thickness required in (A1). 
Thus the initial conditions T'(x, z, 0) for our two models for 
instantaneous extension of the lithosphere are given by 

1. Normal faulting through the entire lithosphere (Figure 
3): 

T'(x,z, O)=• 1- O<z<a 
a 

for x < 0 and x >- e o + a/tan 3'. 

a 

for 0_< x < e0. 

+ x tan 3' 

a<z<h 

(A4a) 

where 

_ ! f_• - _ An*(X, t) 2(z. trt) l/2 An(x,)e (x x')2/4•tt dx' 

=- z 1 - + e0 tan 3' 
a 

(A7) 

An(x ) are the coefficients of the Fourier sine series which 
describes the anomalous vertical temperature distribution at 
t = 0. These coefficients are found in the normal way from 
the initial conditions T'(x, z, 0) in (A4) or (A5), i.e., from 

An(x) = • T'(x, z', 0) sin • dz' (A8) 

1. For the normal faulting model (Figure 3), the expres- 
sions for An(x ) are 

O<z-<a-xtan 3' 2Tm 1 h An(x) = { sin (n•tr a) } (A9a) (A4b) nrr nrra 

a-x tan 3'<z-<h 

(A4c) 

0 < z < (x - e o) tan 3' 

(x - e0) tan 3' < z -< a - e0 tan 3' 

T'(x,z, 0)=Tm[1--•] a-e0tan 3'<z-<h 
for e0 -< x < a/tan 3'. 

T'(x, z, 0) = 1 - 0 < z -< (x - e0) tan 3' 
a 

(A4d) 

T'(x, z, 0)= Tm[1- •] (x - eo) tan 3' < z-< h 
for a/tan 3'-< x < e0 + a/tan 3'. 

2. General model for simple slip on a detachment with pure 
shear extension in the upper and lower plates (Figure 6): 

(A5a) 

(A5b) 

T'(x, z, O) Tm[1 •] td(xO) a-- td(x•) = _ • <z<_h 

(A5c) 

The initial-boundary value problem (A2)-(A5) can be 
solved for T'(x, z, t) by the method of sources and sinks 
[Carslaw and Jaeger, 1958, chapter 10]. The solution can be 
written as 

(A6) T ' ( x, z, t) = •'. A n*( X, t)e -n z' ,:t/h 2 sin • z 
n=l 

An(x) 2Tm {x tan 3' 1 h nrr a nrra 

x -< 0; x > e0 + a/tan 

(A9b) 

O<x•e o 

t7)]}cos (-••L) 
(A10) 

+ • - sin 
nrra 

a h • 

(nz' td•xO) ) 2rm cos h nrr 

{(13L-J3) 13 [td(xO) /3r h • 

2T• 

An(x) = • COS • (X - e0) tan 3' 
nrr a 

+ •- sin • (a - e0 tan 3') (A9c) 
nrra 

e0 < x -< a/tan 3' 

2Tm{a-(x-eo) tan3' (•z' An(x) = COS • (X -- e0) tan 3' 
nvr a 

+ sin (x -- e0) tan 3' (A9d) 
nrra 

a/tan 3' < x -< e0 + a/tan 3' 

2. For the general model (Figure 6) involving slip along a 
detachment with pure shear in the upper and lower plates, 
the expression for An(x ) is 

An(x) = sin 
nrr nrr a 
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Thermal Phase Uplift/Subsidence: Local Isostasy 

Consider the incremental change AT(x, z, t + At) in the 
temperature structure of the lithosphere over the time inter- 
val t to t + At. From (A6), this can be written 

AT'(x, Z, t + At) = • [An*(X, t + At)e -n rr2•rAt/h 
n=l 

- An*(X, t)]e -n2•r2gt/h sin • (All) 

Because of the temperature dependence of density (see (3) 
and (4) in text), the incremental temperature change AT'(x, 
z, t + At) produces density changes so that the mass/unit 
area in columns of height h will change. Incremental subsid- 
ence or uplift A ST(X, t + At) will occur to balance these 
changes in a local or pointwise isostatic manner. This can be 
written 

