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Abstract—Atmospheric signal in spaceborne radar interfer-
ograms can be used for both meteorological interpretation in
atmospheric studies, as well as for subtracting it from interfer-
ograms intended for surface deformation or topography studies.
We show that atmospheric signal can be conveniently described
stochastically by a power-law behavior, where the absolute
amount of energy in the signal, related to the weather situation,
can be described using a χ2 probability density function, based
on EUREF GPS data. We present single master stacking as well
as cascaded interferogram stacking as methods to derive the
atmospheric phase screen from the data.

I. INTRODUCTION

Atmospheric monitoring using repeat-pass satellite radar
interferometry enables the derivation of fine-resolution (20 m)
integrated refractivity maps. Using some generally available
surface pressure and temperature measurements, these maps
can be converted to quantitative maps of the spatial water
vapor distribution in the atmosphere [1].

The main problem in the interpretation of such maps is that
they are derived from radar images acquired at different times
by a process of differencing, resulting in a superposition of two
atmospheric states per interferometric product. This implies
that the interpretation of the atmospheric parameters suffers
from the inherent acquisition ambiguity. Although distinct
features in the atmospheric maps can often be attributed to
one of the two acquisitions, based on the sign of the anomaly
and its physical appearance, a robust separation of the effects
has not been possible.

In this paper we discuss two possibilities for resolving the
acquisition ambiguity and obtaining improved water vapor
products. In the first approach a ’single-master’ stack is used
and followed by estimating the contribution of the common
image by (weighted) averaging, similar to the permanent
scatterers approach of Ferretti et al. [2], even though coherent
distributed scattering is preferred for atmospheric applications.
The second approach utilizes ’cascaded’ interferograms’ in
which all interferometric combinations with shortest temporal
baselines are computed, while the one with minimal atmo-
spheric disturbance is used to calibrate the others. We com-
ment on the quality of resolving the ambiguity, and what the
consequences are for the derived water vapor product quality.
An extension of the stochastic parameterization discussed in
[3] is given based on EUREF permanent GPS observations.

II. SIGNAL DECOMPOSITION

The goal of this study is the optimal separation of the
contributions of atmospheric phase delay, topography, and
deformation in the observed interferometric phase. This sepa-
ration is necessary whenever one of these three signals is the
key parameter of interest. Regarded as a parameter estimation
problem, the superposition of these signals effectively results
in a rank defect. Here we will assume that a reference DEM is
available with sufficient quality. Furthermore we assume that
there is no unknown deformation in the region, an assumption
that is valid for many areas in the world.

A. Observation statistics

The principal interferometric observation quantity is a
double-difference phase measurement, where the differencing
is performed both temporally and spatially. Phase observations
ψp,t1 and ψp,t2 at position p and time ti are interferometrically
combined to form interferometric phase difference

ϕp,t1t2 = ψp,t1 − ψp,t2 . (1)

This temporal phase difference is not physically interpretable,
due to the uncertainty in the platform and antenna phase center
position, the scattering mechanisms, the phase ambiguity, and
the atmospheric delays. A second spatial differencing leads to

ϕpq,t1t2 = ϕp,t1t2 − ϕq,t1t2

= ψp,t1 − ψp,t2 − ψq,t1 + ψq,t2 or
(2)

ϕ = [1,−1,−1, 1]ψ

for short, with variance-covariance (vc) matrix

Qψ =




σ2
p,1 σp,12

σp,12 σ2
p,2

σ2
q,1 σq,12

σq,12 σ2
q,2


 . (3)

In this representation we assume no correlation between ob-
servations at position p and q, that is, we assume spatially
correlated atmospheric signal as an unknown parameter to
be estimated, not as noise. The phase observations ψp,ti

depend on the physical interaction of the radar waves with
the earth’s surface, which is generally inpredictable for dis-
tributed scattering mechanisms. As a result, the probability
density function (pdf) of the phase observation is uniform
in the [−π,+π) interval, and zero elsewhere. This results
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in a variance of σ2
p = σ2

q = π2/3. The existence of non-
zero covariance terms σp,12 are the key to the application
of interferometry. Assuming that the scattering mechanisms,
driven by the physical distribution of scatterers on earth and
the interferometric geometry, are correlated causes relatively
large covariance values which decrease the variance of the
double-difference interferometric observables φ.

