

Predicting Bathymetry from Satellite Altimetry: The Good, The Bad, and the Ugly

David T. Sandwell - Scripps Institution of Oceanography Walter H. F. Smith - Laboratory for Satellite Altimetry, NOAA Shengjun Zhang – Northeastern University, China Joseph J. Becker - Naval Research Laboratory Christopher Olson - Scripps Institution of Oceanography

Objective – construct the best possible global map of the deep ocean floor for science, public outreach, and applications.

- Tectonics and topography of the deep ocean
- Mapping by ships what is missing?
- Mapping by satellites

Funding: Google Inc. National Science Foundation Office of Naval Research National Geospatial Agency

plate tectonics

Copyright © 2004 Pearson Prentice Hall, Inc.

(Trujillo A. P. and H. V. Thurman, Essentials of Oceanography, Prentice Hall, New Jersey, 2004)

topography and bathymetry

Google Earth version at <u>http://topex.ucsd.edu</u> or ftp://topex.ucsd.edu/pub/srtm30_plus/SRTM30_PLUS.kmz

Mid Atlantic Ridge

- alternating spreading ridge and transform offset segments
- ridge earthquakes have normal focal mechanism
- transform earthquakes have strike-slip focal mechanism

fast vs. slow spreading

abyssal hills are the most common landform on the Earth

seamounts or undersea volcanoes

[Wessel JGR, 2001]

size distribution of seamounts

uncharted seamounts > 3 km tall

Exploring the Deep Ocean Basins with Ships and Satellites

- Tectonics and topography of the deep ocean
- Mapping by ships what is missing?
- Mapping by satellites

Soundings used in SRTM15/30_PLUS multibeam, singlebeam, grids, . . .

60° 30° 0 -30° -60° 120° -150° 30° 60° 150° 180° -120° -60° 0° 90 -90 -30° 0

1/2 of global seafloor bathymetry not resolved at 10 km

[Smith and Marks, 2009]

source	# points (500 m)	% flagged	% seafloor @1 km
NGDC_multi	127901083	4.75	5.134
NOAA_geodas	40897565	11.06	2.506
US_multi	51187020	5.32	2.219
JAMSTEC_multi	79103040	0.62	2.04
SIO_various	40754645	13.93	1.325
IBCAO_various	18302390	0.03	0.773
GEBCO_various	8950614	0.17	0.523
AGSO_grid	12875795	2.62	0.503
DNC_points	5878651	1.23	0.49
CCOM_grid	10023471	0.08	0.195
GEOMAR_grid	18138868	0.06	0.181
NGA_single	4415125	19.44	0.179
NOAA_grids	6748376	0.49	0.162
IFREMER_single	7653537	10.62	0.151
3DGBR_various	5523560	11.36	0.112
NAVO_multi	422089	0.06	0.009
total	438,775,829		16.5 % in V11

percentage of seafloor mapped at 1 km resolution

Needs for Improved Bathymetry in the Deep Oceans

Science

- global tectonics, seafloor roughness
- seamounts
- tsunami models
- ocean circulation and tides
- marine ecosystems
- planning tool

Outreach and applications

- education and outreach
- military applications
- Industry applications

modern mapping tools

sparse soundings + gravity anomaly = global bathymetry

upward continuation and isostatic compensation space domain

Bathymetry from Gravity and Ship Soundings: Inverse Nettleton Method

- 1. Grid available depth soundings.
- 2. Separate into low-pass and high-pass filtered components (~160 km).
- 3. High-pass filter gravity and downward continue to low-pass filtered depths.
- 4. Perform a robust linear regression of high-pass topography and high-pass, downward-continued gravity in small regions.
- 5. Multiply gravity by topography/gravity slope to predict topography in pass band.
- 6. Add original low-pass filtered depth.
- 7. Force agreement with soundings. (Warning this last step can create anomalies on the ocean floor.)

Google Earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

61 km

Google earth

lat -33.076273° lon -120.966898° elev -3506 m

Eye alt 250.29 km 🔘

Exploring the Deep Ocean Basins with Ships and Satellites

- Tectonics and topography of the deep ocean
- Mapping by ships what is missing?
- Mapping by satellites
- How can we do better?

slope of ocean surface

slope requirement

Laplace's equation, assume 2-D anomaly

$$\nabla^2 \Phi = 0 \qquad \Rightarrow \qquad g_o \frac{\partial \eta}{\partial x} + \frac{\partial g}{\partial z} = 0$$

take fourier transform w.r.t. x

$$\Delta g(k) = ig_o \frac{k}{|k|} \eta(k)$$

1 µrad of slope error \Leftrightarrow 1 mGal gravity error

Achieving 1 mGal Gravity Accuracy

- Improved range precision -- A factor of 2 or more improvement in altimeter range precision, with respect to Geosat and ERS-1, is needed to reduce the noise due to ocean waves.
- Fine cross-track spacing and long mission duration -- A ground track spacing of 6 km or less is required.
- Moderate inclination -- Current non-repeat-orbit altimeter data have high inclination and thus poor accuracy of the E-W slope at the equator.
- Near-shore tracking -- For applications near coastlines, the ability to track the ocean surface close to shore is desirable.