AST(X , t + At)= • p• Ar'(x, z', t + At) clz' 
Pa- Pw 

f•,h ] + p,• Ar'(x, z', t + At) dz' (A12) 

where t• is the new crustal thickness at x due to extension. 
Substituting (A 11), we find 

-a o• h •.{ Asr(x, t+At)=•n • •C (P/n-P•) Pa -- Pw = 1 nrr 

where C} is given by 
2 2 

C• = [A•(x, t + •t)e -n •2gAt/h --g•(x, t)]e -n2•2•t/h2 
(A•4) 

Note that the methodology given in (A12)-(A14) to deter- 
mine locally compensated, thermal phase uplift or subsid- 
ence differs from previous studies in that the temperature 
changes in the crust are explicitly considered in (A12). Most 
previous formulations treat the lithosphere as entirely of 
mantle composition and ignore the contribution of density 
changes in the crust to thermal phase subsidence. 

The effect of lateral strength or flexural rigidity in the 
lithosphere is to redistribute the locally compensated sub- 
sidence or uplift, as we have discussed in the text. The 
locally compensated subsidence, or, equivalently, the isos- 
tatic restoring stresses, act as a normal load to a thin elastic 
plate overlying a fluid substratum. Thus, for each time 
increment t to t + At, the flexurally redistributed thermal 
subsidence Aw(x, t + At) is found from (cf. (6) in the text) 

0X 2 [(pa-- Pw) g 0X 2 • AW(X)] q- AW(X) = AST(X ) (A15) 

where A ST(X, t + At) is the incremental amount of thermal 
subsidence from (A12) and (A13). 

In general, flexural rigidity D(x, t + At) varies laterally 
during thermal reequilibration of the lithosphere, and (A15) 
is solved using a finite difference approach developed by 
Bodine [1981]. Because flexural rigidity also varies tempo- 
rally, we need to calculate thermal phase subsidence or uplift 
incrementally with time. To show this, we will assume that 
at time t + At flexural rigidity does not vary spatially, so that 
(A15) can be solved algebraically in the Fourier transform 
domain (cf. (21)), or as a convolution operation in the space 
domain: 

AW(X, t q- At)= AST(X' , t + At)ch(x- X', t + At) dx' 

(A16a) 

Aw(x, t + At) = AST(X, t + At).ch(x, t + At) (A16b) 

where the asterisk in (A16b) symbolizes the convolution 
operation and 4• represents the flexural response of the 
lithosphere to an "impulsive" load; 4•(x) is the inverse 
Fourier transform of cI)(k), defined in (21). 

Using the notation introduced in (A16b), we can express 
w(x, t'), the total, flexurally redistributed thermal subsid- 
ence at time t' after extension as 

t/ 

w(x, t + t') = • A w(x, t +jAt) (A17) 
j=l 

where t' - nat and t, the time at which extension occurred, 
is taken as t - 0 in the development that follows. We use the 
convolution representation for A w from (A16b) to rewrite 
(A17) as 

w(x, t')= AST(X, At) ß oh(x, At) + AST(X, 2At) 

Calculation of Thermal Phase Uplift/Subsidence 
for Finite Flexural Rigidity 

The locally compensated initial (time t - 0) and thermal 
phase (t > 0) subsidence or uplift due to lithospheric 
extension can be obtained by the development in the text 
and in this appendix up to this point. In particular, for the 
thermal phase calculations, locally compensated subsidence 
or uplift for any time t' after extension can be obtained by 
letting t = 0 and A t = t' in (A11)-(A14). However, if the 
lithosphere has nonzero flexural rigidity that varies with time 
as the anomalous temperatures decay, the calculation of 
thermal phase subsidence or uplift must be done incremen- 
tally in time. The purpose of this section is to show why this 
is so. 