Although the variance terms in Qψ are known from the uni-
form phase distribution, using a set of two radar acquisitions
to form an interferogram does not give a reliable estimate of
the covariance terms. Conventional methods assume ergodicity
and use a spatial window to estimate the covariance per point,
or its equivalent parameter coherence. This methodology ob-
viously fails whenever the ergodicity assumption is incorrect,
in the case of inhomogeneous scattering mechanisms. Using a
multitude of radar acquisitions over a specific area a temporal
coherence can be derived, which is available on a pixel-by-
pixel basis.

B. Parameters of estimation

The three unknown parameters atmosphere, topography, and
deformation can be distinguished using there temporal and
spatial characteristics and their dependence on the perpendic-
ular baseline. Topography is independent in time and scales
linearly with the perpendicular baseline of the interferometric
combinations. Spatial correlation exists in a degree dependent
on the expected roughness of the topography. Deformation is
usually temporall and spatially correlated. In time, deformation
can usually be estimated in a first order analysis as a linear
process. Higher order deformation terms might be estimated in
an iterative approach, depending on the quantity and quality of
observations. Deformation is independent of the perpendicular
baseline, but usually spatially correlated. Atmospheric signal
is spatially correlated following a power law behavior, tempo-
rally uncorrelated over intervals of one or more days, while the
signal is the superposition of two atmospheric states related to
the two acquisitions, indicated as the acquisition ambiguity.

III. TROPOSPHERIC VARIABILITY

Atmospheric signal in the radar interferograms manifests
itself as a double-difference of slant-integrated refractivity:
spatial variability within a radar scene is differenced be-
tween two acquisitions. This implies that the total delay
signal, regarded as a mean value and variability around that
mean, cannot be measured. Previous studies have shown that
atmospheric signal exhibits a scaling behavior—the energy
contained at specific spatial scales is exponentially related to
the energy at different scales:

Pa(f) = P0(f/f0)−β , or linearly in loglog:

lnPa(f) = −β ln f + (lnP0 − ln f0)
(4)

where f is the spatial wavenumber, P0 and f0 are normalizing
constants, and −β is the spectral index. Alternatively, this
relation can be expressed by the structure function, covariance
function, or 2D fractal dimension. All three expressions are
valid within a limited range of scales due to physical restric-
tions.

A. Relative variability

Based on atmosphere-only, 1-day interval interferograms
over relatively flat areas, it has been shown [3] that atmo-
spheric signal exhibits a scaling behavior in two distinct
regimes. For spatial scales less than the effective turbulent
tropospheric thickness, say 2-5 km, the spectral index is close
to −8/3, whereas for larger scales up to the interferogram
sizes the spectral index decays to −5/3 and smaller. In fact,
due to the removal of nearly linear trends induced by orbit
errors the spectral index flattens over long distances. Thus we
have

Pa(f) =

{
P0(f/f0)−8/3 for 0 ≤ (f0/f) < 3 km,

P0 (f0/3) (f/f0)−5/3 for 3 ≤ (f0/f) < 50 km,

(5)

These observations correspond with Kolmogorov turbulence
theory, which expects a spectral index of −5/3 moving in
any direction in a three-dimensional turbulent volume. Vertical
integration of refractivity results in an atmospheric phase
screen with a spectral index of −8/3. Here it is assumed
that the horizontal spatial scales are less than the finite
physical height of the turbulent medium, which relates to a
3D volume. Moving to larger scales, the medium becomes
relatively more and more flat, effectively a thin, nearly 2D
slice. For these scales the roughness increases, resulting in the
−5/3 regime. For larger distances, further flattening of the
spectra is expected.
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Fig. 1. Power spectra of atmospheric signal in eight independent interfer-
ograms. Diagonal lines indicate -5/3 and -8/3 power slopes. The bold line
reflects the average spectrum.