Retracking of SARAL/AltiKa Radar Altimetry Waveforms for Optimal Gravity Field Recovery

Shengjun Zhang^a and David T. Sandwell^b

^aSchool of Geodesy and Geomatics, Wuhan University, Wuhan, China; ^bScripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA

ABSTRACT

The accuracy of the marine gravity field derived from satellite altimetry depends on dense track spacing as well as high range precision. Here, we investigate the range precision that can be achieved using a new shorter wavelength Ka-band altimeter AltiKa aboard the SARAL spacecraft. We agree with a previous study that found that the range precision given in the SARAL/AltiKa Geophysical Data Records is more precise than that of Ku-band altimeter by a factor of two. Moreover, we show that two-pass retracking can further improve the range precision by a factor of 1.7 with respect to the 40 Hz-retracked data (item of range_40 hz) provided in the Geophysical Data Records. The important conclusion is that a dedicated Ka-band altimeter-mapping mission could substantially improve the global accuracy of the marine gravity field with complete coverage and a track spacing of <6 km achievable in \sim 1.3 years. This would reveal thousands of uncharted seamounts on the ocean floor as well as important tectonic features such as microplates and abyssal hill fabric.

ARTICLE HISTORY

Received 17 April 2016 Accepted 22 November 2016

KEYWORDS

Gravity field; noise level; SARAL/AltiKa; waveform retracking

2-pass waveform retracking improves range precision

Estimate 3 parameters: arrival time (t_o), rise time (σ), and power (A).

$$M(t) = \frac{\mathbf{A}}{2} \{ 1 + erf(\eta) \}; \qquad \eta = \frac{t - t_o}{\sqrt{2\sigma}}$$

[Sandwell and Smith, 2005; Zhang and Sandwell, 2016]]

AltiKa and Envisat waveforms

[Zhang and Sandwell, 2016]

Fitting results of available waveforms

[Zhang et al., 2017]

Altimeter	3-PAR @ 2 m	2-PAR @ 2 m	<i>Smith</i> [2015] showed standard GDR of AltiKa is 2 X more precise than Envisat
Geosat	88.0	57.0	
ERS-1	93.6	61.8	<i>Zhang and Sandwell</i> [2016] showed that AltiKa also benefits from 2-pass retracking.
Envisat	78.9	51.8	
Jason-1	75.9	46.4	In July 2016 AltiKa began geodetic mapping. Could
CryoSat-2 LRM	64.7	42.7	achieve 1 mGal global marine gravity.
CryoSat-2 SAR	49.5	49.7	
AltiKa	34.3	20.5	AltiKa 4.5 mm @ 1 Hz

Altimeter Tracks for Southeastern China Seas

0° 60° 120° 180° –120° -60° **0**° CryoSat, Envisat Jason-1, Geosat, ERS-1 60° 30° **0**° 0 **-30**° -60°

gravity anomaly error (mGal) calibrated using NGA analysis

remaining sources of error

remaining sources of error

VGG (V18) Geosat + ERS

VGG (V24) + CryoSat + AltiKa + Jason-1

Discovery of small seamounts

VGG (V18) Geosat + ERS

VGG (V24) + CryoSAT + AltiKa + Jason-1

Resolution of uncharted abyssal hills

VGG (V18) Geosat + ERS

VGG (V24) + CryoSAT + AltiKa + Jason-1

Resolution buried tectonic structures

Propagating Ridge, South Atlantic

[Sandwell et al., Science, 2016]

Mammerickx Microplate, Indian Ocean

[Matthews et al., EPSL, 2015]

Conclusions – 1

- Topography and tectonics of the deep ocean are VERY different from the continents.
- Abyssal hills, created at seafloor spreading ridges, are the most common landform on the planet.
- There could be 100,000 seamounts taller than 1000 m that are uncharted.
- Mapping by ships provides ~100 m spatial resolution but it would take 125 ship years to map the oceans.
- Mapping by satellites (gravity) has ~6000 m spatial resolution and is improving.

Conclusions - 2

• GOOD

Global marine gravity from satellite altimetry will reach 1-mGal accuracy with AltiKa and SWOT.

It may be possible to locate all seamounts > 1 km tall and resolve abyssal hill fabric.

• BAD

Only 17% of the seafloor has been mapped by sonar at < 1 km resolution.

Depths predicted from gravity have 6 km resolution and an accuracy of only 250 – 400 m.

• UGLY

Bathymetric prediction fails on continental margins because sediment masks original topography.

The rate of seafloor mapping has decreased since the end of the Cold War, especially in the southern hemisphere.

How can we do better?

- Improve public archives of bathymetry.
- Map the oceans with multibeam echosounders ships of opportunity.
- Acquire new satellite altimeter data.
- Declassify US Navy bathymetry data.

1/2 of global seafloor is more than 10 km from a depth sounding

[Smith and Marks, 2009]

areas of seafloor more than 10 km from a sounding

How can we do better?