ß •b(x, 2At) +... + AST(X , nat) * oh(x, nat) (A18) 

We can also write an expression for the total locally 
compensated subsidence ST(X, t') at time t' since extension 
as a summation similar in form to (A18): 

ST(X , t') = AST(X , At) + As•x, 2At) +'.. + AST(X , nat) 

(A19) 

We next assume that it is not necessary to calculate 
thermal phase subsidence incrementally, even though the 
flexural rigidity of the lithosphere varies with time. If we 
now use st(x, t') in (AI$) to find wt(x, t') its flexural 
equivalent and write wt(x, t') using (A16b) as 

Wt(X, t')= St(X, t') * oh(X, t') (A20) 
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which, from (A19), can also be expressed as the summation: 

wr(x, t') = Asr(x, At),c•(x, nat) + Asr(x, 2At) 

ß c•(x, nat) +... + Asr(x, nat) ß c•(x, nat) (A21) 

Comparing (A18) and (A21), it is apparent that w(x, t') and 
wr(x, t') are different when the flexural rigidity of the 
lithosphere varies with time. This result demonstrates that 
thermal phase subsidence needs to be calculated incremen- 
tally, since flexural rigidity will likely vary with time follow- 
ing extension if it is a function of the instantaneous temper- 
ature distribution. For our modeling, the time increments 
need only be "sufficiently" small, and we use time intervals 
of n 2 m.y., where n = 1-10. 

The depth z(x, t') to the surface of the lithosphere at time 
t' since rifting is the sum of (1) w(x, t'), the thermal phase 
subsidence or uplift from (A18), (2) the initial subsidence or 
uplift wi(x, 0) found from (5a)-(5g) or (16) and (6), and (3) the 
topography Zo(X) related to a kinematic model for extension 
given in (2) or (15). When flexural rigidity varies temporally 
but not spatially, we can extend the summation notation 
given above to include wi(x, 0) and express z(x, t') as 

t/ 

z(x, t') = Zo(X) + • As(x, jAt) * qb(x, jAt) 
j=0 

(A22) 

simple porosity-depth relation is that found empirically by 
Athy [1930]: 

Ip(Z) = IpO e-kpz (B1) 

where ½0 is the initial porosity (i.e., at z = 0) and kp is the 
porosity "decay" constant with depth. The compaction 
parameters (i.e., ½0 and k• -1) depend on the density of the 
fluid supporting the sediment matrix and are empirically 
obtained. Generally, the supporting fluid is either water or 
air. 

Forward modeling of compaction requires that we can 
sspecify how the sediment load within a basin changes as a 
function of depth and time. Any column of compacting 
sediment z0 can be separated into two components: (1) the 
equivalent thickness of sediment grains with density Ps, 
given by 

fO Zø h sediment grains = (1 -- ½(Z)) dz (B2) 

and (2) the thickness of the supporting fluid with density 
Pfluid, given by 

hfluid-- Z0- hsediment grains (B3) 

The total pressure (or load) acting on thes lithosphere due to 
this column of compacting sediment is therefore 

APPENDIX B 

This appendix deals with the forward modeling of sedi- 
ment compaction and its effects on the rift flank uplift. 
Flexurally uplifted rift-flank topography due to mechanical 
unloading of the lithosphere during extension represents a 
permanent deformation. Its destruction, therefore, must be 
related to factors essentially unrelated to the rifting process. 
Both the loading effects of sediment infill and erosion are 
potential candidates for the destruction of uplifted rift flanks. 
However, the sediment infill in a basin is a function of depth 
due to compaction. Therefore we need to model the chang- 
ing infill load, as it relates to compaction, if we expect to 
predict the resultant magnitude of any rift flank topography. 
Note that the forward modeling of compaction presented 
here is new and differs from previous studies [e.g., Sclater 
and Christie, 1980]. Previous workers dealt solely with the 
conceptual process of decompaction (i.e., sediments do not 
in fact decompact when the overburden is removed). While 
the same physics is embodied in the "mass equations" (cf. 
equation (B2)), the forward modeling of compaction repre- 
sents a nonlinear process in that sediment deposition at any 
time modifies the thickness of all older stratigraphic units 
and increases the space available for sedimentation. We link 
this approach to the sediment infilling of the subsidence 
engendered by extension. Another important and rarely 
appreciated aspect of sediment compaction is that the grav- 
ity anomaly over a basin is sensitive to the compaction 
characteristics of the sediment infill (P. A. Cowie and G. D. 
Karner, unpublished manuscript, 1989). 