Fig. 1 illustrates the hypothesis of a scaling behavior over
two regimes. Independent atmospheric interferograms over an
area in the Netherlands were used to obtain these observations.
The flattening of the spectra at high wavenumbers is due to
noise in the observations. The vertical position of these spectra
is indicative for the amount of energy during that specific
interferogram which is directly related to the instability of

0-7803-7930-6/$17.00 (C) 2003 IEEE

0-7803-7929-2/03/$17.00 (C) 2003 IEEE 1203



the boundary layer. It is important to note that the energy
in the atmospheric signal varies over more than one order
of magnitude. As a result, the lowest spectrum in fig. 1
corresponds with a nearly flat atmospheric phase screen. We
will use this property in section IV-B.

B. Absolute variability

The (relative) scaling behavior of atmospheric signal as
a function of distance is an elegant way for modeling or
simulating an atmospheric phase screen for a radar acquisition.
Nevertheless, the absolute amount of variability, expressed by
the P0 coefficient, is necessary to obtain realistic values. For
a specific location, it is important to know the likelihood of a
specific value of the P0 coefficient. Since this is not readily
available for these high spatial resolutions and accuracy, we
used Zenith Total Delay variability derived from permanent
GPS receivers of 138 EUREF stations over the year 2002.
Hourly ZTD values were recorded with a mean standard
deviation of 3.3 mm [4].

We assume that a specific weather situation can be expressed
by analyzing the variability of ZTD per day, using 24 mea-
surements. This yields over 365 days of variances, which are
related to instable, convective weather with much water vapor
(high variances) or stable weather situations without much
refractivity changes. Expressing these variances in a histogram
gives an indication for the likelihood of a particular weather
situation, parameterized by the delay variability. It is evident
that the amount of variability during a full day is larger than
during only a few hours, comparable with a spatial snapshot
in an interferogram. Moreover, the GPS observations do not
reflect the small changes within the hourly sampling and use
zenith averaging using satellites distributed over a wide part of
the sky. Nevertheless, we assume that the obtained variances
are a scaled version of the variability within a shorter time
frame and over smaller spatial scales. Under this assumption,
the abundance of data in the EUREF network allows for
deriving the necessary statistics.

Figure 2 shows the histograms of the daily ZTD variability.
For 114 stations with over 300 days of hourly observations, the
histograms are shown in gray values. The average histogram
is indicated by the bold black line. A best-fit χ2 distribution is
found for 2 degrees of freedom and a non-centrality parameter
of 10, and indicated by the dashed line. The maximum
likelihood value for daily ZTD variability is to be a standard
deviation of 8 mm. Assuming that the distributions reflect
the likelihood of a specific weather situation (in terms of
electromagnetic wave propagation), it is interesting to observe
that most stations show the same type of behavior. A standard
deviation of 3–4 cm or more has only a small likelihood,
whereas most of the variability seems to be in the range 2 mm
to 2 cm.

IV. STACKING APPROACHES

The atmospheric acquisition ambiguity hampers the inter-
pretation of the atmospheric signal per acquisition. The avail-
ability of a multitude of images enables two stacking method-
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Fig. 2. Histograms of daily atmospheric delay variability (standard deviation)
for 114 EUREF stations. The bold black line is the average distribution, and
the dashed line shows a best-fit χ2 distribution.

ologies to estimate the atmospheric phase screen per acquisi-
tion. The ’single-master’ approach, fig. 3B, is convenient for
deformation monitoring and can be applied in a permanent
scatterers approach or over areas which remain coherent over
many years. However, most natural areas decorrelate as a
function of time. Therefore, it would be advantageous to
use interferometric combinations with a temporal baseline as
small as possible, shown in fig. 3A and termed as ’cascaded’
interferograms.
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Fig. 3. Two stacking approaches. A)‘Cascaded’ interferograms: every SAR
image appears in two interferograms, except the first and last, and B) ‘single
master’ stack, where every interferogram refers to the same master image.

A. Single master stacking

For n radar acquisitions the single-master stack is obtained
from 


i1
...

in−1


 =


−Ik−1 [1]k−1 0

0 [1]n−k −In−k







a1
...

an


 (6)

where acquisition k is used as reference (master) image, Ii is
the unit matrix with dimension 1, [1]k−1 is a vector of ones.
The interferogram variance-covariance matrix is now
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Qi = σ2
a




2 1 . . . 1

1
. . .

. . . 1
...