- Improve public archives of bathymetry.
- Map the oceans with multibeam echosounders ships of opportunity.
- Acquire new satellite altimeter data.
- Declassify US Navy bathymetry data.

Cape Town to Punta Arenas - Melville - Feb, 2011

red - great circle = 6896 km green - 10 new seamounts = 7130 km (1.034) violet - 11 new seamounts = 7069 km (1.025)

Cape Town to Punta Arenas - Melville - Feb, 2011

Okeanos Explorer - Monterey Bay to Honolulu – 2013 Elizabeth Lobecker

Irish National Seabed Mapping Programme – Thomas Furey - 2015

How can we do better?

- Improve public archives of bathymetry.
- Map the oceans with multibeam echosounders ships of opportunity.
- Acquire new satellite altimeter data.
- Declassify US Navy bathymetry data.

Modern Seafloor Mapping Tools Future

schematic: SWOT mission website (https://swot.jpl.nasa.gov/)

How can we do better?

- Improve public archives of bathymetry.
- Map the oceans with multibeam echosounders ships of opportunity.
- Acquire new satellite altimeter data.
- Declassify US Navy bathymetry data.

MEDEA: Scientific Utility of Naval Environmental Data, (Mitre, Co., June, 1995)

FIGURE 2. WORLDWIDE SURVEY OPERATIONS

The red shaded area illustrates the global scope of the Navy's oceanographic survey and measurement program. As the tapered shading suggests, there has been a greater concentration of resources in the Northern Hemisphere than the Southern Hemisphere.

Also shown schematically are inset illustrations of how different the densities of ship tracks might be in different ocean areas. Tracks of naval oceanographic surveys (blue) from just the unclassified cruises covering the years from 1986 to 1995 show the worldwide nature of the sources of data.

Examination of all survey ship tracks from the entire cold war history of naval survey operations would show both a global breadth of coverage and a scientifically well founded spatial sampling of ocean processes.

MEDEA: Scientific Utility of Naval Environmental Data, (Mitre, Co., June, 1995)

TABLE 2. FINDINGS RELATED TO SPECIFIC DATA SETS

• Scientific Utility

We have singled out 10 data sets whose potential for supporting important science is so significant that our first recommendation to the Navy is to "...consider prompt declassification of the high priority environmental data sets identified here." Four of these data sets are in the domain of geology and geophysics (Marine Gravity, Geomagnetics, Geosat Altimetry, and Seafloor Sediment Properties), two are concerned with sea ice (Ice Keel Depth Acoustic Data and Historical Ice Morphology), and four are concerned with the volume and boundary properties of the ocean (Marine Bathymetry, Realtime Salinity and Temperature Fields [GOODS], Archival Salinity and Temperature Fields [MOODS], and Ocean Optics and Bioluminescence).

• Prioritization of Data Sets

The listing below shows a twofold prioritization of the probable scientific importance and uniqueness of the data, should they be made publicly available.

First Tier

- Marine Gravity
- Geomagnetics
- · Ice Keel Depth Acoustic Data
- Marine Bathymetry
- Geosat Altimetry

Second Tier

- Historical Ice Morphology
- · Seafloor Sediment Properties
- Realtime Salinity and Temperature Fields (GOODS)
- Archival Salinity and Temperature Fields (MOODS)
- · Ocean Optics and Bioluminescence

gridded map products — flow chart

inverse model

-4000

-20

Need <500 m postings

	seamount		sea surface		
	height (km)	radius (km)	slope (μrad)	width (km)	∆height (mm)
after SWOT	1.00	2.50	1.0	5.2	5.2
	1.25	3.13	1.9	5.3	10.1
today	1.50	3.75	3.2	5.4	17.3
	2.00	5.00	7.3	5.6	40.9
	2.50	6.25	13.3	5.7	75.8
	3.00	7.50	21.7	5.8	125.9

-10

10

20

0

distance (km)

Seamount Discovery Tool

- Created as an efficient way for ships of opportunity to plan routes that travel over uncharted seamounts.
- Discovery tool uses Google Earth and a GPS

Wessel, P., D. T. Sandwell and S-S. Kim, The global seamount census, Oceanography, 23:1 p. 24-33, 2010.

Sandwell, D. T., and P. Wessel, Seamount discovery tool aids navigation to uncharted seafloor features, Oceanography, 23:1, p. 24-26, 2010.

plates

FZ direction + magnetic anomalies = seafloor age [Mueller et al., 1997]

20 Hz range precision

Altimeter	3-PAR @ 2 m	2-PAR @ 2 m	3-PAR/2-PAR
Geosat	88.0	57.0	1.54
ERS-1	93.6	61.8	1.51
Envisat	78.9	51.8	1.52
Jason-1	75.9	46.4	1.63
CryoSat-2 LRM	64.7	42.7	1.51
CryoSat-2 SAR	49.5	49.7	.996
CryoSat-2 SARIN	138.5	138.7	.998

[Garcia et al., 2014]

along-track sea surface slope over Hawaii

gravity anomaly

- use Laplace equation to convert slopes to gravity anomaly.
- restore long- λ gravity model.