The sediment load within a basin is a function of sediment 

porosity ½(z). As sediments fill a basin, they will do so in 
such a way as to maintain a porosity-depth profile. In 
general, ½(z) is primarily a function of depth, but it also 
depends on lithology, the degree of overpressuring and 
underpressuring, and diagenetic history. An example of a 

P s gh sediment grains q- P fluid ghfluid 

If Pfluid is the same as Pw (i.e., the material overlying the 
lithosphere), then the isostatic effect of the pore fluid has 
already been included in the determination of the tectonic 
subsidence. In this case, the effective load infilling the basin 
is simply 

p s gh sediment grains 

Equations (B1)-(B3) form the basis for our forward mod- 
eling of the compaction process. Two problems need to be 
addressed: (1) What is the total thickness of sediment grains 
infilling the basin for a given time interval and hence loading 
the basement, and (2) for any one time interval, how does the 
underlying sediment compact and thereby increase the avail- 
able space for further sedimentation? 

Sediment Infilling 

Single time step. Consider a water-filled depression, 
depth Zhole- If we were to fill this hole with sediment, then the 
equivalent thickness of sediment grains within the column 
actually loading the lithosphere is given by (B2), which 
becomes on substituting for ½(z) (equation (B1)): 

hsediment grains• = Zhole- IP0[1 -- e-kpZhø'½]/kp (B4) 

Filling Zhole with sediment, however, flexurally depresses the 
basement by an amount, Aft: 

A fl = [(Ps - P w) qb/ (p m - P w)] * h sediment grains• (US) 

where Pa and Pw are the asthenosphere and displaced 
densities, respectively, •b is the flexural isostatic response of 
the lithosphere to loading, and the asterisk is the convolution 
operation. This additional subsidence will fill with sediment 
according to the same porosity law and, in doing so, com- 
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V=Vo e Vo =100% 
4 k• 1 = 0 km 

b) 

4 •o = 0% 
kp -1 = 0 km 
Ps = 2650 kg/m 3 

c) 

%,x • • •: 60% 
4 • k/• = 2.5 km 

Fig. B1. The effect on uplifted rift flanks when the adjacent basin is infilled with compacting sediments. Three 
model stratigraphies at time t - 100 m.y. after extension are shown in Figures Bla-Blc for different values of the 
parameters in the simple porosity-depth function shown at the top left [Athy, 1930]. Parameter ½0 denotes the porosity 
of the surface sediment, Ps is the sediment grain density, and k v governs how quickly porosity decreases with depth. 
Notice in Figure Blb that the flank topography is completely pulled down if sediment of high bulk density is allowed 
to infill the basin. The profile in Figure Bla is the same as in Figure 9 (bottom left) drawn with half the vertical 
exaggeration. 

pacts the underlying sediments. The problem now is to 
determine the equivalent thickness of sediment grains that 
will infill Af• given that ½(z) is maintained throughout the 
sediment column. The total thickness of sediment grains 
contained in Zhole q- Afl is 

hsediment grains 2 = (Zhole + Afl) -- tP0/k [1 - e -kv(zhø•e +/xf,)] 
(B6) 

The incremental sediment load (hsediment grains2 -- 
hsediment grains•) flexurally depresses the basement creating an 
additional subsidence A f2. This procedure, of sediment- 
induced loading, subsidence, compaction, and subsequent 
infilling, is repeated until convergence is reached using an 
appropriate criterion (e.g., when the incremental flexural 
subsidence is <10 m). The total sedimentary thickness for a 
given time interval is therefore 

Ztotal-- Zhole q- Z Aft' 
i=1 

(B7) 

where n defines the number of iterations until convergence is 
reached. 

Multiple time steps. For the single time step considered 
above, the problem is one of calculating the additional 
basement subsidence induced by sediment loading as the 
column compacts: only the basement itself needed to be 

tracked with time. In contrast, for incremental time steps, it 
is necessary to track not only the basement but also each 
interface between the various stratigraphic units. 