. . .
. . . 1

1 . . . 1 2


 (7)

Taking the (unweighted) sum of all interferograms yields

1
n − 1

[
1, 1, . . . , 1

]



i1
...

in−1


 = ak − 1

n − 1

n\k∑
l=1

al or

1
n − 1

n−1∑
l=1

il = ak + ε (8)

with E{ε} = 0 and D{ε} = σ2
a

n−1 this yields the estimate for
the APS of the master image

âk =
1

n − 1

n−1∑
l=1

il with precision

σ2
âk

=
σ2

a

n − 1

(9)

where σ2
a is the atmospheric variance per acquisition.

B. Cascaded interferogram stacking

Whereas the single-master approach estimates the master
APS using a rigourous (weighted) averaging, experience shows
that in a time series of radar interferograms there are always
interferograms which show a negligible APS variability. The
lowest spectrum in fig. 1 is an example of such a situation.
Usually these situations occur during cold and stable weather
situation, where the water vapor content is low. The idea
behind the cascaded stack is to use this information and find
the interferogram with minimal variance. The cascade stack is
obtained from


i1
...

in−1


 =




1 −1
. . .

. . .
1 −1







a1
...

an


 (10)

with vc-matrix

Qi = σ2
a




2 −1 0 0

−1 2
. . . 0

0
. . .

. . . −1
0 0 −1 2


 . (11)

After finding the interferogram with minimal phase variance,
say, interferogram k with ik = ak − ak+1 we simply pose
that the expectation values E{ak} = E{ak+1} = 0 and
D{ak} = D{ak+1} = σ2

ik
, the observed variance σ2

ik
. Thus,

we overestimate the true variance of ak and we can regard

this as an upper bound on the variance. Retrieving the APS
per acquisition



a1
a2
...

ak−1
ak+2

...
an




=




1 1 . . . 1
1 1

1
−1
−1 −1
−1 . . . −1




.




i1
i2
...

in−1


 .

(12)

with vc-matrix

Qa = σ2
ik

In−2 (13)

This approach has the advantage over the single-master stack
that the error can be ‘chosen’ opportunistically, since the
error budget is fully determined by the interferogram with
minimal phase variation. This is especially efficient for scaling
signals which have orders of magnitude variation in energy. In
contrast, single master stacking, especially in its unweighted
form, minimizes the variance of the master atmospheric phase
screen by averaging, see eq. (9). This implies that (i) sufficient
acquisitions need to be available, and (ii) the presence of a
coincidental ‘perfect’ interferogram is not used. It needs to be
noted that by weighting the single-master stack, comparable
results can be obtained

V. CONCLUSION

Atmospheric signal in radar interferograms can be used for
both meteorological interpretation in atmospheric studies, as
well as for subtracting it from interferograms intended for
surface deformation or topography studies. We have shown
that atmospheric signal can be conveniently described stochas-
tically by its power-law behavior. The absolute amount of
energy in the signal, related to the weather situation, can be
described using a χ2 probability density function, based on
EUREF GPS stations. We presented single master stacking as
well as cascaded interferogram stacking as methods to derive
atmospheric phase screen from the data.

ACKNOWLEDGMENT

The authors would like to thank the European Space Agency
for supporting this study.

REFERENCES

[1] R. F. Hanssen, T. M. Weckwerth, H. A. Zebker, and R. Klees, “High-
resolution water vapor mapping from interferometric radar measure-
ments,” Science, vol. 283, pp. 1295–1297, 1999.

[2] A. Ferretti, C. Prati, and F. Rocca, “Nonlinear subsidence rate estimation
using permanent scatterers in differential SAR interferometry,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 38, no. 5, pp.
2202–2212, Sept. 2000.

[3] R. F. Hanssen, Radar Interferometry: Data Interpretation and Error
Analysis. Dordrecht: Kluwer Academic Publishers, 2001.

[4] W. Soehne and G. Weber, “Epn special project ”troposphere parameter
estimation”,” in EUREF Symposium, Ponta Delgada, Portugal, June 2002,
2003, pp. 1–6.

0-7803-7930-6/$17.00 (C) 2003 IEEE

0-7803-7929-2/03/$17.00 (C) 2003 IEEE 1205


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