Once a unit is deposited, the thickness of sediment grains 
(equivalently its mass) will remain constant, regardless of 
the degree of compaction. The total thickness of sediment 
grains in a stratigraphic unit defined by Ztop and Zbottom is 

Zbottom h sediment grain s = (1 -- ½(Z)) dz (B8) 
ß d Ztop 

which, on integration using (B 1), gives 

hsediment grains = (Zbottom- Ztop) q- tPO[ e-kvzbøttøm -- e-kvztøp]/kp 
(B9) 

The unit thickness at any other depth can therefore be 
calculated using the iterative equation 

Zbottom q- ( tP 0 e -kv Zbottom)/kp 

= Ztopq-(tPoe-kvztøp)/kp+hsediment grains (BI0) 

where Zto p is usually given and Zbottom is to be calculated. To 
forward model compaction, it is important to keep in mind 
that sediment is allowed to accumulate in two ways: (1) 
primary sedimentation associated with the tectonic subsid- 
ence of the basement, and (2) secondary sedimentation 
associated with compaction of the sediment column. 
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Consider three interfaces, Zb, Zseds, and Zsur•, bounding 
two stratigraphic units where b, seds, and surf initially refer 
to the basement/sediment, sediment/sediment, and sedi- 
ment/surface interfaces. We wish to add a third unit. Now, 
the tectonic subsidence A s• over a given time interval causes 
the basement to subside to a new depth, z0 + As•. The 
sediment/sediment and sediment/surface interfaces Zseds and 
Zsur• will subside to Zseds + Asl and Zsur• + Asl, respectively, 
in sympathy with the basement. By using (B9) to determine 
the equivalent thickness of sediment within each unit, the 
new basement depth (Zb + As•), and equation (B10), it is 
possible to first calculate the new position of Zseds and then 
the new position of Zsur• (which will no longer be at the 
surface). The new "hole," Zsur•, will be greater than the 
original tectonic subsidence A s• because of the effects of 
compaction. The sediment deposited into this depression 
will also follow a given porosity law. Again however, any 
sediment infill will flexurally load the basement, inducing yet 
further subsidence All. The method so far has been to repeat 
steps (B6)-(B9). Following the infilling of this sediment- 
induced subsidence, the entire process must be repeated. 
That is, given a new position for the basement induced by 
sediment loading, new positions need to be calculated for 
each sediment/sediment interface through the column, lead- 
ing to the creation of yet further compaction-induced sub- 
sidence at the surface. Iteration continues until the user- 

defined convergence criterion has been reached. For the 
next time interval, the driving subsidence initiates the entire 
iteration process again and, over the life of the tectonic 
subsidence, produces a stratigraphic column. 

To forward model compaction within an evolving sedi- 
mentary basin (e.g., the basin shown in Figure 9), it is 
necessary to repeat the above analysis over the region of 
basin development (Figure B 1). In Figure B 1, we illustrate 
the effect of varying the compaction parameters and the 
effect on the magnitude of the rift flank topography. Initially, 
we set ½0 to 100%, implying that the sediment fill is entirely 
the supporting fluid. The resulting time line stratigraphy 
(Figure B la) showing basement subsidence with time is a 
useful "null" experiment with which to compare and con- 
trast results for ½0 > 0. For ½0 = 0%, the sediment grain 
density and bulk sediment density are the same. As can be 
seen in Figure B lb, the •2 km rift flank uplift has decreased 
to the extent that the flanks have become part of the basinal 
area. Such a situation, that of ½0 = 0%, is the usual 
assumption used in the modeling of basin stratigraphy [e.g., 
Watts et al., 1982; Sawyer et al., 1982] except that Ps is 
assumed constant and in the range 2.2-2.5 g/cm3. 

For the general case of ½0 > 0 and k• -1 > 0, however, the 
resultant rift flank topography is intermediate between Fig- 
ures B l a and B lb. In particular, Figure B l c, using repre- 
sentative compaction parameters of ½0 = 60% and k• -1 = 2.5 
km, predicts a rift flank uplift of 1.5 km 100 m.y. after rifting. 
In addition to diminishing flank uplift, compaction also 
significantly modifies the time line stratigraphy, especially 
that of the rift phase and early thermal phase sediments. 
From Figure B 1, we conclude that (1) the loading effect of 
sediment infill can have a major effect in reducing the 
magnitude of rift flank topography, and (2) compaction 
significantly modifies the rift to postrift sediment thickness 
ratios. 
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